数值传热学教学第一章课件

合集下载

数值传热学(课件)

数值传热学(课件)

02 数值传热学的基本原理
控制方程
控制方程
数值传热学的核心是求解控制方 程,这些方程描述了热量传递过 程中的物理规律。
偏微分方程
控制方程通常以偏微分方程的形 式给出,包含了温度、时间、空 间等变量的变化关系。
初始条件和边界条

为了求解控制方程,需要给出初 始条件和边界条件,这些条件限 定了问题的解的范围。
详细描述
传热过程模拟是数值传热学的另一重要应用,通过建立传热过程的数学模型,可以模拟物体内部的温 度分布和热量传递过程。这对于能源、化工、电子等领域中的热工设备设计和优化具有重要意义。
04 数值传热学面临的挑战与 解决方案
计算精度与稳定性问题
总结词
计算精度和稳定性是数值传热学中的核心问题,直接关系到模拟结果的准确性和可靠性。
详细描述
多尺度问题要求数值方法能够捕捉到不同尺度的物理现象,并准确地将它们联系起来。 这需要发展具有多尺度分辨率的数值方法,如多重网格法、谱方法和自适应网格法等。
非线性问题
总结词
非线性问题在传热过程中广泛存在,如 流动、相变和化学反应等,给数值模拟 带来很大难度。
VS
详细描述
非线性问题需要数值方法能够处理高度非 线性的物理方程,并能够准确地捕捉到非 线性现象。这需要发展高效的数值算法, 如有限元法和有限体积法等,同时还需要 考虑非线性问题的特殊性质,如初始条件 和边界条件等。
02
它涉及传热学的基本原理、数学 建模、数值计算和计算机技术等 多个领域,是计算流体动力学和 计算传热学的重要组成部分。
数值传热学的重要性
随着科技的发展,传热问题在能源、 环境、航空航天、化工等领域越来越 突出,数值传热学的应用也越来越广 泛。

1传热学第一章课件

1传热学第一章课件
物体的温度越高、辐射能力越 强; 若物体的种 类 不同、 表面状况 不 同,其辐射能力不同
辐射换热:物体间靠热 辐射进行的 热量传递
2.辐射换热的特点
➢不需要冷热物体的直接接触; 即:不需要 介质的 存在,在真空中就可 以传递能量
➢在辐射换热过程中伴随 着能量 形式的转换 物体热 力学能 电 磁波能 物体热力学能
热 力学: tm , Q
传热学:过程的速率
水,M2
20oC
t = f ( x , y , z , ); Q = f ( )
传热学研究内容 热量传递的机理和速率、温度 场的变化
传热学的工程应用
1、 强化传热:即在一定的 条件下, 增加 所传递 的热量。 如热水的 搅拌冷 却
2 、 削弱传热,也称 热绝缘 :即在一 定的温差 下,使 热量的传递 减到最小。如热 水瓶
教材
《传热学》,戴锅生著,第二版
学时
总学时:24,讲课:22,实验:2
参考资料:《传热学》,杨世铭、陶文铨编著,第四版 《传热学重点难点及典型题精解》,王秋旺,西安交大出版社
辅导
周四 4:00-5:00pm,一校区教4楼 热能教研室
第一章 绪论
§1-1 传热学概述 §1-2 热量传递的基本方式 §1-3 传热过程与热阻
燃煤电厂的基本流程
锅 炉 工 作 原 理
三、传热学与工程热力学的关系
相同点: 传热学以热力学第一定律和第二定律为基础
热力学第一定律
热量始终是从高温物体向低温物体传递,在热量传递过程中 若无能量形式的转换,则热量始终保持守恒。
热力学第二定律
热量能自发的从高温物体传递到低温物体
不同点 a. 工程热力学:热能与机械能及其他形式能量之间 相互转换的规律。不考虑热量传递过程的时间。

数值传热学(课件)-1

数值传热学(课件)-1

热流问题的数值计算Numerical Simulations of Thermal & Fluid Problems第一章 绪论主讲 陶文铨西安交通大学能源与动力工程学院 热流中心 CFD-NHT-EHT CENTER 2007年10月16日, 西安1/88物理问题数值解的基本思想 把原来在空间与时间坐标中连续的物理量的场 (如速度场,温度场,浓度场等),用一系列有限 个离散点(称为节点,node)上的值的集合来代替; 通过一定的原则建立起这些离散点上变量值之间关 系的代数方程 (称为离散方程,discretizationequation);求解所建立起来的代数方程以获得所求解变量的近似解.2/88大规模科学计算的重要性 传热与流动问题数值计算是应用计算机求解热量传 递过程中的速度场,温度场等的分支学科,是大规模 科学计算的重要组成部分,其重要性不言而喻. 2005年美国总统顾问委员会向美国总统提出要大 力发展计算科学以确保美国在世界上的竞争能力. 波音公司实现了对航空发动机的网格数达10亿量 级的直接数值模拟,以研究所设计发动机的性能.3/88现代科学研究的三大基本方法及其关系理论分析Analytical实验研究Experimental数值模拟Numerical4/88课程简介1. 学时- 30学时理论教学;6学时计算机作业 2. 考核- 平时作业/计算机大作业/考试: 20/30/50 3. 方法- 理解,参与,应用 努力将与数学处理相对应的物理背景联系起来理解. 4. 助手- 于乐 5. 参考教材-《计算流体力学与传热学》,中国建筑 工业出版社,19915/88学习方法建议1. 善于从物理过程基本特性来掌握理解数值方法; 2. 对数值方法-明其全而析其微:明其全-了解基本原理;析其微-掌握实施细节;3. 努力上机实践; 4. 学会分析计算结果: 合理性,规律性; 5. 应用商业软件与自编程序相结合.6/88《热流问题的数值计算》 主要教学内容第一章 绪论(物理与数学基础) 第二章 一维导热问题的数值解 第三章 多维导热问题的数值解 第四章 势流及管道内充分发展流动与换热的数值解 第五章 有回流的动与换热问题的数值解 第六章 二维涡量-流函数法通用程序介绍 第七章 原始变量法与湍流数值模拟简介7/88绪论1.1 流动与传热问题控制方程的基本类型 1.2 流动与传热问题数值计算的基本步骤 1.3 建立离散方程的方法 1.4 离散方程数学与物理特性分析简介8/881.1 流动与传热问题控制方程的基本类型1.1.1 流动与传热问题完整的数学描写 1.1.2 控制方程 1. 质量守恒方程 3. 能量守恒方程 1.1.3 单值性条件 1.1.4 建立数学描写举例 1.1.5 控制方程式的分类9/882. 动量守恒方程1.1 流动与传热问题控制方程的基本类型1.1.1 流动与传热问题完整的数学描写 1. 有关的守恒定律的偏微分方程(控制方程)一切宏观的流动与传热问题都由三个守恒定律所 支配:质量,动量与能量守恒(conservation law).2. 与表述守恒定律的偏微分方程相关的单值性条件.不同问题的区别主要在于单值性条件 (conditions for unique solution) 的不同:初始条件以,边界条件 以及物性数据.10/881.1.2 控制方程(Governing equations) Mass conservation1. 质量守恒方程r ( r u ) ( r v) ( r w) + + + =0 t x y z单位时间 内质量的 增加 单位时间内流 进微元体的净 质量物理意义:单位时间内空 间某一微元容积质量的增 加等于流入该微元容积的 净质量.11/88对不可压缩流体: r = const 对二维不可压缩流体:u v + =0 x yu v w + + =0 x y z对二维问题,速度矢量:ur u v 数学上称: + = div(U ) x yur r ur U =ui+v j为速度矢量的散度,因此对二维不可压流体有:ur div(U ) = 0下面只讨论不可压缩流体(incompressible flow).12/882. 动量守恒方程(Momentum conservation)对上图所示的微元体分别在三个坐标方向上应用 Newton第2定律(F=ma)在流体中的表现形式: [微元体内动量的增加率]=[作用在微元体上各种力之和] 可得出三个坐标方向的动量方程:u uu uv uw 1 p 2u 2u 2u + + + =+ n ( 2 + 2 + 2 ) + Fx t x y z r x x y z 1 p v vu vv vw 2v 2v 2v + + + =+ n ( 2 + 2 + 2 ) + Fy t x y z r y x y z 1 p w wu wv ww 2 w 2 w 2 w + + + =+ n ( 2 + 2 + 2 ) + Fz t x y z r z x y z微元体内动 量的增加率压力粘性力体积力13/883. 能量守恒方程(Energy conservation)[微元体内热力学能的增加率]=[通过流动与导热进入 微元体内的净热流量]+[体积力与表面力对微元体所做 的功率] 引入导热Fourier定律,假定热物性为常数,可得T (uT ) (vT ) ( wT ) 2T 2T 2T rcp[ + + + ] = l( 2 + 2 + 2 ) + S t x y z x y z微元体 内能增 加率 由于流动被带出 微元体的净功率 由于导热而进入 源项 微元体的净功率 生成 热14/88l =a rcp流体的热扩散率(thermal diffusivity)4. 对于二维稳态对流换热问题控制方程汇总u v + =0 x yuu uv 2u 2u 1 p + =+ n ( 2 + 2 ) + Fx y z r x x yvu vv 2v 2v 1 p + =+ n ( 2 + 2 ) + Fy y z r y x y(uT ) (vT ) 2T 2T + = a( 2 + 2 ) + ST x y x y对流项扩散项源项数值计算中常用的术语.15/88不同的二维,稳态求解问题之间的区别在于: (1)边界条件不同; (2)源项与扩散系数不同.5. 二点说明1. 所导出的三维非稳态Navier-Stokes方程,无论对 层流或是湍流都是适用的. 2. 辐射换热需要用积分方程来描述,课程中将不涉及 这类问题.16/881.1.3 单值性条件 1. 初始条件 2. 边界条件 (1) 第一类 (Dirichlet):t = 0, T = f ( x, y, z )TB = Tgiven(2) 第二类 (Neumann): qB = -l (T ) B = qgiven n(3) 第三类 (Rubin):规定了边界上被求函数的一阶导数与函数之间的关系: -l ( T ) B = h(TB - T f )n数值计算中计算区域的出口边界条件常常最难 确定,要做近似处理.17/881.1.4 建立数学描写举例 1. 问题与假设条件突扩区域中的对流传热:二维,稳态,不可压缩, 常物性,不计重力与黏性耗散.18/882. 控制方程u v + =0 x y1 p u u u u u +v =+n ( 2 + 2 ) r x x y x y 2 2 v v 1 p v v u +v =+n ( 2 + 2 ) x y r y x y2 2T T T T u +v = a( 2 + 2 ) x y x y2 219/883. 边界条件 (1)进口边界条件:给定u,v,T随y 的分布; (3)中心线: u = T = 0; v = 0 y y(4)出口边y x界:数学上要 求给定u,v,T 或其导数随y 的分布;实际 上做不到;数 值上近似处理20/88(2)固体边界条件:速度无滑移,温度无跳跃1.1.5 传热与流动问题的数学描写的分类 1. 从数学角度分类-椭圆型与抛物型椭圆型 (Elliptic)椭圆型方程数学上的特点是:所求解的因变量对每个 空间自变量均存在二阶导数项: 导热方程-所求解的因变量为温度T ,空间自变量x,y; 动量方程-所求解的因变量为速度u ,空间自变量x,y.21/88抛物型(Parabolic)抛物型方程数学上的特点是:所求解的因变量对某个 个自变量只存在一阶导数项: 非稳态导热方程-因变量T 对时间t仅有一阶导数; 边界层动量方程-u对空间自变量x仅有一阶导数. 仅存在一阶导数的自变量在物理过程上的重要特 点:过程只能沿该坐标的单个方向进行而不能逆向进 行.22/88抛物型与椭圆型流动的例子椭圆型方程的求解必须全场联立进行,而抛物性 方程的求解可以沿坐标正向逐步推进, 大大节省时间.23/88(1)椭圆型问题: 流动有回流,必须 全场同时求解; (2)抛物型问题:流动无回流,可以沿主流方向步 步逼进,不必全场同时求解,大大节省时间.Marching method24/882. 从物理角度分类-守恒型与非守恒型守恒型( Conservative)-对任意大小容积守恒特性 都能得到满足的方程; 凡对流项表示成散度形式的方程具有守恒性 . 非守恒型方程+u v v u u v u ++ u = 0= 0 u ( + ) = 0 x x y y x y (uu ) (uv) 1 p 2u 2 v =+n ( 2 + 2 ) + r x x x y x守恒型方程凡是从守恒型控制方程推导得到的用于数值求解 的代数方程也具有守恒特性.25/881.2 流动与传热问题数值求解的基本步骤1.2.1 流动与传热问题数值求解步骤 1. 建立数理模型 3. 方程的离散化 5.代数方程求解 1.2.2 区域离散化方法 2.区域的离散化 4. 边界条件离散 6. 求解结果分析1.区域离散化的任务 2. 区域离散方法1.2.3 网格系统标记方法26/881) 外节点法2. 内节点法1.2.1 流动与传热问题数值求解步骤把原来在空间与时间坐标中连续的物理量的场 (如速度场,温度场,浓度场等),用一系列有限个 离散点(称为节点,node)上的值的集合来代替;通过 一定的原则建立起这些离散点上变量值之间关系的代 数方程(称为离散方程,discretization equation);求 解所建立起来的代数方程以获得所求解变量的近似解.27/88(1) 区域离散 (2) (3) (4) (5) 代数求解 (6)28/88方程离散结果分析1.2.2 区域离散化1.区域离散化的任务将所计算的区域分割成许多不重叠的子区域,确 定每个子区域中节点的位置以及所代表的控制容积. 离散结果得出四种几何要素: (1) 节点(node):所求解未知量的位置; (2) 控制容积(control volume):实施守恒定律的最 小几何单位; (3) 界面(interface):控制容积的分界位置; (4) 网格线(grid lines):沿坐标方向相邻节点连接 成的曲线簇.29/882. 区域离散方法 (a) 外节点法:节点位于子区域的角顶;控制容积界 面位于两节点之间;生成过程:先节点后界面;又 称 Practice A.子区域控制容积30/88YPractice A-外节点法 x31/88(b) 内节点法:节点位于子区域的中心;子区域即为 控制容积;生成过程:先界面,后节点,又称 Practice B.子区域即为控制容积32/88YPractice B-内节点法 x33/88 1.2.3 内接点与外节点法的比较 (a)边界节点所代表的控制容积不同 方法A 边界节点代表半个CV方法B 边界节点代表零个CV(b)网格非均分时,节点作为控制容积的代表方法B 更合理 方法A 方法B34/881.2.3 网格系统表示方法 网格线-节点间连线,用实线表示;界面为虚线; 节点间距离-dx;界面间距离-Dx .35/881.2.4 网格独立解 当网格足够细密以至于再进一步加密网格已对 数值计算结果基本上没有影响时所得到的数值解称 为网格独立解(grid-independent solution).Int. Journal Numerical Methods in Fluids, 1998, 28: 1371-1387.36/881.3 建立离散方程的方法 1.3.1 一维模型方程( 1-D model equation ) 1.3.2 由Taylor 展开法导出导数的差分表示式 1.3.3 控制容积积分法导出导数的差分表示式 1.3.4 讨论37/881.3 建立离散方程的方法 1.3.1 一维模型方程( 1-D model equation ) 一维模型方程是一维非稳态有源项的对流-扩 散方程,具有四个特征项,便于离散方法的研讨. 非守恒型 守恒型 ( rf ) f f + ru = (G ) + Sf t t x xFDM采用 ( rf ) ( r uf ) f + = (G ) + Sf FVM采用 t t x x 瞬态 对流 扩散 源项38/88"麻雀虽小,五脏俱全!"1.3.2 由Taylor 展开法导出导数的差分表示式 1. 一阶导数的差分表达式的导出 将函数f ( x, t ) 在(i+1,n)的值对(i,n)点做Taylor展开:f 2f Dx 2 2 f (i + 1, n) = f (i, n) + )i ,n Dx + 2 )i ,n Dx + ..... x x 2!f f (i + 1, n) - f (i, n) Dx 2f ) i ,n = - ( 2 )i ,n + ... x Dx 2 x39/88O ( Dx ) 称为截断误差, truncation error,表示:随 Dx 的趋于零,用 f (i + 1, n) - f (i, n) 代替 f )i ,n 的误差 x Dxf f (i + 1, n) - f (i, n) )i ,n = + O(Dx) x Dx KD x, K 与 Dx 无关.D x 的方次称为截差的阶数(order of TE).用数值计算的近似解 fin 代替精确解 f (i, n)fin 1 - fin f )i ,n @ + , O(Dx) 得向前差分: x Dx40/88f -f f )i ,n @ 向后差分: x Dxn in i -1, O (Dx )fin 1 - fin 1 f )i , n @ + , O(Dx 2 ) 中心差分: x 2Dx2. 一,二阶导数的各种差分表达式. 表达差分结构的格式图案o构筑差分表达式的位置; 构筑差分表达式所用到的节点.41/88一阶导数的 常用差分表达式42/88二阶导数的常用差分表达式定性判别导数的差分表达式正确与否的方法: (1)量纲是否正确-与导数本身一致; (2)均匀场的各阶导数应为零.43/883. 一维模型方程的有限差分显式离散表示式 微分方程形式: 假设 ( rf ) f f + ru = (G ) t t x xr , u, G均为常数,显式差分表达式:fin +1 - fin fin 1 - fin 1 r + ru + = Dt 2Dx fin 1 - 2fin + fin 1 G + , O (Dt , Dx 2 ) Dx 2差分方程 截断误差44/88显式(Explicit)-空间导数均以初 始时刻之值计算.1.3.3 控制容积积分法导出导数的差分表示式 1. 控制容积积分法实施步骤 1. 将守恒型的方程对控制容积做积分; 2. 选定被求函数及其一阶导数对时间,空间的变化 曲线-型线; 3. 完成积分,整理成相邻节点间未知量的代数方程. 2. 两种常用型线 型线-被求函数随自变量的局部变化方式,本是 所求内容,近似求解需先假定.45/88随空间自变量的变化型线 型线 型线分段线性阶梯逼近46/88piece-wise linear step-wise approximation随时间自变量的变化型线分段线性 piece-wise linear阶梯逼近 step-wise approximation47/883. 一维模型方程的控制容积积分法离散 将守恒型控制方程对控制容积P 在[t, t+ Dt ]内 做积分, ( rf ) ( r uf ) ft立即可得e+xt +Dt t=xe(Gx)r ò (ft +Dt -ft )dx +rwò [(uf)òt- (uf)w ]dt =t +Dt=Gf f [( )e - ( ) w ]dt x xf 以及 x48/88继续积分,需要知道:f对空间与时间的变化型线.1. 非稳态项假设 f 对空间呈阶梯型变化:t t r ò (f t +Dt - f t )dx = r (f P+Dt - f P )Dx w e2. 对流项假设 f 对时间呈显示阶梯型变化:rt +Dtòt[(uf )e - (uf ) w ]dt = r[(uf )te - (uf )tw ]Dt49/88假设 f 对空间呈分段线性变化:fE + fP fP + fW fE - fW r[(uf ) - (uf ) ]Dt = r uDt ( ) = r uDt 2 2 2t e t w均分网格3. 扩散项f 假设 对时间呈显式阶梯型变化: xt +DtGòtf f f t f t [( )e - ( ) w ]dt = G[( )e - ( ) w ]Dt x x x x50/88假设 f 对空间呈分段线性变化:。

传热学第一章PPT学习教案

传热学第一章PPT学习教案

1
tf1 t'f 2 1 1
h1
h1 h2
第41页/共42页
第38页/共42页
由: 导热热阻 对流热阻 辐射热阻
各种情况下热阻表达及其
推导过程
Φ t Rt
Φ A t
R A
Φ hAt
Rh
1 hA
Φ A(T 4w1 T 4w2)
Rr
1 A(T 2w1 T 2w2 )(Tw1
Tw2 )
第39页/共42页
串联热阻叠加原则
在一个串 联的热 量传递 过程中 ,如果 通过每 个环节 的热流 量都相 同,则 各串联 环节的 总热阻 等于各 串联环 节热阻 的和。
力强?
• 对流换热方式 >> 导热方式
第16页/共42页
流体微团如何实现宏观位移
• 机械设备形成的外 力场作用
温差造成流体密度差, 在重力场作用下所形成 的浮力作用
第17页/共42页
对流换热的两种形式
强迫对流(Forced Convection) 自然对流(Natural Convection)
传热学第一章
会计学
1
本章话 题?
传热学的重 要性
传热学与工程热 力学的联系和区 别
热量传递的基本 方式
如何分析传热 问题
第1页/共42页
首 先第一 话题
什么是传 热学呢?
研究热量传递的一 门学问
包含定性的机理分 析
也包含定量的工程 计算
第2页/共42页
传热学能 解决什么 问题呢?
理解并掌握增强或 减小传热的方法和 举措 计算特定场合热量 传递的大小
串联传热 ,稳态 ,没有 内热源
将复杂的传热过程分成若干部

数值传热学(课件)-1

数值传热学(课件)-1
i=2···L1, j=2···M1,XDIF(i)=X(i)−X(i-1),
YDIF(j)=Y(j)−Y(i-1)
(4)生成U,V各自控制容积宽度:XCVS(i), i=3···L2, YCVS(j), j=3···M2
(5)设置Y方向半径R(j), X方向
scaling factor SX(j)
11-1-3 亚松弛的迭代方式 为有利于非线性问题迭代的收敛,两个迭
代层次之间变量的变化不宜太大,亚松弛处理 可以控制这一变化速度.除了 p方程以外,其余
u 、v 、p及一般 变量的方程均把亚松弛处
理纳入到代数方程求解过程中,即由该代数方 程求解而得的结果就是已经经过亚松弛了的结 果:
0
11-3 网格系统
11-3-1 三种坐标系中的有关规定 1. 直角坐标系
(1)MODE=1; (2)Z 方向为单位
厚度; (3)坐标原点位于计
算区域的左下方。
YL XL
2. 圆柱轴对称坐标系
(1)MODE=2;
(2)计算对 =
1弧度进行; (3)R(J) 从对称周
起算; (4)R(1)应给定。
4.START (1)对非稳态问题规定初始条件; (2)对稳态问题规定迭代的初场;固定不变的边 界条件也可在此引入。 以上四个模块在一个工况计算中知执行一次。
5.DENSE 规定流体的密度场;对常物性问题可不写任何语
句,但应保留空块。
6.BOUND
设置各变量的边界条件。
7.OUTPUT (1)每做一个层次的迭代(代数方程系数变换一
⑴ 有灵活的前处理与输入系统
包括输入计算条件及生成网格;
⑵ 有完善的后处理系统,使计算结果的图形显示与 输出很方便;

数值传热学讲义

数值传热学讲义
二维椭圆型流动传热通用程序
变量表及算例说明
(本材料仅供教学参考)
西

交 通


CFD&NHT/EHT 研究中心
陶文铨教授
2002/10/15 西 安
1
目录 ……………………………………………………………………………………………… 2
一、 FORTRAN 变量表…………………………………………………………………………3 二 、关于程序的主要说明………………………………………………………………………6
Coefficients used in the block correction.
The constant term b in the discrimination equation; also stands for GAMSOR.
sC
in
DENOM DIFF DT DU (I, J) DV (I, J) F (I, J, NF) FL FLM FLOW FLP
Temporary storage. Time t for unsteady problems. Alphabetic title for F (I, J, NF). The x-direction velocity u. The y-direction velocity v. Volume of the C.V. The values of x at grid points. The x-direction widths of main C.V.. The part of XCV (I) that overlaps on the C.V. for U (I, J). The part of XCV (I) that overlaps on the C.V. for U (I+1,J). The x-direction width of the staggered C.V. for U (I, J). The difference X (I)-X (I-1). The x-direction length of the calculation domain. The locations of the C.V. faces; i.e. the location of U (I, J). The values of y at grid points. The y-direction widths of main C.V. The area The area

传热学-第一章 绪论PPTPPT幻灯片

传热学-第一章 绪论PPTPPT幻灯片
• 工程热力学:研究能量转换的规律以及热能的性质
• 传热学:研究热量传递规律的一门科学, 热量传递的机理、规律、计算和测试方法
• 燃烧学:研究燃烧现象和燃烧机理
• 制冷与低温:用人工的方法在一定时间和一定空 间内将某物体或流体冷却,使其温度降到环境温度 以下或很低的温度并保持该温度
授课计划 (48学时)
说明:只研究导热现象的宏观规律。
4 、导热的基本规律
1 )傅立叶定律 ( 1822年,法国数学家Fourier)
如左图所示的两个表面分别维持均 匀恒定温度的平板,是个一维导热 问题。对于x方向上任意一个厚度为 的微元层来说,根据傅里叶定律, 单位时间内通过该层的导热热量与 当地的温度变化率及平板面积A成正 比,即
第一章 绪论(4学时) 第二章 导热基本定律及稳态导热(8学时) 第三章 非稳态导热(6学时) 第四章 导热数值解法基础(2学时) 第五章 单相流体对流换热(8学时) 第六章 凝结与沸腾换热(2学时) 第七章 热辐射基本定律及物体的辐射特性(4学时) 第八章 辐射换热计算(6学时) 第九章 传热过程分析与换热器计算(8学时) 成绩权重:考试 70%,作业30%。
c 北方寒冷地区,建筑房屋都是双层玻璃, 以利于保温。如何解释其道理?越厚越好?
d 为什么下雪不冷、化雪冷?
为什么水壶的提把要包上橡胶?
不同材质的汤匙放入热水中,哪个黄油 融解更快?
生产技术领域大量存在传热问题
a 航空航天:高温叶片气膜冷却与发汗冷 却;火箭推力室的再生冷却与发汗冷却; 卫星与空间站热控制;空间飞行器重返大 气层冷却;超高音速飞行器(Ma=10)冷却; 核热火箭、电火箭;微型火箭(电火箭、 化学火箭);太阳能高空无人飞机
❖ 自然界与生产过程到处存在温差—传热很普遍

数值传热学chapter_1

数值传热学chapter_1

主讲陶文铨西安交通大学能源与动力工程学院热流中心CFD-NHT-EHT CENTER 2009年9月7日,西安数值传热学第一章绪论课程简介1. 教材-《数值传热学》第二版,20012. 学时-45学时理论教学;10学时程序教学3. 考核-平时作业/计算机大作业:考试-40/60;考查-60/404. 方法-开放,参与,应用5. 助手-郭东之,周文静,李兆辉有关的主要国外期刊1.Numerical Heat Transfer, Part A-Applications; Part B-Fundamentals2.International Journal of Numerical Methods in Fluids.puter & Fluids4.Journal of Computational Physics5.International Journal of Numerical Methods in Engineering6.International Journal of Numerical Methods in Heat and FluidFlowputer Methods of Applied Mechanics and Engineering8.Engineering Computations9.Progress in Computational Fluid Dynamics10. Computer Modeling in Engineering & Sciences (CMES)11.ASME Journal of Heat Transfer12.International Journal of Heat and Mass Transfer13.ASME Journal of Fluids Engineering14.International Journal of Heat and Fluid Flow15.AIAA Journal1.1 传热与流动问题的数学描写1.1.1控制方程及其通用形式1.1.2单值性条件1.1.3建立数学描写举例1. 质量守恒方程2. 动量守恒方程3. 能量守恒方程4. 通用控制方程1.1 传热与流动问题的数学描写一切宏观的流动与传热问题都由三个守恒定律所(u ρ∂JG动量守恒方程对上图所示的微元体分别在三个坐标方向上应用导出上式时引入了关于流体中切应力与正应力的Stokes假定。

传热学第一章 热量传递的基本方式ppt课件

传热学第一章 热量传递的基本方式ppt课件
爆破学、工厂、物业、商厦与地面建筑的灾害防治技术、通风 与空气调节 、安全管理学等专业知识,这些都与传热相关。
*
太原理工大学
8 / 51
主要体现在以下几个方面
Thermal
➢ 温度场的测算和换热量的计算; ➢ 环境变化对温度场的影响;
➢ 极限温度的控制:为使一些设备能安全经济地运 行,需要对热量传递过程中物体关键部位的温度进 行控制。
*
太原理工大学
24 / 51
(2)对流换热的分类
• 无相变:强制对流和自然对流换热
Thermal
• 有相变:沸腾、凝结、凝固、熔化等。
自然对流:由于流体冷热各部分的密度不同而引起流 体的流动。 如:暖气片表面附近受热空气的向上流动 强制对流:流体的流动是由于水泵、风机或其它压差 作用所造成的。 如油冷却器、空气预热器等。
两黑体表面间的辐射换热
*
太原理工大学
33 / 51
(6)总 结
Thermal
在实际问题中,这三种热量传递方式往往不是单独 出现的,这不仅表现在互相串联的几个环节中,而 且同一个环节也常常如此。例如: 一块高温钢板在厂 房中的冷却散热。
*
太原理工大学
28 / 51
(2)辐射换热的特点
Thermal
• 任何物体,只要温度高于0 K,就会不停地向周围空 间发出热辐射(热辐射是物体本身的属性,等温时为 动态平衡);
• 可以在真空中传播,不需要中间介质,而且在真空中 辐射能的传递最有效;
• 不仅有能量的转移,而且还伴随有能量形式的转换;
Thermal
§1-1 传热学的研究对象及其在安全工程 技术中的应用
一、研究对象及内容
研究由温差引起的热量传递规律的科学,具体来讲主要有 热量传递的机理、规律、计算和测试方法,其内容包括:

2016数值传热学第一章

2016数值传热学第一章
1.1.1 Governing equations and their general form
1. Mass conservation
( u ) ( v) ( w) 0 t x y z
9/87
MOE KLTFSE
“div” is the mathematical symbol for divergence (散度).
4/87
MOE KLTFSE
Methods for improving teaching and studying 1. Speaking simple but clear English with Chinese note (注释) of new terminology (术语) and some words; 2. Enhancing (加强) communications between students and teachers: a QQ-group has been set up, and my four assistants will help me in this regard; 3. Understanding (理解) the importance of numerical simulation method: not just for a credit(学分) , but it’s an important technique for job-looking (谋职);
4. General form 1.1.2 Conditions for unique solution(唯一解) 1.1.3 Example of mathematical formulation
8/87
MOE KLTFSE
1.1 Mathematical formulation of heat transfer and fluid flow (HT & FF) problems All macro-scale (宏观)HT & FF problems are governed by three conservation laws:mass, momentum and energy conservation law. The differences between different problems are in: conditions for the unique solution(唯一解):initial (初始的)& boundary conditions, physical properties and source terms.

数值传热学ppt

数值传热学ppt
Βιβλιοθήκη 。数值传热学的研究作用与地位
由于实验方法或分析方法在处理复杂的流动与换热问题 时,受到较大的限制,例如问题的复杂性,即无法做分析解, 也因为费用的昂贵而无力进行实验测定,而数值计算的方法 正具有成本较低和能模拟复杂或较理想的过程等优点,数值 传热学得到了飞速的发展。近20年来,计算机硬件工业的发 展更为数值传热学提供了坚实的物质基础,是数值模拟对流 动与传热过程的研究发挥了重要的作用。
·Fluent求解问题步骤
Fluent软件采用基于完全非结
构化网格的有限体积法,而且 具有基于网格节点和网格单元 的梯度算法 Fluent软件包含丰富而先进的物 理模型,使得用户能够精确地模 拟无粘流、层流、湍流
Fluent软件功能强,适用面广,包括各种优化物理模型,有
适合它的数值解法,用户可对显式或隐式差分格式进行选择, 可以在计算速度、稳定性和精度等方面达到最佳。
过去不等于未来
1. 2. 3. 4.
有限差分法 有限容积法 有限元法 有限分析法
有限容积法
A 基本思路是:
将计算区域划分为一系列不重复的控制体积,并使每个网格 点周围有一个控制体积;将待解的微分方程对每一个控制体 积积分,便得出一组离散方程。 B 区别: 有限单元法必须假定值在网格点之间的变化规律(既插值函 数),并将其作为近似解;有限差分法只考虑网格点上的数 值而不考虑值在网格点之间如何变化;有限容积法只寻求结 点值。 C 五个部分: 网格生成 、对流项的离散化、边界条件的离散化 、压力速度 耦合 、离散方程的求解
Fluent几何形状
Fluent流体
谢 谢
应用领域
· 直接空冷凝汽器考核工况的全厂数值模拟 · 连续退火炉冷却气体流场和传热特性的数值模拟 · 层流状态下纳米流体的对流传热特性 · 循环流化床锅炉炉内传热的影响 · 车用暖风散热器数值模型 · Fluent软件特点及在室内温度计算中的应用

教学课件:第1章-有限体积法

教学课件:第1章-有限体积法
有限体积法在多物理场耦合问题中广泛应用于多物理场数值模拟,通过 将多个物理场离散成有限个控制体,能够同时求解多个物理场的控制方 程,得到多物理场耦合的数值解。
在应用中,有限体积法能够处理复杂的多物理场耦合问题,如流体与结 构的相互作用、热力电化学反应等,为复杂系统设计和优化提供重要依 据。
04
有限体积法的优缺点
教学与人才培养
为了更好地推广和应用有限体积法, 需要加强教学和人才培养工作。例如 ,在高校开设相关课程,介绍有限体 积法的基本原理和应用实例;组织学 术交流活动,促进研究人员之间的合 作与交流;提供实践机会,让学生在 实际项目中锻炼和掌握有限体积法的 应用技能。
THANKS
感谢观看
在应用中,有限体积法能够处理复杂 的流动问题,如湍流、分离流和多相 流等,为工程设计和优化提供重要依 据。
通过将连续的流体离散成有限个控制 体,有限体积法能够求解流体动力学 的控制方程,如Navier-Stokes方程, 得到流场的数值解。
有限体积法在传热学中的应用
传热学是研究热量传递规律的科学,有限体积法在传热学中广泛应用于数值传热学 模拟。
通过具体的应用实例,如一维稳态对 流方程、二维非稳态对流方程等,展 示了有限体积法的计算过程和结果。 这些实例表明,有限体积法能够准确 地模拟流体流动和传热过程,为工程 实际问题提供了有效的数值解决方案 。
有限体积法的局限性 和改进方向
尽管有限体积法具有许多优点,但在 某些情况下也存在一些局限性,如处 理复杂边界条件、非均匀网格划分等 问题。为了提高计算精度和效率,未 来的研究可以针对这些局限性进行改 进,如开发更高效的数值格式、研究 自适应网格技术等。
有限体积法的优点
精度高
有限体积法在计算流体 动力学问题时,能够得 到高精度的数值结果。

数值传热学绪论热流问题的数值计算课件01

数值传热学绪论热流问题的数值计算课件01

注意
1.4数值传热学及常用的数值方法
1.4.1数值传热学求解问题的基本思想:
把原来在空间与时间坐标中连续的物理量的场 ,用一系列有限个离散点(称为节点)上的值 的集合来代替,通过一定的原则建立起这些离 散点上变量值之间关系的代数方程(称为离散 方程),求解的建立起来的代数方程以获得所 求解变量的近似值。如图1-7所表示(见下页) 。
1.3控制方程的数学分类及基对数值 解的影响
1.3.1偏微分方程的3种类型
双曲型(hyperbolic); 抛物型(parabolic); 椭圆型(elliptic).
1.3.2椭圆型方程
描写物理学中一类稳态问题,这种物理问 题的变量与时间无关而需要在空间的一个 闭区域内来求解。如图1-4所示。各节点上 的代数方程必须联立求解,而不能先解得 区域中某一部分上的值后再去确定其余地 区上的值。
u-动量方程:
v-动量方程:
w-动量方程:
流体的第2 分子黏度
流体的动力粘度
矢量形式为:
其中
为3个动量方程的广义
源项,其表达式为:
对粘性为常数的不可压缩流体
于是式(1-6)简化成为:
1.1.3能量守恒方程
对图1-1所示的微元体应用能量守恒定 律:
[微元体内热力学能的增加率]=[进 入微元体的净热流量]+[体积力与表 面力对微元体做的功]
再引入导热Fourier定律,可得出用流 体比焓h及温度T表示的能量方程:
导热系数
耗散函数
流体的内 热源
为由于粘性作用机械能转换为热能 的部分,其计算式如下:
对不可压流体有:
1.1.4控制方程的通用形式
1.1.5几点说明:
1. 式(1-4)是三维非稳态Navier-Stokes方程 ,无论对层流或湍流都是适用的。

传热与流体流动数值计算(1~3章)-PPT精选文档

传热与流体流动数值计算(1~3章)-PPT精选文档

• 可以代表无因次的变量 • 热、质传递,流体流动,紊流以及有关的一些现 象的所有有关微分方程都可以看成通用方程的一 个特殊情况;可以只编写一个求解通用方程的程 序,对不同意义的 重复使用这个程序; • 对不同的 需要对相应的和S分别赋以各自合适 的表达式,同时给出合适的初始条件和边界条件。
坐标的合适选择
恰当明智地选择坐标系统有时可以减少所需要的自变量数。 并非只能使用直角坐标系,任何一种描述空间位置的方式都 是可以采用的。 例子: –1. 在一个静止的坐标系上看以恒定速度飞行的飞机 周围的流体流动是非稳态的;但是相对于固定在飞机 上的移动坐标系而言,流动是稳态的。 –2. 在一圆管内的轴对称流动于直角坐标系内是三维 的,但在r,θ,z的圆柱极坐标系内则是二维的。 –3. 坐标变换可能用来进一步减少自变量数量。 –4. 改变因变量可能导致自变量数目的减少。
恰好在第三项之后截断级数,两方程相加相减得到:
3 1 d 2x dx 2
d 2 1 3 2 2 dx 2 ( x )2 2 代入微分方程就推出有限差分方程。
假设:φ的 变化多少 有点像x的 一个多项 式,从而 高阶导数 项不那么 重要。
传热与流体流动的数值计算
[美] S.V. 帕坦卡 著 同济大学机械工程学院 朱 彤
本课程学习内容
• • • • • • • 物理现象的数学描述 离散化方法 扩散项处理 对流与扩散 流场的计算 湍流数学模型 Fluent基础知识介绍
参考书目
• 传热与流体流动的数值计算——[美] S.V. 帕坦卡 • 湍流——是勋刚 • 湍流计算模型——陈义良 • 数值传热学——陶文铨
其中h是比焓,k是导热系数,T是温度,Sh是容积发热率
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∂x
∂y
∂z
∂x ∂x
∂x
+
∂ ∂y
[η (
∂v ∂x
+
∂u ∂y
)]
+
∂ ∂z
[η ( ∂u
∂z
+
∂w )] ∂x
+
ρ
Fx
η 为流体的动力粘度 ,λ 称为流体的第2分子粘度。
9/76
导出上式时引入了关于流体中切应力与正应力的
Stokes假定。上式右端部分可进一步转化:
∂ ∂x
JJG
(λdivU
+
+
∂2T ∂y2 )
19/76
3. 边界条件
(1)进口边界条件:给 (3)中心线:∂u = ∂T = 0; v = 0
定u,v,T随 y 的分布;
∂y ∂y
y x
(4)出口边界: 数学上要求给 定u,v,T或其导 数随 y 的分 布;实际上做 不到;数值上 近似处理。
(2)固体边界条件:速度无滑移,温度无跳跃
Manole、Lage 1990-1992统计:FVM 占47%;主要商 业软件均采用之; 我们2007年的统计结果。
26/76
1.2.3 科学研究的三大基本方法及其关系
理论分析
Analytical
实验研究
Experimental
数值模拟
Numerical
27/76
1.理论分析 (Theoretical solution) 重要性不容低估; 为检验数值计算的准确性提供了比较依据。 对下图,由NS方程得切向速度的分析解为:

∂u ) ∂x
+
∂ [η(∂v
∂y ∂x
+
∂u )] + ∂y
∂ [η(∂u
∂z ∂z
+
∂w)] + ∂x
ρ Fx

∂p ∂x
=


∂u ) +

(η ∂u ) +


∂u ) +


∂u ) +

(η ∂v) +


∂w) +

JJG
(λdivU )
∂x ∂x ∂y ∂y ∂z ∂z ∂x ∂x ∂y ∂x ∂z ∂x ∂x
)
+

瞬态项
对流项
扩散项
源项
不同求解变量之间的区别: (1)边界条件与初始条件; (2)源项表达式不同; (3)广义扩散系数不同。
文献中常以表格形式给出所求解变量的源项与 广义扩散系数的表达式。
13/76
The steady-state conservation equation for momentum and
15/76
1.1.2 单值性条件
1. 初始条件 t = 0, φ = f (x, y, z)
2. 边界条件
(1) 第一类 (Dirichlet): TB = Tgiven
(2)
第二类
(Neumann): qB
=
−λ ( ∂T
∂n
)B
=
qgiven
(3) 第三类 (Rubin):规定了边界上被求函数的一
4. 方法- 开放,参与,应用
5. 助手- 喻志强, 张虎, 谷伟, 凌空, 封永亮
2/76
400
350
300 引 250 用 次 200 数
150
100
50
0
《数值传热学》被引用次数
1988 1990 1992 1994 1996 1998 2000 2002 2004 2006
《数值传热学》被引用情况
数值传热学
第一章 绪论
主讲 陶文铨
西安交通大学能源与动力工程学院 热流中心 CFD-NHT-EHT CENTER
2010年9月13日,西安
1/76
课程简介
1. 教材-《数值传热学》第二版,2001
2. 学时- 45学时理论教学;10学时程序教学
3. 考核- 平时作业/计算机大作业: 考试-40/60;考查-b),FEM(c),FAM(d)四种方法的比较
FDM
FVM
FEM
FAM
所有这些方法都需要生成网格:1)确定节点的
位置;2)建立结点之间的相互的影响关系。
25/76
BEM(边界元方法)需要基准解而使其应用受到限制
SAM(谱分析方法)目前仅能适用于几何结构简单 的情形。
5. 四点说明
1. 所导出的三维非稳态Navier-Stokes方程,无论对 层流或是湍流都是适用的。 2. 当流动与换热过程伴随有质交换时,控制方程中还 应增加组份守恒定律。
3. 虽然假定了比热为常数,也可以近似应用于比热的 变化不是很剧烈的情况。
4. 辐射换热需要用积分方程来描述,本课程中将不涉 及这类问题。
u = r1 / r2 • 1− (r / r2 )2
u1 1− (r1 / r2 )2
r / r2
u1 = ϖ r1
28/76
2.实验测定 (Experimental solution) 基本研究手段:现象观察;物性测定; 考核依据
例:MEMS的研究发展过程。
3.数值模拟 (Numerical solution)
Flow puter Methods of Applied Mechanics and Engineering 8.Engineering Computations 9.Progress in Computational Fluid Dynamics 10. Computer Modeling in Engineering & Sciences (CMES)
6/76
1.1 传热与流动问题的数学描写
一切宏观的流动与传热问题都由三个守恒定律所 支配:质量、动量与能量守恒(conservation law)。
不同问题的区别主要在于单值性条件 (conditions for unique solution)物性及源项的不同。
1.1.1 控制方程及其通用形式
1. 质量守恒方程
15.AIAA Journal
4/76
绪论教学目录
1.1 传热与流动问题的数学描写
1.2 传热与流动问题数值计算的基本思想及近 期发展
1.3 传热与流动问题的数学描写的分类及其对 数值解的影响
5/76
1.1 传热与流动问题的数学描写
1.1.1 控制方程及其通用形式
1. 质量守恒方程 2. 动量守恒方程 3. 能量守恒方程 4. 通用控制方程 1.1.2 单值性条件 1.1.3 建立数学描写举例
temperature in two dimensional polar coordinates is presented
as follow:
K
∇ ⋅ (ρVφ − Γφ∇φ ) = Sφ
where φ is a general scalar variable,and Γφ , Sφ are the diffusion
3/76
有关的主要国外期刊
1.Numerical Heat Transfer, Part A- Applications; Part BFundamentals
2.International Journal of Numerical Methods in Fluids. puter & Fluids 4.Journal of Computational Physics 5.International Journal of Numerical Methods in Engineering 6.International Journal of Numerical Methods in Heat and Fluid
数值模拟是多学科交叉领域,在探索未知、促进 科技发展和国防安全等方面具有不可替代的作用。
(λdivU ) +
ρ Fy

∂p ∂y
Sw
=
∂ ∂x

∂u ) ∂z
+
∂ ∂y

∂v ) ∂z
+
∂ ∂z

∂w) ∂z
+
∂ ∂z
JJG
(λdivU )
+
ρ Fz

∂p ∂z
常物性不可压缩流体动量方程源项中显含速度部分为零。
11/76
3. 能量守恒方程
[微元体内热力学能的增加率]=[进入微元体内的净热 流量]+[体积力与表面力对微元体所做的功]
18/76
2. 控制方程
∂u + ∂v = 0 ∂x ∂y
∂(uu) ∂x
+
∂(vu) ∂y
=

1
ρ
∂p ∂x
+
ν
(
∂2u ∂x2
+
∂2u ∂y2 )
∂(uv)
+
∂(vv)
=

1
∂p
+ν (∂2v
+
∂2v )
∂x ∂y
ρ ∂y ∂x2 ∂y2
∂(uT ) ∂x
+
∂(vT ) ∂y
=
∂2T a( ∂x2
ρ
Fx

∂p ∂x
= div(η gradu) + Su
grad (u) = ∂u i + ∂u j + ∂u k ∂x ∂y ∂z
于是
div(grad (u)) = ∂ (∂u ) + ∂ (∂u ) + ∂ (∂u ) ∂x ∂x ∂y ∂y ∂z ∂z
相关文档
最新文档