高一数学教案:立体几何初步总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章《立体几何初步》单元知识总结
点击考点
(1)了解柱,锥,台,球及简单组合体的结构特征。
(2)能画出简单空间图形的三视图,能识别三视图所表示的立体模型,并会用斜二测法画出它们的直观图。
(3)通过观察用平行投影与中心投影这两种方法画出的视图与直观图,了解空间图形的不同表示形式。
(4)理解柱,锥,台,球的表面积及体积公式。
(5)理解平面的基本性质及确定平面的条件。
(6)掌握空间直线与直线,直线与平面,平面与平面平行的判定及性质。
(7)掌握空间直线与平面,平面与平面垂直的判定及性质。
名师导航
1.学习方法指导
(1)空间几何体
①空间图形直观描述了空间形体的特征,我们一般用斜二测画法来画空间图形的直观图。
②空间图形可以看作点的集合,用符号语言表述点,线,面的位置关系时,经常用到集合的有关符号,要注意文字语言,符号语言,图形语言的相互转化。
③柱,锥,台,球是简单的几何体,同学们可用列表的方法对它们的定义,性质,表面积及体积进行归纳整理。
④对于一个正棱台,当上底面扩展为下底面的全等形时,就变为一个直棱柱;当上底面收缩为中心点时,就变为一个正棱锥。由1()2S c c h ''=
+正棱台侧
和()3h V s s '=正棱台,就可看出它们的侧面积与体积公式的联系。
(2) 点,线,面之间的位置关系
①“确定平面”是将空间图形问题转化为平面图形问题来解决的重要条件,这种转化最基本的就是三个公理。
②空间中平行关系之间的转化:直线与直线平行 直线与平面平行 平面与平面平行。 ③空间中垂直关系之间的转化:直线与直线垂直 直线与平面垂直
平面与平面垂直。
2.思想方法小结
在本章中需要用到的数学思想方法有:观察法,数形结合思想,化归与转化思想等。主要是立体几何问题转化为平面几何问题,平行与垂直的相互转化等。
3.综合例题分析
例1:如图,P 是∆ABC 所在平面外一点,A ',B ',C '分别是PBC ∆,PCA ∆,PAB ∆的重心。
(1) 求证:平面A B C '''平面ABC ; P
(2) 求A B C S ''':ABC S .
证明:(1) 连结PA ',PB ',PC ',设PA BC D '⋂=,
PB AC E '⋂=,PC AB F '⋂=,则D,E,F 分
别是BC,AC,AB 的中点,且 B '
C '
A ' C 23
PA PB PC PD PE PF '''=== A B
所以, A B DE '' A C DF '' A B ABC ''⊄平面,A C ABC ''⊄平面
且DE ABC ⊂平面,DF ABC ⊂平面,
所以 A B ABC ''平面,A C ABC ''平面
从而, 平面A B C '''平面ABC.
(2) 由平面几何知识有,
14DEF ABC S S =, 49A B C DEF S S '''= 所以, 19
A B C ABC S S '''=. 点评: (1)由线线平行 线面平行 面面平行,是证明平行问题的常用方法.
(2)灵活运用平面几何知识是解决本题的关键。
例2:试证:正四面体内任意一点到各面距离之和等于这个正四面体的高。
分析:如图,设P 为正四面体ABCD 内任一点,AO 为正四面体 A
的高,点P 到各面的距离分别为
1234,,,d d d d 则
P
B D
C
P ACD P ABD P BCD ABCD P ABC V V V V V ----=+++
即
12341111133
333BCD ABC ACD ABD BCD S AO S d S d S d S d ⋅=⋅+⋅+⋅+⋅ 正四面体各面是全等的正三角形 ∴ 123411()33BCD BCD S AO S d d d d ⋅=+++
∴ 1234d d d d AO +++=
点评:多面体问题常用技巧有“割”“补”“等积变换”等,利用这些技巧可使问题化繁为易。 例3:圆台的内切球半径为R ,且圆台的全面积和球面积之比为
218
。求圆台的上,下底面半径12,r r (12r r <)。
解:如图,设圆台母线为l , 则12l r r =+,由平面几何知识得, 2222112(2)()()R r r r r +-=+ 即 212R r r =
又 22222121212
12()()S r r l r r r r r r ππππ⎡⎤=+++=+++⎣⎦圆台全 21244S R rr ππ==球
由题意得, 222121212()2148
r r r r r r ππ⎡⎤+++⎣⎦
= 即 22112241740r r r r -+=
214r r = 代入212R r r = 得 ,12
R r =,22r R =. 点评: (1) 解组合体的关键是注意选择合适的角度画出示意图,通过交点交线来研究问题,正确作出截面,把复杂问题转化为熟悉的,较常见的问题.
(2) 轴截面在解决旋转体问题中,有着相当重要的作用.
例4.已知三棱锥A BCD -中,90BCD ∠=,1BC CD ==,AB ⊥平面BCD ,60ADB ∠=, ,E F 分别是,A C A D 上的动点,且
(01)AE AF AC AD
λλ==<<, (Ⅰ)求证:不论λ为何值,总有平面BEF ⊥平面ABC ;
(Ⅱ)当λ为何值时,平面BEF ⊥平面ACD ?
证(Ⅰ)∵AB ⊥平面BCD ,∴AB CD ⊥
, ∵CD BC ⊥,且AB
BC B =,∴CD ⊥平面ABC ,