水泥安定性分析
水泥安定性试验

12
谢谢大家!
13
11
水泥安定性试验
3.试验步骤:
(二)试饼法试验步骤:
4.结果判别沸煮结束后,立即放掉沸煮箱中的热水,打开箱 盖,待箱体冷却至室温,取出试件进行判别。目测试饼未 发现裂缝,用钢直尺检查也没有弯曲(使钢直尺和试饼底部 紧靠,以两者间不透光为不弯曲)的试饼为安定性合格,反 之为不合格。当两个试饼判别结果有矛盾时,该水泥的安 定性为不合格。
道路建筑材料试验
水泥安定性试验
1
水泥安定性试验
1.试验目的:本试验可检定由于游离氧化钙而引起水
泥体积变化,以表示水泥体积安定性是否合格。 安定性的测定有两种方法,即雷氏法和试饼法,雷氏法是 标准法,试饼法为代用法,有争议时以雷氏法为准。雷氏 法是测定水泥净浆在雷氏夹中沸煮后的膨胀值;试饼法是 观察水泥净浆试饼沸煮后的外形变化来检验水泥的体积安 定性。
3
水泥安定性试验
2.试验仪器设备: 2)雷氏夹膨胀测定仪
雷 氏 夹 膨 胀 测 定 仪
4
水泥安定性试验
2.试验仪器设备:
3)沸煮箱 :有效容积约为410mm×240mm×310mm,蓖板的结构应不影响试验的结果, 蓖板与加热器之间的距离大于50mm。箱的内层由不易锈蚀的金属材料制成,能在 30min±5min内将箱内的试验用水由室温升至沸腾并可以保持沸腾状态3h以上,整个沸煮过 程中水位能没过试件,不需中途添补试验用水。
7
水泥安定性试验
3.试验步骤:
(一 )雷氏法试验步骤:
3.沸煮 调整好沸煮箱内的水位,使之在整个沸煮过程中都能 没过试件,不需中途添补试验用水,同时保证水温在 30min±5min内能升至沸腾。脱去玻璃板取下试件,先测量 雷氏夹指针尖端间的距离(A),精确到0.5mm,接着将试件 放入沸煮箱水中的试件架上,指针朝上,试件之间互不交 叉,30min±5min内加热至沸并恒沸3h±5min。
水泥安定性试验规范

水泥安定性试验规范篇一:GBT 1346-2011水泥标准稠度用水量、凝结时间、安定性GB/T1346-2011水泥标准稠度用水量、凝结时间、安定性检验方法1、范围本标准规定了水泥标准稠度用水量、凝结时间和由游离氧化钙造成的体积安定性检验方法的原理、仪器设备、材料、试验条件和测定方法。
本标准适用于硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、粉煤灰硅酸盐水泥,火山灰质硅酸盐水泥,复合硅酸盐水泥以及指定采用本方法的其他品种水泥。
2、规范性引用文件下列文件对于本文件的应用是必不可少的。
凡是注日期的引用文件,仅注日期的版本试用于本文件。
凡是不注日期的引用文件,其最新版本(包括所有的修改单)试用于本文件。
JC/T 727水泥净浆标准稠度与凝结时间测定仪JC/T 729水泥净浆搅拌机JC/T 955 水泥安定性试验用沸煮箱3、原理3.1 水泥标准稠度水泥标准稠度净浆对标准试杆(试锥)的沉入具有一定助力。
通过试验不同含水量水泥净浆的穿透性,以确定水泥标准稠度净浆中所需加入的水量。
3.2凝结时间试针沉入水泥标准稠度净浆至一定深度所需的时间。
3.3安定性3.3.1 雷氏夹是通过测定水泥标准稠度净浆至雷氏夹中煮沸后试针的相对位移表征其体积膨胀的程度。
3.3.2试饼法是通过观测水泥标准稠度净浆试饼煮沸后的外形变化情况表征其体积安定性。
4、仪器设备4.1 水泥净浆搅拌机符合JC/T 729的要求。
注:通过减小搅拌机和搅拌锅之间间隙,可以制备更加均匀的净浆。
4.2 标准法维卡仪4.3 代用维卡仪符合JC/T 727的要求。
4.4雷氏夹由铜质材料制成,其结构如图2.当一根指针的根部先悬挂在一根金属丝或尼龙丝上,另一根指针的根部再挂上300g质量砝码时,两根指针针尖的距离增加应在17.5mm±2.5mm范围内,即2x=17.5mm±2.5mm,当去掉砝码后针尖的距离能恢复至挂砝码前的状态。
4.5 煮沸箱符合JC/T 955的要求。
水泥的体积安定性

水泥的体积安定性水泥的体积安定性是反映水泥浆在凝结硬化后的体积膨胀是否均匀的情况,是评判水泥品质的指标之一,也是保证水泥制品、混凝土工程质量的必要条件;无论何时实施的国家标准都将安定性不合格的水泥判为废品。
因此,检验机构对于水泥安定性的检测决不能掉以轻心。
通过分析GB/T1346-2001中标准法和代用法检测过程中主要影响因素,以及所要采取的措施,说明无论采取哪种方法都要严格按标准操作,否则都会引起结果误判。
1安定性的检测方法1.1标准法将标准稠度净浆装满2只雷氏夹,分别用75~80g配重玻璃压上,放入湿气养护箱养护(24±2)h后,沸煮 3.5h,测定两试件煮后增加值的平均值≤5.0mm,且两个差值不得超过4.0mm,即可判定合格。
1.2代用法将标准稠度净浆做成直径70~80mm、中心厚约10mm的球缺形状的试饼2块,在湿气养护箱养护(24±2)h后进行沸煮,沸煮方法同标准法;用目测或用钢直尺检查没有弯曲则判定安定性合格,反之为不合格。
2检测过程中的影响因素及对策2.1为何要配重玻璃,我们分析,体积膨胀是多方向的,这里以雷氏夹平放为例(即试针水平于大地)分为纵向和横向,标准测定的膨胀值只是横向的,而纵向的膨胀则以相同配重的玻璃压住;让雷氏夹内水泥尽量横向膨胀。
这就要求操作者尽量选择质量接近的2块(最好不超过1.5g)作为对一个样品的检测。
若检测量大(每日超过20个样品),配重玻璃的配对工作须每月检查1次,以防在试验中玻璃有所磨损,造成两试件的差值过大。
净浆应尽量充满雷氏夹;减少空洞,否则同样会使两试件差值过大。
2.2作为对一个样品检测所选的2个雷氏夹弹性值应比较接近(弹性增加值最好不超过2mm),这样就不会出现因弹性值相差太大造成两试件煮后的增加值差距超过4.0mm的情况出现。
当然,雷氏夹其余尺寸必须符合标准要求。
雷氏夹的弹性检查和配对工作也应每月1次,如果安定性不合格出现多次,就要相应增加检查次数。
水泥安定性试验

水泥安定性试验一、试验目的1了解水泥安定检验方法2检验水泥安定性二、试验原理1雷氏法:是观测由两个试针的相对位移所指示的水泥标准稠度净浆体积膨胀的的程度;2试饼法:试观测水泥标准稠度净浆试饼的外形变化程度。
三、试验仪器1沸煮箱:有效容积约为410mm×240mm×310mm,篦板与加热器之间的距离大于50mm。
箱的内层由不易锈蚀的金属材料制成,能在30min ±5min内将箱内的试验用水由室温升至沸腾状态并保持3h以上,整个试验过程中不需补充水量。
玻璃板:两块,尺寸约100mm×100mm。
雷氏夹:由铜材制成,一根指针的根部先悬挂在一根金属丝或尼龙丝上,然后,另一根指针的根部挂上300g质量的砝码,此时,两根指针的针间距离增加值应在(17.5±2.5)mm范围以内,即2x=17.5×2.5mm。
当去掉砝码后针尖的距离能恢复至挂砝码前的状态。
每个雷氏夹需配两块质量为75-80g的玻璃板。
量水器、天平、湿气养护箱雷氏夹膨胀值测定仪:标尺最小刻度为1mm。
四、试验条件:与标准稠度测定、凝结时间测定相同。
五、试验步骤1安定性的测定标准法=雷氏夹法(1)测定前的准备工作每个试样需成型两个试件,每个雷氏夹需配备质量约75g-85g的玻璃板两块,凡与水泥净浆接触的玻璃板和雷氏夹内表面都要稍稍涂上一层油。
(2)雷氏夹试件的成型将预先准备好的雷氏夹放在已稍擦油的玻璃板上,并立即将已制备好的标准稠度净浆一次装满雷氏夹,装浆时一只手轻轻扶持雷氏夹,另一只手用宽约10mm的小刀插捣数次,然后抹平,盖上稍涂油的玻璃板,接着立即将试件移至湿气养护箱内养护24h±2h。
(3)沸煮1调整好沸煮箱内的水位,使能保证在整个沸煮过程中都超过试件,不需中途添补试验用水,同时又能保证在30min±5min内升至沸腾。
2脱去玻璃板取下试件,先测量雷氏夹指针尖端间的距离(A),精确至0.5mm,接着将试件放入沸煮箱水中的试件架上,指针朝上,然后在30min±5min内加热至沸并恒沸180min±5min。
水泥安定性相关内容

在水泥的各项指标中,安定性可以说是最主要的一个指标。
水泥安定性指的是水泥在凝结过程中体积变化的均匀性,水泥的安定性不合格指的是水泥硬化后产生不均匀的体积变化。
在国家标准中安定性不合格的水泥是废品,水泥中的不安定因素(f-CaO和f-MgO等)的水化反应是发生在水泥的凝结硬化以后,且水化时伴随着体积的成倍膨胀,在已经硬化的水泥石的内部产生内应力,致使混凝土构件的强度降低,安定性不合格的水泥是不能用于工程上的。
在土建过程中,使用了安定性不合格的水泥会给工程带来极大的隐患,但是在现在的建筑市场中,安定性不合格的水泥仍然存在,故对于质检部门来说,准确的检测和判定水泥的安定性是否合格在水泥检验过程中是极其重要的。
但是有时也会出现这样的情况,同一批次的水泥在第一次送检时安定性不合格,但是在过几天的第二次送检中却是合格的。
这种水泥的安定性随时间二发生变化的情况我们称为安定性的时效性。
也正是时效性的存在,使得在安定性的判定上往往会有争议。
1、安定性不合格的原因分析引起水泥安定性不合格的原因主要是由于水泥熟料中含有过多的f-CaO和f-MgO以及SO3,但是由于f-MgO需要在蒸压条件下才能加速水化反应,而SO3则需要长期在常温水中才会与(3CaO•Al2O3•6H2O)发生反应,所以这二者都不便于快速检验,故在水泥的国家标准中对水泥中f-MgO以及SO3的含量都有严格的规定。
我们通常在工程质检中出现安定性不合格主要是由于f-CaO过多引起的。
在水泥生产过程中烧结的最高温度应该达到1450℃。
温度从1300℃升高到1450℃再回到1300℃的这个阶段是水泥熟料的生成阶段。
在这个阶段铝酸三钙(3CaO•Al2O3)铁铝酸四钙(4CaO•Al2O3 Fe2O3)烧至熔融状态,出现液相,把CaO和部分的硅酸二钙溶于其中,反应生成硅酸三钙(3CaO•Si O2),必须有足够的时间和温度才能使生成硅酸三钙的反应较为完全。
水泥体积安定性检验

水泥体积安定性检验实验一水泥实验四、水泥体积安定性检验(GB/T1346—2001)实验目的:检验水泥浆在硬化时体积变化的均匀性,以决定水泥是否可以使用。
试验方法为沸煮法,主要用以检验游离氧化钙所产生的体积安定性不良;测定方法可以用试饼法和雷氏法,两者有争议时以雷氏法为准。
试饼法是观察水泥净浆试饼沸煮后的外形变化来检验水泥的体积安定性;雷氏法是测定水泥净浆在雷氏夹中沸煮后的膨胀值。
主要仪器与设备:(1)沸煮箱。
有效容积为410mm某240mm某310mm,内设蓖板和加热器,能在30±5min内将箱内水由室温升至沸腾,并可保持沸腾状态3h 而不需加水。
(2)雷氏夹。
由铜质材料制成(见试图2.2)。
试图2.2雷氏夹1.指针;2.环模雷氏法必须符合如下要求:当一根指针的根部先悬挂在一根金属丝或尼龙丝上,另一根指针的根部再挂上300g的砝码时,两指针尖距离增加应在17.5±2.5mm范围内,即2某=17.5±2.5mm(见试图2.3),当去掉砝码后,针尖应回到初始状态。
试图2.3雷氏夹受力示意图(3)雷氏夹膨胀值测定仪。
标尺最小刻度为0.5mm(见试图2.4)。
(4)水泥净浆搅拌机、标准养护箱、天平、量筒等。
实验步骤:(1)水泥标准稠度净浆的制备。
称取500g水泥,以标准稠度用水量,用水泥净浆搅拌机搅拌水泥净浆。
(2)试件制作。
采用试饼法时,将拌制好的水泥净浆取出一部分(约150g),分成两等份,使之成球形。
将其放在预先准备好的玻璃板(玻璃板约100mm某l00mm,并稍涂机油)上,轻轻振动玻璃板,并用湿布擦过的小刀由边缘至中央抹动,做成直径为70~80nm、中心厚约为10mm、边缘渐薄、表面光滑的试饼。
将做好的试饼放入养护箱内养护24h±2h。
采用雷氏法时,每个试样需成型两个试件,将内壁涂有机油的雷氏夹放在稍涂机油的玻璃板(约75~80g)上,并立刻将已制好的标准稠度净浆一次装满雷氏夹,装浆时用一只手轻扶雷氏夹,另一只手用宽度约10mm的小刀插捣15次左右,然后抹平并盖上稍涂有机油的玻璃板(约75~80g),接着立刻将试件移至养护箱内养护24h±2h。
水泥安定性的测定--雷氏法

安定性的测定—雷氏法
1. 检验雷氏夹的钢性:当一根指针的根部先悬挂在一根金属丝尼龙丝上,另一根指针的根部再挂上300g质量的砝码时,两根指针针尖的距离增加应在17.5mm±
2.5mm范围内,即2x=17.5mm±2.5mm,当去掉砝码后针尖的距离能恢复至挂砝码前的状态。
每个试样需要成型两个试件,每个雷氏夹需配备质量约75g~80g的玻璃板两块,凡与水泥净浆接触的玻璃板和雷氏夹内表面都要稍稍涂上一油。
2. 试件成型:将预先准备好的雷氏夹放在已稍涂油的玻璃板上,并立即将已制好的标准稠度净浆一次装满雷氏夹,装浆时一只手轻轻扶持雷氏夹,另一只手用宽约10mm的小刀插捣数次,然后抹平,盖上稍涂油的玻璃板,接着立即将试件移至湿气养护箱内养护24±2h。
3. 沸煮:调整好沸煮箱内的水位,使能保证在整个沸煮过程中都超过试件,不许中途添补试验用水,同时又能保证在30min±5min内升至沸腾。
脱去玻璃板取下试件,先测量雷氏夹指针尖端间的距离(A),精确到0.5mm,接着将试件放入沸煮箱水中的试架上,指针朝上,然后在30min±5min内加热至沸并恒沸180min±5min。
评定标准:沸煮结束后,立即放掉沸煮箱中的热水,打开箱盖,待箱体冷却至室温,取出试件进行判别。
测量雷氏夹指针尖端的距离(C),准确至0.5mm,当两个试件煮后增加距离(C-A)的平均值不大于5.0mm时,即认为该水泥安定性合格,当两个试件的(C-A)值相差超过4.0mm时,应用同一样品立即从做一次试验。
再如此,则认为该水泥安定性不合格。
安定性不符合标准规定时,水泥为不合格品。
三等奖:水泥安定性不合格的原因分析及检测试验中注意的问题

水泥安定性不合格的原因分析及检测试验中应注意的问题(乐山市建设工程质量检验测试中心王谊)摘要:本文简述水泥安定性不合格的原因分析以及检测试验应注意的几个问题。
关键词:水泥体积安定性游离氧化钙(f-CaO)时效性水泥的体积安定性,简称安定性,是指水泥浆体在凝结硬化过程中体积变化的均匀性,是评判水泥品质的“一票否决性”的指标之一,也是在水泥物理性能检测各项指标中最主要的一个指标。
事实上,水泥遇水后,在凝结硬化的过程中,体积必然要发生变化,但变化不能太大并应保持均匀。
因此,作为建设工程质量检测机构,对于水泥体积安定性的检测决不能掉以轻心。
水泥的安定性不合格,是指水泥中的不安定因素(游离氧化钙f-CaO和游离氧化镁f-MgO等)的水化反应,发生在水泥浆体凝结硬化以后,且水化时伴随着一定的体积膨胀,产生不均匀的体积变化,在已经硬化的水泥石内部产生内应力,从而导致混凝土内部产生巨大的膨胀应力,致使混凝土的强度急剧下降的情况。
当膨胀应力超过混凝土的强度极限时,就会引起混凝土的开裂和损坏。
因此,无论何时实施的国家标准中都规定,安定性不合格的水泥是废品,是绝对不能用于工程上的。
1、水泥安定性不合格的原因分析引起水泥安定性不合格的原因主要是由于水泥熟料中含有过多的游离氧化钙(f-CaO)和游离氧化镁(f-MgO)以及三氧化硫(SO3);但是由于游离氧化镁需要在蒸压条件下才能加速水化反应,而三氧化硫则需要长期在常温水中才会与水化铝酸钙(3CaO·Al2O3·6H2O)发生反应,所以这二者都不便于快速检验,故在水泥的生产过程中,国家标准中对水泥产品中游离氧化镁以及三氧化硫的含量都有严格的规定。
因此,可以说,通常在工程质检中出现安定性不合格主要是由于游离氧化钙过多引起的。
我们知道,水泥熟料中最主要的化学成分是CaO,它与SiO2生成硅酸钙,与Al2O3和Fe2O3生成铝酸盐和铁铝酸盐。
要生产出高品位的优质水泥,就需要有足量的碱性氧化物(即CaO)来满足酸性氧化物的需要。
浅析影响水泥安定性判定的检测因素及控制措施

浅析影响水泥安定性判定的检测因素及控制措施安定性作为水泥质量好坏的重要指标,其判定的准确性对工程质量影响重大,所以作為工程质量检测人员就必须在检测工作中做到科学、准确。
笔者根据在质量检测工作中的经验,通过对水泥安定性检测的分析与研究得出了影响水泥安定性判定的主要因素,并提出了相应的控制措施。
标签:安定性检测控制措施0 引言水泥体积安定性是评定水泥质量的重要指标,也是保证水泥制品、混凝土质量的必要条件。
本文将从安定性检测过程中的几个主要影响因素分析其对安定性判定的影响,并根据分析与研究的结果提出了相应的控制措施。
1 引起安定性不良的化学成分引起安定性不良的化学成分,一般是由于熟料中所含的游离的CaO、游离的MgO或掺入的石膏过多造成的。
石膏中含有的SO3对水泥的安定性会产生不良影响。
熟料中所含的游离的CaO、游离的MgO都是过烧的,熟化很慢,在水泥已硬化后才进行熟化,体积发生膨胀,引起不均匀的体积变化,造成水泥石开裂,游离的CaO在沸煮下能迅速熟化,游离的MgO需在压蒸下才能加速熟化,而石膏对体积安定性的影响则需在长期的常温水中才能发现。
安定性不合格的水泥不允许在工程中使用。
2 影响水泥安定性判定的检测因素引起安定性不良的化学成分有游离的CaO、游离的MgO或SO3的含量三个因素,但游离的MgO或SO3的含量的影响均不便于快速检验,因此我们只对引起安定性不合格的主要原因过量的游离的CaO进行检测。
水泥安定性检测的方法,我们采用雷氏法。
雷氏法是指把标准稠度净浆装满两只雷氏夹,养护24h 后煮沸,煮后冷却至室温,测量指针尖端距离,当两试件煮后增加距离的平均值大于5.0mm,且差值不超过4.0mm时,则判水泥安定性不合格。
影响水泥安定性判定的检测因素很多,主要有水泥的净浆稠度、搅拌方式、试件的养护方式、雷氏夹的准确度、存放的时间等等。
以下笔者根据多年的检测经验一一加以分析。
2.1 净浆稠度对安定性的影响笔者经过试验,发现同一品牌的水泥,当制得的净浆稠度大于标准稠度时,安定性合格的水泥可能变为不合格,而净浆稠度小于标准稠度时,安定性不合格的水泥可能变为合格如下表所示。
水泥性能实验水泥安定性的测定(与“水泥”有关文档共17张)

第11页,共17页。
试饼法
4)沸煮
制备标准稠度水泥净浆。 到时冷却至室温,取出试饼。 准备圆模,两块100 100mm玻璃板,凡与水泥净浆接触的玻璃板都要稍稍涂上一层油。 取净浆置于玻璃板上,团成球形,轻轻振动玻璃板,并用小刀由边缘向中央抹动,做成直径70-80mm、中心厚约10mm、边缘渐薄、表面光
取下试饼放入沸煮箱篦板上,进行沸煮。到 滑的试饼。
取净浆置于玻璃板上,团成球形,轻轻振动玻璃板,并用小刀由边缘向中央抹动,做成直径70-80mm、中心厚约10mm、边缘渐薄、表面光 滑的试饼。 加热时间控制 0-3.
时冷却至室温,取出试饼。 我国水泥厂建议用试饼法进行日常生产控制,而出厂水泥可以用雷氏法进行安定性实验。
体的体积膨胀程度。 3 依据标准:GB/T1346-2011
1)准备 准备两个弹性合格的雷氏夹,每个雷氏夹配备两个边长或直径约80mm、厚度4-5mm的玻璃板。
安定性用沸煮法检验必须合格
第6页,共17页。
压蒸法
• 水泥熟料中MgO 主要由石灰石原料带入,经
高温煅烧呈死烧状态并包裹在熟料矿物中,比
死烧f-CaO更难水化,在常温常压下很难使 其大量水化。通过高温(215.7 C )、高 压(2MPa),经一定时间(3h)压蒸,观测
水泥安定性的检测方法

水泥安定性的检测方法
水泥安定性的检测方法有以下几种:
1. 凝结时间检测法:通过测定水泥石灰浆固化的凝结时间来判断水泥的安定性。
可以采用刺盘试验法或终凝仪法进行测定。
2. 强度检测法:通过测定水泥混凝土的抗压强度或抗折强度来评估水泥的安定性。
常用的方法包括标准试件的压缩试验和三点弯曲试验。
3. 膨胀性检测法:水泥的膨胀性是评估其安定性的重要指标之一。
常用的方法有测定水泥石灰浆的体积膨胀率或水泥混凝土的干燥收缩率。
4. 粒度分析法:通过对水泥中颗粒的大小及其分布进行分析,可以评估水泥的安定性。
常用的方法有筛分法、激光粒度仪分析法等。
5. 热稳定性检测法:水泥在高温条件下的安定性也是需要关注的。
可以通过测定水泥的热稳定性指标,如耐热性、抗烧损性等来评估水泥的安定性。
以上是常用的水泥安定性检测方法,可以根据具体的需要选择合适的方法进行检测。
水泥安定性测定方法

水泥安定性测定方法
1、方法概要
雷氏法是通过测定水泥标准稠度净浆在雷氏夹中沸煮后试针的相对位移表征其体积膨胀的程度。
观测由二个试针的相对位移所指示的水泥标准稠度净浆体积膨胀的程度。
2、引用标准
GB/T1346-2011水泥标准稠度用水量、凝结时间、安定性检验方法
3、试验主要仪器设备:
水泥净浆搅拌机、雷氏夹、标准养护箱、沸煮箱。
4、试验步骤
⑴制备试样:对比样品和被检验粉煤灰按7:3质量比混合而成。
⑵设备检查:每个试样需成型两个试件,每个雷氏夹需配备质量约75克至85克的玻璃板两块。
凡与胶凝净浆接触的玻璃板和雷氏夹内表面都要稍稍涂上一层油。
沸煮箱内的水位,能保证在整个煮沸过程中都超过试件,不需要中途加水,同时又能保证30±5分钟内升至沸腾。
⑶雷氏夹的成型:将准备好的雷氏夹放在已稍擦油的玻璃板上,立即将已经达到标准稠度的胶凝净浆一次装满雷氏夹,装浆时一只手轻扶雷氏夹,另一只手用宽约10㎜的小。
水泥安定性的检验方法

水泥安定性的检验方法1.针对水泥浆体稳定性的试验方法:(1)凝结时间试验:测量水泥及其混合料从搅拌到开始凝结所需的时间,可以反映水泥与其他材料的相容性。
(2)流动度试验:测量水泥浆体的流动性,可用坍落度试验、流动度试验或喷射性试验来评估水泥的流动性。
(3)硬化时间试验:测定水泥浆体从开始凝结到多长时间达到一定硬化程度,以评估水泥浆体的硬化性能。
2.针对水泥砼或混凝土安定性的试验方法:(1)抗压强度试验:对水泥砼或混凝土进行加压试验,测量其抗压能力,以评估水泥的最终强度。
(2)抗拉强度试验:对水泥砼或混凝土进行拉伸试验,测量其抗拉能力,可以补充抗压强度试验的结果。
(3)压缩弹性模量试验:测定水泥砼或混凝土在压缩状态下的弹性模量,可以评估水泥的强度、变形性能等。
(4)冻融试验:将水泥砼或混凝土进行多次冻融循环,观察其抗冻融性能,以评估水泥的耐久性。
3.针对水泥化学性质的试验方法:(1)组分分析:通过化学分析方法,测定水泥中主要组分的含量,如氧化钙、二氧化硅等,以评估其化学成分及合理性。
(2)硫酸盐含量试验:测定水泥中硫酸盐含量,评估其抗硫酸盐侵蚀性能。
(3)碱含量试验:测定水泥中碱含量,评估其与一些反应敏感材料的相容性。
4.针对水泥微观结构的试验方法:(1)毛细管吸水试验:研究水泥颗粒内部的孔隙结构及孔隙尺寸分布情况,以评估其孔隙结构。
(2)扫描电子显微镜(SEM)观察:用SEM观察水泥砼或混凝土的微观结构,分析其水化产物、孔隙结构等。
以上仅是水泥安定性检验常用的一些试验方法,不同国家和地区可能会有所差异。
在实际应用中,通常会根据实际需求选择合适的试验方法进行水泥安定性的评估。
水泥标准稠度用水量、凝结时间、安定性检验方法

水泥标准稠度用水量、凝结时间、安定性检验方法水泥是建筑材料中常用的一种材料,其质量的好坏直接影响着建筑物的强度和耐久性。
为了保证水泥产品的质量,制定了一系列的标准,其中包括稠度用水量、凝结时间和安定性等检验方法。
本文将对水泥标准中的稠度用水量、凝结时间和安定性进行详细介绍。
稠度用水量是指在水泥浆料中加入多少水使其达到所要求的稠度。
浆料的稠度是指浆料的流动性,即浆料的可流动性和抗流动性的能力。
稠度用水量的测定方法有很多种,常用的方法有干浆比法、试验性混凝土允许稠度法和浆料稠度滑动比测定法等。
干浆比法是一种简单直观的方法,其原理是在一定比例的水泥和沙浆料中逐渐加入水,搅拌均匀后观察其流动性,直到达到所要求的稠度,记录下加入的水量。
试验性混凝土允许稠度法是以试验性混凝土的试块来进行稠度用水量的测定,通过试块的振实度和抗压强度来确定合理的稠度用水量。
浆料稠度滑动比测定法是在一定的时间内观察浆料的流动性变化,通过浆料稠度的滑动差来确定稠度用水量。
凝结时间是指水泥浆料从开始凝结到凝结完全需要的时间。
凝结时间的测定方法有初凝时间测定法和终凝时间测定法。
初凝时间是指水泥浆料开始凝结的时间,可以通过棒型或者沉陷法进行测定。
终凝时间是指水泥浆料完全凝结的时间,可以通过厌水法或者用针插入浆料中来进行测定。
安定性是指水泥浆料中颗粒稳定的能力。
水泥浆料的安定性可以通过震荡法和渐进扩散法来进行测定。
震荡法是将水泥浆料放在震荡台上进行震荡,通过测量震荡台上的失重量来评价其安定性。
渐进扩散法是将固定浓度的水泥浆料放置在标准孔径的渗漏器中,通过测量渗漏的时间来评价其安定性。
总之,稠度用水量、凝结时间和安定性是水泥标准中非常重要的检验方法。
通过这些检验方法可以评价水泥产品的流动性、凝结性和稳定性。
只有合理控制稠度用水量、凝结时间和安定性,才能保证水泥产品的质量稳定,从而提高建筑物的强度和耐久性。
希望本文可以对读者了解水泥标准中的稠度用水量、凝结时间和安定性提供一定的帮助。
测定水泥安定性(精)

测定水泥安定性(一)概述水泥加水后在硬化过程中,一般都会发生体积变化,如果这种变化是在熟料矿物水化过程中发生的均匀体积变化,或伴随着水泥石凝结硬化过程中进行,则对建筑物质量无不良影响。
但如果因水泥中某些有害成分的作用,水泥、混凝土已硬化后,在水泥石内部产生剧烈的不均匀体积变化,则在建筑物内部会产生破坏应力,导致建筑物强度下降。
若破坏应力超过建筑物强度,就会引起建筑物开裂、崩溃、倒塌等严重质量事故。
反映水泥凝结硬化后体积变化均匀性物理性质的指标称为水泥的体积安定性,简称安定性。
安定性是水泥重要的品质指标之一。
我国水泥国家标准中明确规定,安定性不合格的水泥为废品,严禁出厂。
影响水泥体积安定性的主要因素是由于水泥中存在过量的f-CaO、MgO和SO3引起的,其中f-CaO是影响水泥安定性最常见、最严重的因素之一。
水泥熟料矿物主要是在高温下固相反应生成,反应完全程度受到生料配比、细度、混合均匀程度、烧成温度等条件影响。
当氧化钙与氧化硅、氧化铝、氧化铁的化学反应不完全,便剩余一些未被化合吸收的氧化钙,称为游离氧化钙(f-CaO)。
熟料中f-CaO经1400~1450℃高温煅烧(俗称死烧石灰),结构致密,且包裹在熟料矿物中,遇水反应式为:CaO+H2O→Ca(OH)2CaO与水反应生成Ca(OH)2,固相体积增大1.98倍,如果这一过程在水泥硬化前完成,对水泥安定性无危害。
但水泥中f-CaO在常温下水化反应缓慢,至水泥、混凝土硬化后较长一段时间(一般需3~6个月)内才完全水化,水化后由于固相体积增大一倍,在已硬化的水泥石内部产生局部膨胀,造成混凝土强度大大下降,严重时会导致建筑物开裂、崩溃。
熟料中f-CaO的产生条件不同,形态也不同,一种是因欠烧、漏生,即在1100~1200℃低温下形成的f-CaO,称欠烧f-CaO。
这种f-CaO结构疏松多孔,遇水反应快,对水泥安定性危害不大;但因生烧熟料及黄粉中熟料主要矿物量很少,强度很低,所以对水泥质量影响很大。
水泥安定性试验

水泥安定性试验水泥安定性试验1 主题内容与适用范围本标准规定了水泥压蒸安定性试验方法的仪器、操作方法和结果评定等。
本标准适用于测定硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥等主要因方镁石水化可能造成的水泥体积不均匀变化,也适用于其他指定采用本瓢准的水泥产品。
GB 177 水泥胶砂强度检验方法GB 751 水泥胶砂干缩试验方法GB 1356 水泥标准稠度用水量、凝结时间、安定性检验方法GB 3350.2 水泥物理检验仪器胶砂振动台GB 3350.8 水泥物理检验仪器水泥争浆搅拌机在饱和水蒸气条件下提高温度和压力使水泥中的方镁石在较短的时间内绝大部分水化,用试件的形变来判断水泥浆体积安定性。
压蒸:是指在温度大于100℃的饱和水蒸气条件下的处理工艺。
为了使水泥中的方镁石在短时间里水化,用215.7℃的饱和水蒸气处理3h,其对应压力为2.0MPa。
5.1 25mm×25mm×280mm试模、钉头、捣棒和比长仪符合GB 751要求。
5.2 水泥净浆搅拌机符合GB 3350.8要求。
5.3 沸煮箱符合GB 1346中3.3条要求。
5.4 压蒸釜为高压水蒸气容器,装有压力自动控制装置、压力表、安全阀、放汽阀和电热器。
电热器应能在最大试验荷载条件下,45 ̄75min内使锅内蒸汽压升至表压2.0MPa,恒压时要尽量不使蒸汽排出。
压力自动控制器应能使锅内压力控制在2.0±0.05MPa(相当于215.7±℃)范围内,并保持3h以上。
压蒸釜在停止加热后90min内能使压力从2.0MPa降至0.1MPa以下。
放汽阀用于加热初期排除锅内空气和在冷却期终放出销售员催剩余水汽。
压力表的最大量程为4.0MPa,最小分度值不得大于0.05MPa。
压蒸釜盖上还应备有温度测量孔,插入温度计后能测出釜内的温度。
6.1 试样应通过0.9mm的方孔筛。
6.2 试样的沸煮安定性必须合格。
水泥安定性的检测方法

水泥安定性的检测方法
首先,水泥安定性的检测方法可以通过物理性能的测试来进行。
常见的物理性能包括水泥的抗压强度、抗拉强度、抗折强度等。
这
些物理性能的测试可以通过标准化的试验方法进行,如GB/T17671-1999《水泥抗压强度试验方法》等。
通过对水泥的物理性能进行测试,可以客观地评价水泥的安定性。
其次,水泥安定性的检测方法还可以通过化学性能的测试来进行。
水泥的化学性能包括水泥的化学成分、水化产物的形成等。
通
过对水泥的化学性能进行测试,可以了解水泥的成分和水化产物的
形成情况,从而评价水泥的安定性。
常见的化学性能测试方法包括
X射线荧光分析法、原子吸收光谱法等。
此外,水泥安定性的检测方法还可以通过微观结构的观察来进行。
水泥的微观结构包括水泥矿物的形貌、水泥石的孔隙结构等。
通过扫描电镜观察、透射电镜观察等方法,可以对水泥的微观结构
进行分析,从而评价水泥的安定性。
综上所述,水泥安定性的检测方法包括物理性能测试、化学性
能测试和微观结构观察。
这些方法可以客观地评价水泥的安定性,
为水泥的生产和应用提供科学依据。
希望本文的介绍能够对相关领域的专业人士有所帮助,促进水泥行业的发展和进步。
【揭秘混凝土】第28篇:水泥物理性质解析--水泥的安定性

【揭秘混凝土】第28篇:水泥物理性质解析--水泥的安定性水泥的安定性是指水泥浆在凝结硬化的过程中,体积变化是否均匀的性质。
如果水泥中某些成分的含量超出某一限度,水泥浆在凝结硬化过程中体积变化不均匀,会导致水泥石出现翘曲变形、开裂等现象,即体积安定性不良。
体积安定性不良的水泥,会使结构物产生开裂,降低建筑工程质量,影响结构物的正常使用。
水泥体积安定性不良,一般是由于水泥熟料中游离氧化钙、游离氧化镁含量过多或石膏掺量过大等原因所造成的。
游离氧化钙或游离氧化镁都是经高温烧成的晶体颗粒,呈死烧状,表面有玻璃釉状物质包裹,熟化很慢,在水泥硬化后才进行熟化,引起周围水泥石固相体积膨胀,使水泥石开裂。
当石膏掺量过多时,水泥硬化后,它还会继续与固态的水化铝酸钙反应生成高硫型水化硫铝酸钙,体积约增大1.5倍,也会引起水泥石开裂。
国家标准规定,水泥安定性经沸煮法检验氧化钙(CaO)必须合格。
测试时可采用试饼法(代用法)或雷氏法(标准法),在有争议时以雷氏法为准。
1、试饼法是用标准稠度的水泥净浆做成试饼,经恒沸3h以后,用眼睛观察试饼表面有无裂纹,用直尺检查试饼底部有无弯曲翘曲现象。
若试饼表面无裂纹且试饼底部也没有弯曲翘曲现象,则水泥体积安定性合格;反之,为不合格。
2、雷氏法是测定水泥浆在雷氏夹中经沸煮3h后的膨胀值。
当两个试件沸煮后的膨胀值的平均值不大于5.0mm 时,该水泥体积安定性合格,反之,为不合格。
沸煮法只能检验出游离氧化钙(CaO)过量所引起的体积安定性不良。
游离氧化镁(MgO)的水化作用比游离氧化钙(CaO)更加缓慢,因此,游离氧化镁(MgO)所造成的体积安定性不良,必须用压蒸方法才能检验出来;石膏的危害则需要长时间浸泡在常温水中才能发现。
由于游离氧化镁和石膏的危害作用不便于快速检验,所以,国家标准对水泥熟料中氧化镁、三氧化硫的含量作了严格规定:水泥中氧化镁(MgO)含量不得超过5.0%,如果水泥经压蒸安定性试验合格,则水泥中氧化镁(MgO)的含量允许放宽到6.0%;水泥中三氧化硫(SO3)的含量不得超过3.5%,以保证水泥质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水泥安定性的分析
摘要:水泥的安定性即体积安定性,是指水泥在凝结硬化过程中体积变化的均匀性。
如果水泥硬化后产生不均匀的体积变化,即为体积安定性不良,安定性不良会使水泥制品或混凝土构件产生膨胀性裂缝,降低建筑物质量,甚至引起严重事故。
下面就水泥安定性方面的分析作如下探究!
关键词:水泥安定性分析
水泥的安定性即体积安定性,是指水泥在凝结硬化过程中体积变化的均匀性。
如果水泥硬化后产生不均匀的体积变化,即为体积安定性不良,安定性不良会使水泥制品或混凝土构件产生膨胀性裂缝,降低建筑物质量,甚至引起严重事故。
一、引起水泥安定性不良的原因
引起水泥安定性不良的原因有很多,主要有以下四种:
1.熟料中所含的游离氧化钙过多、熟料中所含的游离氧化镁过多或掺入的石膏过多。
熟料中所含的游离氧化钙或氧化镁都是过烧的,熟化很慢,在水泥硬化后才进行熟化,这是一个体积膨胀的化学反应,会引起不均匀的体积变化,使水泥石开裂。
当石膏掺量过多时,在水泥硬化后,它还会继续与固态的水化铝酸钙反应生成高硫型水化硫铝酸钙,体积约增大1.5倍,也会引起水泥石开裂。
2.国家标准规定:水泥安定性经沸煮法检验(cao)必须合格;水泥中氧化镁(mgo)含量不得超过5.0%,如果水泥经压蒸安定性试验合格,则水泥中氧化镁的含量允许放宽到6.0%;水泥中三氧化
硫(so3)的含量不得超过3.5%。
3.安定性不合格的水泥应作废品处理,不能用于工程中。
4.水泥全程安定性是指水泥在凝结硬化过程中,体积变化的均匀性。
二、水泥安定性的检测方法
检测方法有试饼法和雷氏法,有争议时以雷氏法为准:
用试饼法进行检验时,将制备好的标准稠度的水泥净浆取出约150g,放在涂油的玻璃板上,使其摊开,成饼状,要求试饼制作必须规范,直径过大、过小,边缘钝厚都会影响试验结果。
一般试饼,直径以70~80mm、中心厚约10mm,边缘渐薄、表面光滑为规范试饼。
煮后安定性试饼用直尺检查不弯曲,用肉眼观察无裂纹的前提下,仅有少量脱皮现象,应判为安定性合格。
试饼煮沸前,应检查并记录有无裂缝或弯曲现象。
要检查试饼养护温度时间与湿度是否符合要求(湿气养护箱应能使温度控制在20±3℃,湿度大于90%、养护时间为24±2h)。
如养护温度太高(大于25℃)或湿度不够,可能在沸煮前就使试饼发生收缩裂纹,特别是在水泥比表面积比较大的情况下更容易发生收缩裂纹(收缩裂纹往往发生在与玻璃接触的试饼底部中间),这时不能认为试样不安定;如养护温度过低(小于15℃),沸煮后可能产生脱皮现象。
当用雷氏法检验时,要用到专门的仪器:雷氏夹。
以测量沸煮后的雷氏夹试模的二指针尖端间的距离的增加值来判断安定性是
否合格,如果增加值不大于5.0毫米,则称为水泥体积安定性合格。
当用试饼法和雷氏夹法测定同一水泥样品出现争议时,以雷氏夹法为准。
雷氏夹法(标准法) {1}按标准稠度用水量确定的方法和结果拌和水泥净浆 {2}将实现校准的雷氏夹放在涂有一薄层黄油的
玻璃板上,把制备好的标准稠度水泥净浆装填在雷氏夹试模里,并用小抹刀插捣多次,确保密实,然后抹平。
每个水泥样品至少制备两个试样,在盖上一块涂油的玻璃板,放入养护箱中养护24±2h {3}沸煮试验前,首先调整好箱内水位,要求在整个沸煮过程中箱里的水始终能够没过试件,不可中途补水,同时要保证水在30±5min
内开始沸腾。
{4}从养护箱中取出雷氏夹,去掉玻璃板,先测量雷氏夹指针尖端的距离(记作a),精确到0.5mm,随后将试件放入沸煮箱中的试件架上,要求指针朝上,然后开始加热,使箱总的水在30min内沸腾,并恒沸180±5min {5}沸煮结束后,立即放掉箱中的热水,打开箱盖,待冷却至室温,取出试件。
测定雷氏夹指针尖端的距离(记作c)。
当两个雷氏夹试件煮后指针尖端增加的距离(c-a)的平均值不大于5.0mm时,则认为该水泥安定性合格。
当两个试件的c-a值差超过4mm时,应采用同一样品再重做一次试验。
三、水泥安定性
安定性是水泥硬化后体积变化的均匀性,体积的不均匀变化引起膨胀、裂缝或翘曲等现象。
安定性实验可采用试饼法或雷氏法,当实验结果有争议时以雷氏法为准。
用试饼法进行检验时,要求试饼制作必须规范,直径过大、过小,边缘钝厚都会影响试验结果。
一般试饼,直径以70~80mm、中
心厚约10mm,边缘渐薄、表面光滑为规范试饼。
煮后安定性试饼用直尺检查不弯曲,用肉眼观察无裂纹的前提下,仅有少量脱皮现象,应判为安定性合格。
试饼煮沸前,应检查并记录有无裂缝或弯曲现象。
要检查试饼养护温度时间与湿度是否符合要求(湿气养护箱应能使温度控制在20±3℃,湿度大于90%、养护时间为24±2h)。
如养护温度太高(大于25℃)或湿度不够,可能在沸煮前就使试饼发生收缩裂纹,特别是在水泥比表面积比较大的情况下更容易发生收缩裂纹(收缩裂纹往往发生在与玻璃接触的试饼底部中间),这时不能认为试样不安定;如养护温度过低(小于15℃),沸煮后可能产生脱皮现象。
塑性力学中研究具有初始塑性变形的物体或结构在变值载荷的作用下能否不产生新塑性变形的理论。
所谓变值载荷是指在某一范围内作周期性变化或按其他规律循环变化的载荷。
若物体或结构在具有一定范围的变值载荷作用下,除初始阶段产生一定塑性变形并出现一个残余应力分布外,不管载荷在此范围内如何变化,物体或结构中不再出现新的塑性变形,则称结构所处的状态为安定状态;反之称为非安定状态。
在变值载荷作用下,即使载荷不会使物体或结构达到极限状态(即当外载荷达到某一定值时,物体或结构可以无限制变形的状态),结构也可能变坏。
非安定状态通常有两种破坏形式:①塑性循环破坏:若变值载荷在理想弹塑性材料制成的结构内所引起的应力变化幅度大于材料屈服极限(见材料的力学性能)的两倍,则结构将因反复发生反向塑性变形而破坏。
②塑性应变积累破坏:若每一载荷循环过程中,结构某局部产
生同一种塑性应变,则结构将因塑性应变的积累而破坏。
例如,几个载荷系统交替作用在结构上,如某载荷系统所引起的残余应力对其他载荷系统下的屈服起促进作用,则载荷循环会引起塑性应变的积累而使结构破坏。
研究在什么情况下出现安定状态,有利于发挥材料的潜力。
早在1932年,德国的н.布莱希就已提出有关弹塑性桁架的静力安定定理。
此后,е.梅兰于1938年又对一般弹塑性体的静力安定定理作了证明。
静力安定定理可表述为:如果能找出一种与时间无关的、自相平衡的残余应力分布,它与由外载荷所引起的弹性应力共同构成一个处于屈服极限之内的应力系统,则结构是安定的。
荷兰的w.t.科伊特于1956年利用”机动容许塑性应变率循环”的概念证明了机动安定定理。
机动容许塑性应变率循环能产生满足协调条件和位移边界条件的应变场,即机动容许场。
机动安定定理是:在给定的变值载荷的作用下,如果所有的容许塑性应变率循环都满足外力功率不大于物体内部塑性耗散功率的条件,则物体内是安定的;相反,若能找到某一机动塑性应变率循环,使得外力功率大于内部塑性耗散功率,则结构是不安定的。
将安定定理中的变值加载改为比例加载,安定定理就成为塑性极限分析的定理(见结构塑性极限分析)。
因此,安定定理是塑性极限分析定理更一般的概括。
它常被用于变值载荷和温度场作用下的梁、刚架、轴对称板和壳体等结构的分析中。
由于安定性分析既要全面研究弹性,又要考虑容许的塑性变形,因此,只有较简单的问题才能找到完整的安定状态的解析解。
由于一般结构的安定载荷同塑性极限载荷相
差约20%,因此在一般设计中,只需在极限载荷上乘以适当的安定系数就能得到安定载荷,而不必进行安定分析。