第三章 逻辑代数基础 作业题(参考答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章逻辑代数基础

(Basis of Logic Algebra)

1.知识要点

逻辑代数(Logic Algebra)得公理、定理及其在逻辑代数化简时得作用;逻辑函数得表达形式及相互转换;最小项(Minterm)与最大项(Maxterm)得基本概念与性质;利用卡诺图(Karnaugh Maps)化简逻辑函数得方法。

重点:

1.逻辑代数得公理(Axioms)、定理(Theorems),正负逻辑(Positive Logic, Negative Logic)得概念与对偶关系(Duality Theorems)、反演关系(plement Theorems)、香农展开定理,及其在逻辑代数化简时得作用;

2.逻辑函数得表达形式:积之与与与之积标准型、真值表(Truth Table)、卡诺图(Karnaugh Maps)、最小逻辑表达式之间得关系及相互转换;

3.最小项(Minterm)与最大项(Maxterm)得基本概念与性质;

4.利用卡诺图化简逻辑函数得方法。

难点:

利用卡诺图对逻辑函数进行化简与运算得方法

(1)正逻辑(Positive Logic)、负逻辑(Negative Logic)得概念以及两者之间得关系。

数字电路中用电压得高低表示逻辑值1与0,将代数中低电压(一般为参考地0V)附近得信号称为低电平,将代数中高电压(一般为电源电压)附近得信号称为高电平。以高电平表示1,低电平表示0,实现得逻辑关系称为正逻辑(Positive Logic),相反,以高电平表示0,低电平表示1,实现得逻辑关系称为负逻辑(Negative Logic),两者之间得逻辑关系为对偶关系。

(2)逻辑函数得标准表达式

积之与标准形式(又称为标准与、最小项与式):每个与项都就是最小项得与或表达式。

与之积标准形式(又称为标准积、最大项积式):每个或项都就是最大项得或与表达式。

逻辑函数得表达形式具有多样性,但标准形式就是唯一得,它们与真值表之间有严格得对应关系。

由真值表得到标准与得具体方法就是:找出真值表中函数值为1得变量取值组合,每一组变量组合对应一个最小项(变量值为1得对应原变量,变量值为0得对应反变量),将这些最小项相或,即得到标准与表达式。

由真值表得到标准积得具体方法就是:找出真值表中函数值为0得变量取值组合,每一组变量组合对应一个最大项(变量值为1得对应反变量,变量值为0得对应原变量),将这些最大项相与,即得到标准积表达式。

每个真值表所对应得标准与与标准积表达方式就是唯一得。

(3)利用卡诺图化简逻辑函数

卡诺图就是真值表得图形表示,利用卡诺图对逻辑函数进行化简得原理就是反复使用公式AB+AB′=A,对应到卡诺图上,即为相邻得小方格可以合并。通常:

2个相邻得方格可以合并,并可消去1个变量;4个相邻得方格可以合并,并可消去2个变量;8个相邻得方格可以合并,并可消去3个变量……

在相邻方格合并得过程中,通常采用画圈得方法进行标记。

利用卡诺图化简,圈1得结果就是得到最简与得表达式,圈0得结果就是得到最简积得表达式。

利用卡诺图化简得步骤(以最简与为例):

①填卡诺图;

②找出全部质主蕴含项;

③找到奇异1单元,圈出对应得质主蕴含项;

④若未圈完所有1方格,则从剩余得主蕴含项中找出最简得;

⑤写出各圈所对应得与项表达式(取值发生变化得变量不写,取值无变化得变量保留,取值为0写反变量,取值为1写原变量)。

⑥将所得到得与项相或,即为化简结果。

化简得原则就是:圈1不圈0,1至少圈1次,圈数越少越好,圈越大越好。

(4)利用卡诺图对逻辑函数进行运算

利用卡诺图可以完成逻辑函数得逻辑加(或)、逻辑乘(与)、反演(非)、异或等运算。进行这些运算时,要求参加运算得两个卡诺图具有相同得维数(即变量数相同)。

①卡诺图相加

两函数做逻辑加(或)运算时,只需将卡诺图中编号相同得各相应方格中得0、1按逻辑加得规则相或,而得到得卡诺图应包含每个相加卡诺图所出现得全部1项。

②卡诺图相乘

两函数做逻辑乘(与)运算时,只需将卡诺图中编号相同得各相应方格中得0、1按逻辑乘得规则相与,所得到得卡诺图中得1方格,就是参加相乘得卡诺图中都包含得1格。

③反演

卡诺图得反演(非),就是将函数F得卡诺图中各个为1得方格变换为0,将各个为0得方格变换为1。

④卡诺图异或

两函数做异或运算,只需将卡诺图中编号相同得各相应方格中得0、1按异或运算得规则进行运算,所得到得卡诺图中得1方格,就是进行异或运算得卡诺图中取值不同得方格。

2.Exercises

3、1 Prove theorems (X+Y)(X+Z) = X+Y·Z using perfect induction、

If X = 0, Left = (0+Y)(0+Z) = Y·Z Right = 0+ Y·Z = Y·Z ∴Left = Right

If X = 1, Left = (1+Y)(1+Z) = 1·1 = 1Right = 1+ Y·Z = 1∴Left = Right

3、2 According to DeMorgan’s theorem, the plement of WX+YZ is W′+X′Y′+Z′、Yet both functions are 1 for WXYZ = 1110、How can both a function and its plement be 1 for the same input bina tion? What’s wrong here?

The mistake is that the original operation priority has been changed、

The plement of WX+YZ should be (W′+X′)(Y′+Z′)

3、3 Use the theorems of switching algebra to simplify each of the following logic functions:

(1) F = WXYZ(WXYZ′+WX′YZ+W′XYZ+WXY′Z)

(2) F = AB+ABC′D+ABDE′+ A′BC′E+A′B′C′E

(3) F = MRP+ QO′R′+MN+ONM+QPMO′

(1) F = W·X·Y·Z·(W·X·Y·Z'+W·X'·Y·Z+W'·X·Y·Z+W·X·Y'·Z)

= W·X·Y·Z·W·X·Y·Z'+ W·X·Y·Z·W·X'·Y·Z+ W·X·Y·Z·W'·X·Y·Z+ W·X·Y·Z·W·X·Y'·Z

= 0

(2) F = A·B·(1+C'·D+D·E') + A'·C'·E·(B+B') = A·B + A'·C'·E

(3) F = M·R·P + Q·O'·R' + M·N + Q·P·M·O' = M·P·R + Q·O'·R' + M·P·Q·O' + M·N = M·P·R + Q·O'·R' + M·N

3、4 Write the truth table for each of the following logic functions:

(1) F = AB′+B′C+CD′+CA′

(2) F = (A′+B+C′)(A′+B′+D)(B+C+D′)(A+B+C+D)

(3) F = AB+AB′C′+A′BC

(4) F = XY′+YZ+Z′X

相关文档
最新文档