普通高中课程标准实验教科书数学5(必修)

合集下载

普通高中课程标准实验教科书必修5第二章数列 (数列的概念与简单的表示方法等17个) 人教课标版4最新优选公

普通高中课程标准实验教科书必修5第二章数列 (数列的概念与简单的表示方法等17个) 人教课标版4最新优选公
(1+100)+(2+99)+…+(50+51) =101×50 =5050
新课引入
这个故事告诉我们: (1)作为数学王子的高斯从小就善于观察,敢 于思考,所以他能从一些简单的事物中发现和 寻找出某些规律性的东西。
(2)该故事还告诉我们求等差数列前 n 项和的 一种很重要的思想方法,这就是下面我们要介 绍的“倒序相加”法。
在等差数列的通 与项 前 n项 公和 式公,式 含中 有 a1, d,n,an ,Sn 五个,只 量要已知其中,就 三可 个以 量求 出余下的两 . 个量
例题讲解
例 3在等 a n 差 中 ,已 数 1 知 项 列 第 1 到 项 0 第 的 31 ,和
第 1项 1 2 到 项 0 第 的 91 ,求 和 02项 第 为 1 3 到 项 0 第 .的
以后也许三里清风,三里路,步步清风再无你。可也无悔你来过!人生的路你陪我一程,我念你一生……… 谢谢你来过!往后余生愿安好!感恩相遇,感恩来过……“当花瓣离开花朵,暗香残留,香消在风起雨后,无人来嗅”忽然听到沙宝亮的这首《暗香》,似乎这香味把整间屋子浸染。我是如此迷恋香味,吸进的是花儿的味道,吐出来的是无尽的芬芳。轻轻一流转,无限风情,飘散,是香,是香,它永远不会在我的时光中走丢。
项数4为 0的 0 等差.数列 根据等差数列的求和公 式 , 得
S40 0404 0.0 1400 4 201 00.2 320 m 00 .m
320 m 0 m 1 00 m 0
答 满盘时卫生纸和长度为 约100m.
例题讲解
例6 已知数 {an}列 的前 n项和Sn为 n212n,求这个数 列的通项 .这 公个 式数列是等?差 如数 果,列 是 它吗 的 首项和公差分?别是什么

【高中数学说课稿】人教A版数学必修5《一元二次不等式的解法(第一课时)》说课稿

【高中数学说课稿】人教A版数学必修5《一元二次不等式的解法(第一课时)》说课稿

一元二次不等式的解法(第一课时)说课稿
一、教材分析
1、教学内容
本节课是人教A版普通高中课程标准实验教科书数学必修5第三章第二节《一元二次不等式及其解法》第1课时。

2、教材地位和作用
从内容上看它是我们初中学过的一元一次不等式的延伸,同时它也与一元二次方程、二次函数之间联系紧密,涉及的知识面较多。

从思想层面看,本节课突出本现了数形结合思想。

同时一元二次不等式是解决函数定义域、值域等问题的重要工具,因此本节课在整个中学数学中具有较重要的地位和作用。

3、教学目标
知识目标:正确理解一元二次不等式、一元二次方程、二次函数的关系。

熟练掌握一元二次不等式的解法。

能力目标:培养数形结合思想、抽象思维能力和形象思维能力。

思想目标:在教学中渗透由具体到抽象,由特殊到一般,类比猜想、等价转化的数学思想方法。

情感目标:通过具体情境,使学生体验数学与实践的紧密联系,感受数学魅力,激发学生求知欲望。

4、重难点
重点:一元二次不等式的解法。

难点:一元二次方程,一元二次不等式与二次函数的关系。

二、教法探讨
1、选择教法的原则和依据
根据学生的原有知识和现有的认知规律,以发展学生的能力和应试水平为原则。

2、教法选择
探究、启发诱导法,分层教学法。

重点以引导学生为主,让学生积极主动的参与到新知识的探究中去。

三、学法分析
结合本节内容和学生实际,适当引入研究性学习,采用讲练结合方法,通过阅读发现问题,分析探索,合作交流最终形成技能。

使学生在观察、思考、交流中体验数学学习的乐趣。

普通高中新课程实验教学用书目录(变动部分)

普通高中新课程实验教学用书目录(变动部分)
选修3-4
2-3年级
普通高中课程标准实验教科书·数学·几何证明选讲
选修4-1
2-3年级
普通高中课程标准实验教科书·数学·矩阵与变换
选修4-2
2-3年级
普通高中课程标准实验教科书·数学·坐标系与参数方程
选修4-4
2-3年级
普通高中课程标准实验教科书·数学·不等式选讲
选修4-5
2-3年级
普通高中课程标准实验教科书·数学·初等数论初步
1-3年级
普通高中课程标准实验教科书·历史·近代社会的民主思想与实践·选修2
选修2
1-3年级
普通高中课程标准实验教科书·历史·20世纪的战争与和平·选修3
选修3
1-3年级
普通高中课程标准实验教科书·历史·中外历史人物评说·选修4
选修4
1-3年级
普通高中课程标准实验教科书·历史·探索历史的奥秘·选修5
普通高中课程标准实验教科书·计算机英语·选修
选修模块
1-3年级
普通高中课程标准实验教科书·小说欣赏入门·选修
选修模块
1-3年级
胡壮麟
教育科学出版社
普通高中课程标准实验教科书·英语1·必修
必修1
一年级上学期
有配套的教师用书
普通高中课程标准实验教科书·英语2·必修
必修2
一年级上学期
普通高中课程标准实验教科书·英语3·必修
选修3
1-3年级
普通高中课程标准实验教科书·历史·中外历史人物评说·选修4
选修4
1-3年级
普通高中课程标准实验教科书·历史·探索历史的奥秘·选修5
选修5
1-3年级
普通高中课程标准实验教科书·历史·世界文化遗产荟萃·选修6

说教材大赛_以高中数学必修5为例

说教材大赛_以高中数学必修5为例

内容 结构 知识 整合
三 角 函 【 教学 树 建议 】
性 质 说教材
说课标 说建议

评价 建议

对 数 函 【 树 】
函 数说 知教 识材 树流

课程
指 数 函 【 树 】
以必修五 第二章数列为例
重点 难点 教材 特点 知识 结构 数列 目标 说教材 本册 目标 说课标 说建议 课程资 源开发 利用 教学 建议 评价 建议
总体 目标
第一章 说课标 第三章 说建议
必 说 修 教 五 材 学 流 段 程 目 标
内容 结构 必修三
必修二
知识 整合
必修四
课程 结构
必修一 学段 目标
总体 目标选修1-1 说课标
必修部 说教材 分 文科选 修
选修4-1
教学 建议 必修五 评价 建议
理科选 说建议 修
说 高 教中 材 数学 流课 程 程结
特点 教学

必修五课程标准 知识 式 三
数 列
说教材
掌握求解一元二次不等 掌握求解一元二次不等 数列 式的基本方法, 式的基本方法,并能解决一 目标 些实际问题; 些实际问题;

本册 目标
• 在已有知 识的基础上, 识的基础上, 通过对任意三 角形边角关系 的探究, 的探究,发现 掌握三角形 并掌握三角形 中的边长与角 度之间的数量 关系。 关系。
以 必 修 五 为 例
通过具体情境,感受在 通过具体情境,感受在 现实世界和日常生活中存 在着大量的不等关系, 在着大量的不等关系,理 不等式( 解不等式(组)对于刻画 不等关系的意义和价值; 不等关系的意义和价值;
不 等
结构

能用二元一次不等式组表示平面区域,并 能用二元一次不等式组表示平面区域, 二元一次不等式组表示平面区域 重点 尝试解决一些简单的二元线性规划问题; 尝试解决一些简单的二元线性规划问题; 难点 基本不等式及其简单应用;体会不等 认识基本不等式及其简单应用;体会不等 认识基本不等式及其简单应用 教材 方程及函数之间的联系。 式、方程及函数之间的联系。

等差数列求和(顾文同)

等差数列求和(顾文同)
知识基础:我班学生已掌握了函数,数列等有关基础知识, 并且在初中已了解特殊的数列求和。
认知水平与能力:学生已初步具有抽象逻辑思维能力,能在 教师的引导下独立地解决问题。但处理抽象问题的能力还有 待进一步提高。
三、学法指导和教法分析
学法指导:建构主义学习理论认为,学习是学生积极主动的 建构知识的过程,学习应该与学生熟悉的背景相联系。在教 学中,让学生在问题情境中,经历知识的形成和发展,通过 观察、操作、归纳、思考、探索、交流、反思参与学习,认 识和理解数学知识,学会学习,发展能力。
北师大版普通高中课程标准实验教科书·数学·必修5
等差数列的前n项和
阜阳师处理 •教学目标 •教学重点、难点 •课程资源的开发与信息技 术的整合
教材地位与作用
本节课是《北师大版普通高中课程标准实验教科书·数学·必修5》 的〈第一章§2.2 等差数列的前n项和 〉的第一课时:等差数列的 前n项和公式的推导和简单应用问题。
教学目标
知识与技能目标: (1)掌握等差数列前n项和公式; (2)掌握等差数列前n项和公式的推导过程; (3)会简单运用等差数列的前n项和公式。
过程与方法目标: 通过公式的推导和公式的运用,使学生体会从特殊到一
般,再从一般到特殊的思维规律,初步形成认识问题,解 决问题的一般思路和方法;通过公式推导的过程教学,对 学生进行思维灵活性与广阔性的训练,发展学生的思维水 平.
在老师引导下总结出等差数列的几个重要性质 设计意图:复习通项及性质,帮助学生巩固旧知识,同
时为前n项和公式的的推导作好知识准备
推导公式
操作步骤:展示高斯求和课例并引导学生推导公式 ⑴等差数列前n项和 ⑵等差数列的前和公式 师生活动:引导学生从高斯求和的方法入手,总结出倒

人教A版高中数学必修五《基本不等式》精品教案

人教A版高中数学必修五《基本不等式》精品教案

《基本不等式:》教案《普通高中课程标准实验教科书·数学》必修5(人教A 版)第三章3.4节 一.教学目标①知识与技能目标:学会推导并掌握基本不等式,理解基本不等式的几何意义,并掌握式子中取等号的条件,会用基本不等式解决简单的数学问题。

②过程方法与能力目标:通过类比、直觉、发散等探索性思维的培养,激发学生学习数学的兴趣,进一步培养学生的解题能力,创新能力,勇于探索的精神。

③情感、态度与价值观目标:通过本节的学习,体会数学来源于生活并用于生活,增强学生应用数学的意识,激发学生学习数学的兴趣。

让学生享受学习数学带来的情感体验和成功喜悦。

二.教学重点、难点教学重点:创设代数与几何背景理解基本不等式,并从不同角度探索基本2a b+≤。

教学难点:理解“当且仅当a b =时取“=”号”的数学内涵,基本不等式的简单应用。

三、教学方法与手段本节课采用启发引导,讲练结合,自主探究的互动式教学方法。

以学生为主体,以基本不等式为主线,从实际问题出发,让学生探究思索。

以多媒体作为教学辅助手段,加深学生对基本不等式的理解。

四、教学过程设计设置情景,导入新课1.图中的面积有哪些相等和不等的关系?2.正方形ABCD的面积肯定大于4个直角三角形的面积和吗?有没有相等的情况呢?1.让学生观察常见的图形,目的是调动学生的学习兴趣,让学生感受到数学来源于生活,从而激发他们的学习动机。

2.借助《几何画板》动态演示和数据验算让学生更容易理解“当且仅当a b时取“=”号”的数学内涵,突破一个难点。

教师利用多媒体展示问题情景:1.(投影出)在北京召开的第24届国际数学家大会的会标——风车。

2.让学生直观观察(多媒体动画演示,“当正方形EFGH缩为一个点时,它们的面积相等”。

)自主探究,从而归纳出:“正方形ABCD的面积不小于4个直角三角形的面积和”。

五、板书设计板书设计方面主要板书两个不等式和应用不等式求最值的问题,例题及练习则利用多媒体课件展现,这样有利增加课堂容量,提高课堂效率。

高中数学必修5《数列的递推公式》教学设计

高中数学必修5《数列的递推公式》教学设计

普通高中课程标准实验教科书(人教A版数学必修五)§2.1 数列的概念与简单表示方法第2课时数列递推公式的教学设计一.教学内容数是刻画静态下物体的量,按一定顺序排列着的一列数称为数列。

在日常生活中,人们经常遇到需要用有关数列知识来解决的问题。

在数学中,数列是一种特殊的函数,是反映自然规律的基本数学模型。

数列的知识也是学生将来学习高等数学的基础。

由于数列这部分知识与以前所学知识具有较强的联系,特别与函数等知识有密切联系,新教材安排数列在函数之后教学,有利于用函数的观点来认识数列本质,也有利于加深巩固对函数概念的理解。

数列的递推公式这一节,是在前面学习了数列的有关概念后,介绍的另一种确定数列的办法。

本节的许多教学情境来源与生活实际,体现新课标的应用特点,加强学生对数列概念的感性认识。

本节的学习需要学生不断地观察、分析、归纳、猜想,还要综合应用前面知识解决数列中一些问题,培养学生逻辑思维、抽象思维、归纳思维等能力,有助于学生数学能力的提高。

二.教学目标本节课通过对谢宾斯基三角形的分析,让学生体会递推思想,了解从特殊到一般的归纳方法。

具体目标为:1.要求学生了解递推公式是给出数列的一种方法。

2.学生会根据数列的递推公式写出数列的前几项,利用递推思想解决一些实际问题,3.培养学生推理能力,严密的思维习惯,促进个性品质的良好发展。

通过课内外知识的介绍,开阔学生的眼界。

本节课教学重点:利用递推思想求出递推关系。

本节课教学难点:利用递推关系求出数学通项公式。

三.教学情况分析在本节之前,学生已经对函数知识有了一定程度的理解与掌握。

数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系。

在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列。

函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法。

由于数列的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而数列就有其特殊的表示法——递推公式法。

人教版高中数学必修5余弦定理

人教版高中数学必修5余弦定理

余弦定理一、教学内容分析人教版《普通高中课程标准实验教科书·必修(五)》(第2版)第一章《解三角形》第一单元第二课《余弦定理》。

通过利用向量的数量积方法推导余弦定理,正确理解其结构特征和表现形式,解决“边、角、边”和“边、边、边”问题,初步体会余弦定理解决“边、边、角”,体会方程思想,激发学生探究数学,应用数学的潜能。

二、学生学习情况分析本课之前,学生已经学习了三角函数、向量基本知识和正弦定理有关内容,对于三角形中的边角关系有了较进一步的认识。

在此基础上利用向量方法探求余弦定理,学生已有一定的学习基础和学习兴趣。

总体上学生应用数学知识的意识不强,创造力较弱,看待与分析问题不深入,知识的系统性不完善,使得学生在余弦定理推导方法的探求上有一定的难度,在发掘出余弦定理的结构特征、表现形式的数学美时,能够激发学生热爱数学的思想感情;从具体问题中抽象出数学的本质,应用方程的思想去审视,解决问题是学生学习的一大难点。

三、设计思想新课程的数学提倡学生动手实践,自主探索,合作交流,深刻地理解基本结论的本质,体验数学发现和创造的历程,力求对现实世界蕴涵的一些数学模式进行思考,作出判断;同时要求教师从知识的传授者向课堂的设计者、组织者、引导者、合作者转化,从课堂的执行者向实施者、探究开发者转化。

本课尽力追求新课程要求,利用师生的互动合作,提高学生的数学思维能力,发展学生的数学应用意识和创新意识,深刻地体会数学思想方法及数学的应用,激发学生探究数学、应用数学知识的潜能。

四、教学目标继续探索三角形的边长与角度间的具体量化关系、掌握余弦定理的两种表现形式,体会向量方法推导余弦定理的思想;通过实践演算运用余弦定理解决“边、角、边”及“边、边、边”问题;深化与细化方程思想,理解余弦定理的本质。

通过相关教学知识的联系性,理解事物间的普遍联系性。

五、教学重点与难点教学重点是余弦定理的发现过程及定理的应用;教学难点是用向量的数量积推导余弦定理的思路方法及余弦定理在应用求解三角形时的思路。

高中数学新人教版B版精品教案《3.2 均值不等式》

高中数学新人教版B版精品教案《3.2 均值不等式》

教学设计内容要求

2 引出第一种均制定理的证明方法。

讲授新课一、均值定理的内容
记笔记第一遍记忆
PPT
逐步显示
3
二、均值定理的变形
推出并逐步
了解
增强理解 2 三、几何法证明
动手实践另一种证明折纸11
爱国主义教
育四、介绍数学家赵爽(三国时期东吴的数学
家)和北京第24届国际数学家大会会标
朗读
进行爱国主
义教育
PPT PPT
展示
2 五、应用举例
学生思考解

初步应用PPT展示15
六、小结
再对定理记
学生归纳
PPT展示 2
忆和认知
学习效果评价
评价方式:教学目标制定符合学生实际,教学重点、难点处理得当,内容布局合理,衔接自然,教学方法灵活多样;注重启发引导,电化教学手段运用恰当,PPT手段提高了教学效率,激发了学生学习兴趣,调动学生学习积极性,教学环节安排紧凑合理,与学生思维比较合拍;教态自然,讲练结合,教学效果良好。

本教学设计与以往未使用信息技术教学设计相比的特点300-500字数本教学设计与以往对比,未使用现代信息技术,讲课时比较枯燥无味,抄题浪费时间,学生积极性不太高,吸引不了学生注意力,课容量不太大;本教学设计使用了PPT,对于新课引入,调动学生积极性,培养学生自主学习能力,激发学生学习兴趣起到了很大的促进作用。

通过例题板演,学生互相交流,提高严谨与求实的学习作风,形成锲而不舍的钻研精神和科学态度,自主探究知识发生发展的过程并发现结论,让学生真正体会到学习的快乐、成就感,达到预期的教学效果。

教学反思。

普通高中课程标准实验教科书数学5(人民教育B版)

普通高中课程标准实验教科书数学5(人民教育B版)

普通高中课程标准实验教科书数学5(人民教育出版社B版)第二章数列陈爱华(北京市育英学校)一、新课标解读数列作为一种特殊的函数,是反映自然规律的基本数学模型。

在本模块中,学生将通过对日常生活中大量实际问题的分析,建立等差数列和等比数列这两种数列模型,探索并掌握它们的一些基本数量关系,感受这两种数列模型的广泛应用,并利用它们解决一些实际问题。

内容与要求(1)数列的概念和简单表示法通过日常生活中的实例,了解数列的概念和几种简单的表示方法(列表、图像、通项公式),了解数列是一种特殊函数。

(2)等差数列、等比数列①通过实例,理解等差数列、等比数列的概念。

②探索并掌握等差数列、等比数列的通项公式与前n项和的公式。

③能在具体的问题情境中,发现数列的等差关系或等比关系,并能用有关知识解决相应的问题。

④体会等差数列、等比数列与一次函数、指数函数的关系。

解读(1)教学中,教师应引导学生通过日常生活中的实例,了解数列的概念和几种表示方法,揭示数列是一类特殊函数的本质属性,是反映自然规律的基本数学模型之一。

重视通过具体实例(如教育贷款、购房贷款、人口增长等)使学生理解等差等比数列模型的作用,培养学生从实际问题中抽象出数列模型的能力。

(2)新课标要求在数列的教学中,应保证基本技能的训练,引导学生通过必要的练习,掌握数列中各量之间的关系,但训练要控制难度和复杂程度。

这体现了《课程标准》在内容处理上的一个原则:删减繁琐的计算、人为技巧化难题和过分强调细枝末节的内容。

(3)要学生掌握并能应用等差等比数列有关公式解题,还在能力上要求学生会用归纳、叠加、叠乘、倒序相加、错位相减等方法解决数列综合问题(4)新课标要求教学上要注重数列的实际应用,关注学生对数列模型本质的理解,以及培养运用数列模型解决实际应用问题的能力二、地位与作用数列是高中数学的重要内容之一,其地位作用体现在以下四个方面:(1)数列是一种特殊的函数,它既与函数等知识有密切的联系,又丰富了函数的内容。

人教A版高中数学必修5《一章 解三角形 1.2 应用举例 阅读与思考 海伦和秦九韶》示范课教案_29

人教A版高中数学必修5《一章 解三角形  1.2 应用举例  阅读与思考 海伦和秦九韶》示范课教案_29

《海伦——秦九韶公式》教案【教学内容】人教A版普通高中课程标准试验教科书必修5 第一章“阅读与思考”海伦与秦九韶.【教学对象】高一学生.【教材分析】本节内容选自高中数学必修五的第一章,是阅读与思考部分的内容,在《高中数学新课程标准》中并没有做要求,教材中只占用一篇幅叙述了海伦公式与秦九韶公式(“三斜求积”公式)的记载历史,并未给出证明和应用.本节内容之前学生已经学习了解三角形,从而这节课是三角形面积公式的延续与拓展.本节课的主要设计对象为数学学习程度较好的学生——在完成《高中数学新课程标准》中要求的学习之后仍有余力的学生,意在引领学生了解数学文化史,同时启发学生运用所学知识由“三斜求积”公推导海伦公式,并让学生从中体会数学之美.【学情分析】高一学生在进入本节课的学习之前,需要熟悉前面已学过的三角形面积公式,余弦定理的推论,同角三角函数的平方关系以及平方差公式和完全平方公式.【教学目标】∙知识与技能:(1)会推导秦九韶公式与海伦公式,并理解海伦公式的本质;(2)理解秦九韶公式与海伦公式的本质相同.(3)会用海伦公式解决简单的涉及到三角形三边与面积之间关系的问题.∙过程与方法:(1)经历推导秦九韶公式与海伦公式的全过程,培养学生严谨的的数学逻辑思维;(2)提高学生会应用海伦公式解决涉及到三角形三边与面积之间关系问题的能力.∙情感态度与价值观:(1)体会公式书写的简洁美;(2)体会数学以不变应万变的魅力.【教学重点】秦九韶公式与海伦公式的推导及其应用.【教学难点】秦九韶公式与海伦公式的本质.【教学方法】引导探究、实力应用.【教学过程】(一)旧知回顾1.三角形的面积公式:(1)ah S ABC 21=∆(h 为边a 上的高); (2)==∆C ab S ABC sin 21 = . 2.余弦定理的推论:bca cb A 2cos 222-+=;=B cos ;=C cos . 3.同角三角函数的平方关系:+α2sin 1=.[师生活动]通过提问,让学生回答出本节课涉及到的已经学习过的公式.(二)新课引入【引例】问沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里。

高二数学人教A版必修5教学教案2-2等差数列(3)

高二数学人教A版必修5教学教案2-2等差数列(3)

普通高中课程标准实验教科书数学(人教A版)必修 5等差数列(第1课时)1、设计思想:数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。

一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。

而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。

同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。

2、教材分析:【教学目标】1.知识与技能(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:(2)账务等差数列的通项公式及其推导过程:(3)会应用等差数列通项公式解决简单问题。

2.过程与方法在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。

3.情感、态度与价值观通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。

在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。

【教学重点】①等差数列的概念;②等差数列的通项公式【教学难点】①理解等差数列“等差”的特点及通项公式的含义;②等差数列的通项公式的推导过程.3、学情分析我所教学的学生是我校高一(382)班的学生(实验班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展.【设计思路】1.教法①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性.③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点.2.学法引导学生首先从三个现实问题(姚明罚球问题、运动鞋尺码问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法.【教学过程】一:创设情境,引入新课1.姚明刚进NBA一周训练罚球的个数6000,6500,7000,7500,8000,8500,90002.运动鞋的尺码组成一个什么数列?教师:以上二个问题中的数蕴涵着三列数.学生:1:6000,6500,7000,7500,8000,8500,9000,….2:35,36,37,38,39,40,41,42(设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型.通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力.二:观察归纳,形成定义①6000,6500,7000,7500,8000,8500,9000,….②35,36,37,38,39,40,41,42思考1上述数列有什么共同特点?思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?思考3你能将上述的文字语言转换成数学符号语言吗?教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念.学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定.教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义.(设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达.)三:举一反三,巩固定义1.判定下列数列是否为等差数列?若是,指出公差d.(1)1,1,1,1,1;(2)1,0,1,0,1;(3)2,1,0,1,2;(4)4,7,10,13,16.教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题.注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0 .(设计意图:强化学生对等差数列“等差”特征的理解和应用).2思考4:设数列{a n}的通项公式为a n=3n+1,该数列是等差数列吗?为什么?(设计意图:强化等差数列的证明定义法)四:利用定义,导出通项1.已知等差数列:8,5,2,…,求第200项?2.已知一个等差数列{a n}的首项是a1,公差是d,如何求出它的任意项a n呢?教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示.根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法.(设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力.学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识.鼓励学生自主解答,培养学生运算能力)五:应用通项,解决问题1判断100是不是等差数列2,9,16,…的项?如果是,是第几项?2在等差数列{a n}中,已知a5=10,a12=31,求a1,d和a n.3求等差数列3,7,11,…的第4项和第10项教师:给出问题,让学生自己操练,教师巡视学生答题情况.学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式(设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系.初步认识“基本量法”求解等差数列问题.)六:反馈练习:教材13页练习1七:归纳总结:1.一个定义:等差数列的定义及定义表达式2.一个公式:等差数列的通项公式3.二个应用:定义和通项公式的应用教师:让学生思考整理,找几个代表发言,最后教师给出补充(设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念.)【设计反思】本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣.在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力.本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率.。

人教A版高中数学必修5《一章 解三角形 1.2 应用举例 阅读与思考 海伦和秦九韶》示范课件_25

人教A版高中数学必修5《一章 解三角形  1.2 应用举例  阅读与思考 海伦和秦九韶》示范课件_25

c
B

1 a2c2 4

1 4
a
2c
2


a2
c2 b2 2ac
2


1 [a2c2 (a2 c2 b2 )2 ]
4
2
即 S 1 [a2c2 (a2 c2 b2 )2] .
4
2
思考:除了 S 1 acsin B ,我们还学习过哪些三角形面积公式? 2
方法:利用余弦定理求出 cos B ,再根据 S 1 acsin B 进行证明.
2
证明:由余弦定理: cos B a2 c2 b2 2ac
S 1 ac sin B 1 ac
2
2
1 cos2 B 1 ac 2
1

a2
c2 2ac
b2
2

C
b
a
A
秦九韶的“大衍求一术”
比西方 1801 年著名数学家高斯建立的同余理论早 554 年,被西方 称为“中国剩余定理”。
秦九韶的任意次方程的数值解
领先英国人霍纳 572 年。
秦九韶的三斜求积术
秦九韶在 1247 年独立提出了“三斜求积术”, 虽然它与海伦公式形式上有所不同,但它完全与 海伦公式等价,它填补了中国数学史中的一个空 白,从中可以看出中国古代已经具有很高的数学 水平。
2、《数书九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的 一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水 平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜 幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即

基本不等式教学设计

基本不等式教学设计

《基本不等式》教学设计张中华教材:人教版《普通高中课程标准实验教科书•数学(A版)》必修5课题:3.4 基本不等式(第一课时)一、教材分析《基本不等式》是高中教材人教A版必修五第三章第三节的内容,是《不等式》这一章中继一元二次不等式、简单线性规划之后,从几何背景(赵爽的弦图)中抽离出的基本结论,是证明其他不等式成立的重要依据,也是求解最值问题的有力工具之一。

就本章的编写而言,教材讲究从直观性上学习,注重每个数学模型引领数学思想的教材编排暗线,并且都体现出遵循从几何背景入手,强调数形结合思想。

本节内容在此基本上渗透不等式的证明方法(比较法、综合法、分析法),并且会在后续学习时再次得到加强。

基本不等式的学时安排是3课时,它涉及基本不等式的推导教学和求解最值问题两大部分。

本节课是基本不等式教学的第一课时,其主要学习任务是通过赵爽弦图中面积的直观比较、抽象概括,提炼出不等式a 2+ b 2 > 2 ab (a, b G R)。

在此基础上,通过演绎替换、证明探究、数形结合及实际应用等四种不同的角度引导学生认识基本不等式。

其中基本不等式的证明是从代数、几何多方面展开,既有逻辑推理,又有直观的几何解释,使学生充分运用数形结合的思想方法,进一步培养其抽象概括能力和推理论证能力。

这就使得不等式的证明成为本节课的核心内容。

二、教学重难点教学重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式的证明过程。

教学难点:从不同角度探索基本不等式的证明,能利用基本不等式的模型求解函数最值。

三、教学目标《课程标准》对本节课的要求有以下两条:①探索并了解基本不等式的证明过程;②会用基本不等式解决简单的最值问题。

根据《课标》要求和本节教学内容,并考虑学生的接受能力,我将本节课的教学目标确定为:1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。

2021年人教A版高中数学必修5第一章《解三角形》综合教案

2021年人教A版高中数学必修5第一章《解三角形》综合教案

高中数学课题:解三角形综合授课时间:授课班级:授课教师:教材分析本课内容是人教A版普通高中课程标准实验教科书《数学》(必修5)第一章《解三角形》。

数学教学的核心价值是“学生自主讨论,循序渐进教学,强化问题探究,营造思维过程”。

本节课采用了问题探究、互助讨论、练习强化等教学方式,就是让学生观察、操作、比较、练习有关的学习内容,增强学生的知识探索及公式计算能力。

激发学生探究数学,应用数学的潜能,发展数学建模的核心素养。

正余弦定理在高中数学中的地位与作用:三角形是最基本的几何图形,三角形中边与角的关系是三角形最基本的关系。

初中我们学过简单的有关解直角三角形的知识,本章节通过正弦定理和余弦定理进一步求解任意三角形的边与角的关系,在实际测量中,如测量距离、高度、角度等问题的一系列应用均可由正弦定理和余弦定理解决。

任务分析1.进一步熟练掌握正弦、余弦定理在解各类三角形中的应用;2.提高对正弦、余弦定理应用范围的认识;3.初步应用正弦、余弦定理解决一些和三角函数、向量有关的综合问题.教学目标与核心素养1. 掌握正、余弦定理的几种表示形式及并能灵活会运用正、余弦定理解决解三角形问题;2. 在具体的问题情境中,能合理选择两个定理解解三角形;3.培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、正余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一。

教学重难点重点:正弦定理与余弦定理的灵活运用;难点:正弦定理与余弦定理的综合运用。

教学过程1.在△ABC中,sin A∶sin B∶sin C=3∶2∶3,则cos C的值为( )A.13B.-23C.14D.-142.已知△ABC的面积S=a2-(b2+c2),则cos A等于( )A.-4B.1717C.±1717D.-17173.在△ABC中,内角A,B,C所对应的边分别是a,b,c,若c2=(a-b)2+6,C=π3,则△ABC的面积是________.4.△ABC的内角A,B,C的对边分别为a,b,c.已知C=60°,b=6,c=3,则A=________.类型一利用正弦、余弦定理证明边角恒等式【例1】在△ABC中,A,B,C的对边分别为a,b,c,求证:a2-b2c2=sin(A-B)sin C.证明在△ABC中,由余弦定理得a2=b2+c2-2bc cos A,b2=a2+c2-2ac cos B,∴a2-b2=b2-a2-2bc cos A+2ac cos B,∴2(a2-b2)=2ac cos B-2bc cos A,即a2-b2=ac cos B-bc cos A,∴a2-b2c2=a cos B-b cos Ac.由正弦定理得ac=sin Asin C,bc=sin Bsin C,∴a2-b2c2=sin A cos B-cos A sin Bsin C=sin(A-B)sin C,故等式成立.规律方法(1)证明三角恒等式,关键是消除等号两端三角函数式的差异.形式上一般有:左⇒右;右⇒左或左⇒中⇐右三种.(2)利用正弦、余弦定理证明三角形中的恒等式的途径有两种:一是把角的关系通过正弦、余弦定理转化为边的关系;二是把边的关系转化为角的关系,一般是通过正弦定理转化.【训练1】 在△ABC 中,若a cos 2C2+c cos 2A 2=3b2,求证:a +c =2b .证明 由题a (1+cos C )+c (1+cos A )=3b ,即a +a ·a 2+b 2-c 22ab +c +c ·b 2+c 2-a 22bc =3b ,∴2ab +a 2+b 2-c 2+2bc +b 2+c 2-a 2=6b 2, 整理得ab +bc =2b 2,同除b 得a +c =2b , 故等式成立.类型二 利用正弦、余弦定理解三角形【例2】 在△ABC 中,若c ·cos B =b ·cos C ,且cos A =23,求sin B 的值.解 由c ·cos B =b ·cos C ,结合正弦定理得, sin C cos B =sin B cos C ,故sin(B -C )=0,∵0<B <π,0<C <π, ∴-π<B -C <π,∴B -C =0,B =C ,故b =c . ∵cos A =23,∴由余弦定理得3a 2=2b 2,再由余弦定理得cos B =66,又0°<B <180°, 故sin B =306.规律方法 (1)余弦定理和正弦定理一样,都是围绕着三角形进行边角互换的.在有关三角形的题目中注意选择是应用正弦定理,还是余弦定理,必要时也可列方程(组)求解.同时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能利用某个定理的信息. (2)解题时,还应注意,当把条件转化为角之间的关系时,还应注意三角恒等变换公式的应用.【训练2】 在锐角△ABC 中,b 2-a 2-c 2ac =cos (A +C )sin A cos A .(1)求角A ;(2)若a =2,求bc 的取值范围.解 (1)由余弦定理可得:a 2+c 2-b 2=2ac cos B , ⇒-2ac cos Bac=cos (π-B )sin A cos A, ∴sin 2A =1且0°<A <90°⇒A =45°,(2)⎩⎨⎧B +C =135°,0°<B <90°,0°<C <90°⇒45°<C <90°,又b sin B =c sin C =asin A=2, ∴b =2sin B ,c =2sin C ,bc =2sin(135°-C )·2sin C =2sin(2C -45°)+2,45°<2C -45°<135°⇒22<sin(2C -45°)≤1,∴bc ∈(22,2+2].方向1 与三角恒等变换的综合【例3-1】 设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a ,3sin A =5sinB ,则C =( ) A.π3 B.2π3 C.3π4D.5π6解析 根据正弦定理可将3sin A =5sin B 化为3a =5b , 所以a =53b ,代入b +c =2a 可得c =73b ,结合余弦定理可得cos C =a 2+b 2-c 22ab =-12,因为0<C <π,所以C =2π3. 答案 B方向2 在复杂图形中的应用【例3-2】 如图所示,在四边形ABCD 中,AD ⊥CD ,AD =10,AB =14,∠BDA =60°,∠BCD =135°,求BC 的长.解 在△ABD 中,AD =10,AB =14,∠BDA =60°,设BD =x , 由余弦定理,得AB 2=AD 2+BD 2-2AD ·BD cos ∠BDA ,∴142=102+x 2-2×10x cos 60°,即x 2-10x -96=0, 解得x 1=16,x 2=-6(舍去), ∴BD =16.∵AD ⊥CD ,∠BDA =60°,∴∠CDB =30°. 在△BCD 中,由正弦定理得BC sin ∠CDB=BD sin ∠BCD,∴BC =16sin 30°sin 135°=8 2.方向3 与向量的综合应用【例3-3】 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos(A -B )cos B -sin(A -B )sin(A +C )=-35.(1)求sin A 的值;(2)若a =42,b =5,求向量BA →在BC →方向上的投影. 解 (1)由cos(A -B )cos B -sin(A -B )sin(A +C )=-35,得cos(A -B )cos B -sin(A -B )sin B =-35,则cos(A -B +B )=-35,即cos A =-35.又0<A <π,则sin A =45.(2)由正弦定理,有a sin A =bsin B,所以sin B =b sin A a =22.由题知a >b ,则A >B ,故B =π4.根据余弦定理,有(42)2=52+c 2-2×5c ×⎝ ⎛⎭⎪⎫-35,解得c =1或c =-7(负值舍去).故向量BA→在BC→方向上的投影为|BA→|cos B=2 2.规律方法: 求解正、余弦定理综合应用问题的注意点:(1)正弦定理、余弦定理是解决三角形问题的主要工具,正确选择适合试题特点的公式极为重要,当使用一个定理无法解决问题时,要及时考虑另外一个定理.(2)三角函数中的公式在解决三角形问题时是不可或缺的,应该养成应用三角函数公式列式化简的习惯.1.在有关三角形的题目中注意选择是应用正弦定理,还是余弦定理,必要时也可列方程(组)求解,同时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能利用某个定理的信息.2.解决正弦定理与余弦定理的综合应用问题,应注意根据具体情况引入未知数,运用方程思想来解决问题;平面向量与解三角形的交汇问题,应注意准确运用向量知识转化为解三角形问题,再利用正弦、余弦定理求解.反思提升这篇案例设计,思路清晰,突出现实.首先通过恰当的问题情景阐述三角形边角关系产生的背景,使学生体会到了数学在解决实际问题中的作用.然后通过探究、推导活动,使学生体会到了数学知识的发现和发展的历程.例题与练习的配备由浅入深,注重了教学与自然界的关系.拓展延伸有深度,为提高学生的思维能力和创造力提供了良好平台.总之,从现实出发建立正、余弦定理的模型,又在现实应用中升华有关正、余弦定理的理解,是这篇案例的突出特点.教学后记:板书设计:基础过关1.在△ABC 中,若a =7,b =8,cos C =1314,则最大角的余弦值是( )A.-15B.-16C.-17D.-182.某人要制作一个三角形,要求它的三条高的长度分别为113,111,15,则此人能( )A.不能作出这样的三角形B.作出一个锐角三角形C.作出一个直角三角形D.作出一个钝角三角形3.已知△ABC 的三边长分别为AB =7,BC =5,AC =6.则AB →·BC →的值为( ) A.19 B.14 C.-18D.-194.在△ABC 中,B =60°,a =1,S △ABC =32,则c sin C =________.5.在△ABC 中,若a cos A=b cos B=c cos C,则△ABC 是________三角形.6.在△ABC 中,BC =5,AC =3,sin C =2sin A . (1)求AB 的值; (2)求sin ⎝ ⎛⎭⎪⎫2A -π4.7.在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2a sin B =3b . (1)求角A 的大小; (2)若a =6,b +c =8,求△ABC 的面积.能力提升8.△ABC的两边长分别为2,3,其夹角的余弦值为13,则其外接圆半径为( )A.922B.924C.928D.2299.已知△ABC中,三边与面积的关系为S△ABC=a2+b2-c243,则cos C的值为( )A.12B.22C.32D.010.在△ABC中,若a2-b2=3bc,sin C=23sin B,则A=________.11.在△ABC中,内角A,B,C所对的边分别是a,b,c.已知b-c=12a,2sin B=3sin C,则cos A的值为________.12.在△ABC中,内角A,B,C的对边分别为a,b,c,已知b2=ac,且cos B=3 4 .(1)求1tan A+1tan C的值;(2)设BA→·BC→=32,求a+c的值.13.(选做题)已知a,b,c分别为△ABC三个内角A,B,C的对边,a cos C+3a sin C-b-c =0.(1)求角A;(2)若a=2,△ABC的面积为3,求b,c.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档