空间内插方法分析
空间插值方法对比整理版
• 由于建立在统计学的基础上,因此不仅可 以产生预测曲面,而且可以产生误差和不 确定性曲面,用来评估预测结果的好坏
• 多种 kriging 方法
a
9
3、精确插值和近似插值
• 精确插值:产生通过所有观测点的曲面。
• 在精确插值中,插值点落在观测点上,内插值等 于估计值。
• 近似插值:插值产生的曲面不通过所有观测 点。
a
11
插值方法选择的原则
① 精确性:
② 参数的敏感性:许多的插值方法都涉及到一个或多个参数, 如距离反比法中距离的阶数等。有些方法对参数的选择相当 敏感,而有些方法对变量值敏感。后者对不同的数据集会有 截然不同的插值结果。希望找到对参数的波动相对稳定,其 值不过多地依赖变量值的插值方法。
③ 耗时:一般情况下,计算时间不是很重要,除非特别费时。
空间插值 Spatial Interpolation
• 空间插值的概念 • 空间插值的类型 • 空间插值的方法
a
1
空间插值概念
空间插值——空间插值常用于将离散点的测量数据转换为连 续的数据曲面,以便与其它空间现象的分布模式进行比较, 它包括了空间内插和外推两种算法。空间内插算法:通过已 知点的数据推求同一区域未知点数据。空间外推算法:通过 已知区域的数据,推求其它区域数据。
• 典型例子是:全局趋势面分析 、Fourier Series (周期序列)
a
4
局部内插法
➢ 局部内插法只使用邻近的数据点来估计未知点的值,步骤如 下: • 定义一个邻域或搜索范围; • 搜索落在此邻域范围的数据点; • 选择能表达这有限个点空间变化的数学函数; • 为未知的数据点赋值。
➢ 局部内插方法: • 样条函数插值法 • 距离倒数插值 • Kriging插值(空间自由协方差最佳内插)
ArcGIS中空间数据统计、插值分析-以克里金插值法为例--胡碧峰解析
可采用一个线性组合来估计:
n
z*x0 i zxi i 1
无偏性和估计方差最小被作为 选取的标准 i
无偏 E Zx0 Z * x0 0 最优 Var Zx0 Z * x0 min
2、直方图:直方图显示数据的概率分布特征以及概括 性的统计指标。从图中可观察分析数据是否为正态分布。克
里格方法对正态数据的预测精度最高,而且有些空间分析方法特 别要求数据为正态分布。
3、正态QQ Plot图: 检查数据的正态分布情况。作图原理是用分位图
思想。直线表示正态分布,从图中可以看出数据很接 近正态分布
j
E
Z *x0 Zx0 2
2
n
j
0,
i1
j 1, , n
Z*(x0)
1、数据检查,即空间数据探索分析。此功能主要通过 Explore Data菜单中实现。扩展模块提供了多种分析工具, 这些工具主要是通过生成各种视图,进行交互性分析。 如直方图、QQ plot图、半变异函数/协方差图等。
(3)趋势分析图。 蓝线表示南北方向,呈近似水平,可见南北方向无
趋势。绿线表示东西方向,呈倒"U"形,可用二阶曲线 拟合,在后面进行表面预测时将会去除。
4、半变异函数/协方差函数。 该图可以反应数据的空间相关
程度,只有数据空间相关,才有必要进行空间插值法。图表的横 坐标表示任两点的空间距离,纵标表示该两点的半变异函数值。 根据距离越近越相似的原理,因而x值越小,y值应该越小。
克里金插值
克里金方法(Kriging), 是以南非矿 业工程师D.G.Krige (克里格)名字命名的一 项实用空间估计技术,是地质统计学 的重 要组成部分,也是地质统计学的核心。
实验3空间插值分析实验
卫星遥感数据
通过卫星遥感技术获取地 表覆盖、植被分布、水体 等空间信息数据。
数据预处理
数据清洗
对原始数据进行清洗,去 除异常值、缺失值和重复 值,确保数据的准确性和 可靠性。
数据格式化
将不同来源和格式的数据 进行统一格式化处理,以 便进行后续的空间插值分 析。
数据转换
根据空间插值分析的需要, 将数据转换为相应的空间 坐标系和投影方式。
将本次实验的插值结果与已知的观测数据进行对比,分析其误差 和精度。
对比结果
通过对比发现,本次实验的插值结果与观测数据较为接近,误差 较小,精度较高。
误差分析
对误差进行了来源分析,发现误差主要来源于数据本身的波动和 插值方法的局限性。
误差来源与改进方向
误差来源
误差主要来源于数据本身的波动和插值方法的局限性。具体来说,数据波动可能由于观测设备的误差、观测环境 的干扰等因素造成;而插值方法的局限性则可能由于所选方法的假设条件与实际情况的差异、算法本身的误差等 造成。
在实验过程中,我们采用了多种空间插值方法,包括全局插值和局部插值。通过对比分析,我们发现局 部插值方法在处理非均匀分布的数据时具有更好的预测效果。
实验结果表明,空间插值分析在解决实际问题中具有广泛的应用前景,尤其在地理信息系统、环境监测、 气象预报等领域。
应用前景与展望
随着大数据和人工智能技术的不断发展,空间插 值分析将与这些技术相结合,进一步提高预测的 准确性和效率。例如,利用机器学习算法优化插 值参数,提高预测精度。
利用全局样条曲线对整个数据集进行 拟合,以估计未知点的值。这种方法 在处理大规模数据集时效率较高,但 可能无法捕捉到局部变化。
混合插值方法
局部多项式全局样条插值法
空间内插方法
空间采样点分布的选择
规则采样和随机采样好的结合方法是成层随机采样,即单个 的点随机的分布于规则的格网内
聚集采样可用于分析不同尺度的空间变化
规则断面采样常用于河流、山坡剖面的测量
等值线采样是数字化等高线图插值数字高程模型最常用的方
▪ 离散空间数据内插 对于离散空间,假定任何重要变化发生在边界上,则在边界内的 变化是均匀的,同质的,即在各个方面都是相同的。对于这种空 间的最佳内插方法是邻近元法,即以最邻近图元的特征值表征未 知图元的特征值。这种方法在边界会产生一定的误差,但在处理 大面积多边形时,则十分方便。在Arc View中,无离散数据的内 差功能,只有把矢量的离散数据转换为GRID数据的功能。
法
(1)规则采样
(2)随机采样
(3)断面采样
(4)成层随机采样
(5)聚集采样
(6)等值线采样
空间插值分析
连续空间与离散空间
▪ 现实空间可以分为具有渐变特征的连续空间和具有跳跃特征的离散 空间。举例来讲,土地类型分布属离散空间,而地形表面分布则是 连续空间
空间插值分析
空间插值的理论假设是空间位置上越靠近的点,越可能具有 相似的特征值,而距离越远的点,其特征值相似的可能性越 小。
空间插值的基础
理论假设
▪ 空间位置上越靠近的点,越可能具有相似的特征值 ▪ 而距离越远的点,其特征值相似的可能性越小
需要空间插值的情况
▪ 现有的离散曲面的分辨率、象元大小或方向与所要求的不符,需要重 新插值 例如将影象从一种分辨率或方向转换到另一种分辨率或方向
▪ 现有连续曲面的数据模型与所需的数据模型不符,需要重 新插值
空间内插的名词解释题
空间内插的名词解释题空间内插,是指在一段逻辑推理或论述中,通过插入某个特定的内容,使得整个推理更加严谨、完整或有力。
它是一种修辞手法,能够在文章中增加亮点和丰富性。
本文将围绕空间内插展开解释,探讨其定义、特点以及运用等方面。
一、定义空间内插指的是在文章的逻辑结构中插入具体的实例、事例或细节,以丰富内容、加强论证力度。
通过使用插入的方式,增加读者对于论述的信服力和兴趣,进而提升整个文章的质量。
空间内插可以在文章的任意位置进行,常见的形式包括举例、引用、比喻等。
二、特点1. 强化论证:空间内插能够为作者的观点提供更多的具体例证和实证支持,从而增强作者的说服力。
通过具体的案例或实例,读者可以更加直观地理解和接受作者的观点。
例如,在一篇文章中,作者想要论证人工智能对日常生活的影响,可以插入一个实际的案例,例如自动驾驶汽车技术的发展和应用。
2. 增加可读性:空间内插的使用可以减轻文章的枯燥性和抽象性,使得读者更易理解和记忆。
通过丰富的插入内容,文章更加生动有趣,吸引读者的注意力,提升整体可读性。
例如,在一篇科技文章中,作者可以插入一段关于某项技术的历史故事,使得读者更有兴趣继续阅读下去。
3. 拓宽视角:空间内插能够帮助读者从不同的视角看待问题,拓宽思维,提供更全面的分析和判断。
通过插入相关的事例或细节,读者可以看到问题的多个方面,从而形成更准确的看法。
例如,在一篇环境保护的文章中,作者可以插入一段描述某个地区环境污染严重的情景,引起读者对环保问题的关注。
三、运用方法1. 举例法:通过选择典型的实例和案例,对论述的观点进行具体化和可视化,使得读者更易理解和接受。
举例法常见于各类科普文章、演讲和散文等文体中。
2. 引用法:通过引用权威人士、名人或历史事件的言论和事例,为自己的观点提供可信度和支持。
引用法常见于引证、辩论和学术写作等场合。
3. 比喻法:通过运用类比和比喻的手法,将抽象的观点和概念与生活经验相结合,使得读者更易理解和感受。
3.9。空间内插
3.9。
空间内插3.9.1 空间内插的定义和种类一、定义空间数据的内插通过已知点或分区的数据,推求任意点或分区数据的方法称为空间数据的内插。
其方法是从存在的观测数据中找到一个函数关系式,使该关系式最好地逼近这些已知的空间数据,并能根据函数关系式推求出区域范围内其它任意点或任意分区的值。
它是地理信息系统数据处理常用的方法之一,广泛应用于等值线自动制图、数字高程模型的建立、不同区域界线现象的相关分析和比较研究等。
二、分类:根据以知点或以知分区数据的不同,将空间数据分为点的内插和区域的内插:1、点的内插:是研究具有连续变化特征现象的数值内插方法,根据内插精度的不同可以将点的内插分为:精确和概略两种。
2、区域的内插:是研究根据一组分区的以知数据来推求同一地区另一组分区未知数据的内插方法,主要有重叠法和比重法两种。
三、意义遍历研究区域中的每个位置以测量该位置的高度、大小或某种特性通常都是困难的,或者是昂贵的,因而一般都是采用抽样的方法,按照一定原则,选出一些样点进行测量,然后使用插值函数,估计出所有其它位置的值。
输入的点可以是规则的空间点,也可以是离散点,它们都含有高度、大小或某种特性的值对输入的点进行插值,生成规则栅格网,通常有四种插值(生成表面)的方法:距离反转权重法(IDW)、样条函数法(Spline)、克里格法(Kriging)以及多项式趋势法(Polynomial trend)。
每种方法都有其独特之处,都有一些基本的假设,适用于不同的源数据和应用。
3.9.2 ARCINFO下的空间内插步骤:① Grid Tools----Statistics------Surface , 弹出对话框如下:主要有如下内插法:反距离内插、克里格内插、趋势面内插、拓扑格网内插等。
点击不同内插将进行不同的参数设置,从而根据需要进行各种内插运算。
②以做趋势面内插为例,加以说明:(1)点击 Trend Surface Interoolation 弹出Trend Function对话框:在Output grid 中输入生成的文件名在Name of input 中找到做为Z值的文件(2) 点击,弹出如下对话框,设置参数:(2)内插完成后可在ArcView中打开做内插分析的图,可多做几种内插分析来对比各个内插的区别。
ArcGIS中几种空间插值方法
ArcGIS 中几种空间插值方法1. 反距离加权法(IDW)ArcGIS 中最常用的空间内插方法之一,反距离加权法是以插值点与样本点之间的距离为权重的插值方法,插值点越近的样本点赋予的权重越大,其权重贡献与距离成反比。
可表示为:1111()()n nip p i i i i Z Z D D ===∑∑其中Z 是插值点估计值,Z i (i=1Λn)是实测样本值,n 为参与计算的实测样本数,D i 为插值点与第i 个站点间的距离,p 是距离的幂,它显著影响内插的结果,它的选择标准是最小平均绝对误差。
2.多项式法多项式内插法(Polynomial Interpolation)是根据全部或局部已知值,按研究区域预测数据的某种特定趋势来进行内插的方法,属统计方法的范畴。
在GA 模块中,有二种类型的多项式内插方法,即全局多项式内插和局部多项式内插。
前者多用于分析数据的全局趋势;后者则是使用多个平面来拟合整个研究区域,能表现出区域内局部变异的情况。
3.样条函数内插法样条函数是一个分段函数,进行一次拟合只有少数点拟合,同时保证曲线段连接处连续,这就意味着样条函数可以修改少数数据点配准而不必重新计算整条曲线。
样条函数的一些缺点是:样条内插的误差不能直接估算,同时在实践中要解决的问题是样条块的定义以及如何在三维空间中将这些“块”拼成复杂曲面,又不引入原始曲面中所没有的异常现象等问题。
4.克里格插值法克里格法是GIS 软件地理统计插值的重要组成部分。
这种方法充分吸收了地理统计的思想,认为任何在空间连续性变化的属性是非常不规则的,不能用简单的平滑数学函数进行模拟,可以用随机表面给予较恰当的描述。
这种连续性变化的空间属性称为“区域性变量”,可以描述象气压、高程及其它连续性变化的描述指标变量。
地理统计方法为空间插值提供了一种优化策略,即在插值过程中根据某种优化准则函数动态的决定变量的数值。
Kriging 插值方法着重于权重系数的确定,从而使内插函数处于最佳状态,即对给定点上的变量值提供最好的线性无偏估计。
(完整word版)空间内插方法比较
一、空间数据的插值用各种方法采集的空间数据往往是按用户自己的要求获取的采样观测值,亦既数据集合是由感兴趣的区 域内的随机点或规则网点上的观测值组成的。
但有时用户却需要获取未观测点上的数据,而已观测点上的数 据的空间分布使我们有可能从已知点的数据推算岀未知点的数据值。
在已观测点的区域内估算未观测点的数据的过程称为内插;在已观测点的区域外估算未观测点的数据的 过程称为外推。
空间数据的内插和外推在 GIS 中使用十分普遍。
一般情况下,空间位置越靠近的点越有可能获得与 实际值相似的数据,而空间位置越远的点则获得与实际值相似的数据的可能性越小。
下面介绍一些常用的内 插方法。
1、边界内插使用边界内插法时,首先要假定任何重要的变化都发生在区域的边界上,边界内的变化则是均匀的、同质的。
边界内插的方法之一是泰森多边形法。
泰森多边形法的基本原理是,未知点的最佳值由最邻近的观测值产生。
如图4-6-1所示。
泰森多边形的生成算法见§ 5.7。
2、趋势面分析趋势面分析是一种多项式回归分析技术。
多项式回归的基本思想是用多项式表示线或面,按最小二乘法原理对数据点进行拟合, 拟合时假定数据点的空间坐标 X 、Y 为独立变量,而表示特征值的Z 坐标为因变 量。
当数据为一维时,可用回归线近似表示为:-其中,Sb 、a i 为多项式的系数。
当n 个采样点方差和为最小时,则认为线性回归方程与被拟合曲线达工(N -乳〕之-min到了最佳配准,如图4-6-2左图所示,即: 一当数据以更为复杂的方式变化时,如图 4-6-2右图所示。
在这种情况下,需要用到二次或高次多项式:在GIS 中,数据往往是二维的,在这种情况下,需要用到二元二次或高次多项式:£ 二 % + a x X + a^X(二次曲线)7 1= +O,JV 2 +a 4J¥y4多项式的次数并非越高越好,超过 3次的多元多项式往往会导致奇异解,因此,通常使用二次多项 式。
克里格空间插值法ppt课件
4.高斯模型(Gaussian model) 变程为 。
1.9 理论变异函数模型
图是球状模型、指数模型和高斯模型的比较,可以看出,球状模型的变程最小,指数的模型变程最大,高斯模型的变程介于二者之间。球状模型和指数模型过原点存在切线,高斯模型则没有。
1.9 理论变异函数模型
3.指数模型(Exponential model) 其中,d是控制方程空间范围的距离参数。这里,仅在无穷远处相关性完全消失。变程为3d。指数模型在统计理论中地位重要,它表示了空间随机性的要素,是一阶自回归和马尔可夫过程的半方差函数。作为自相关函数,它们是采样设计有效性的理论基础。
1.4邻域函数的统计函数及其意义
摄影测量得到的正射航片或卫星影象; 卫星或航天飞机的扫描影象; 野外测量采样数据,采样点随机分布或有规律的线性分布(沿剖面线或沿等高线; 数字化的多边形图、等值线图;
1.5 空间插值的数据源
图1 各种不同的采样布置方式
1.6 采样布置方式
1.8 方差变异函数
2)曲线从较低的方差值升高,到一定的间隔值时到达基台值,这一间隔称为变程(range)。在理论函数模型中,变程用a表示。 变程是半方差函数中最重要的参数,它描述了该间隔内样点的空间相关特征。在变程内,样点越接近,两点之间相似性、即空间上的相关性越强。很明显,如果某点与已知点距离大于变程,那么该点数据不能用于数据内插(或外推),因为空间上的自相关性不复存在。 变程的高低取决于观测的尺度,说明了相互作用所影响的范围。不同的属性,其变程值可以变化很大。
1.2.2局部插值方法 分类
1.4邻域函数的统计函数及其意义
众数(majority):邻域中出现频率最高的数值 最大值(max):邻域中最大的数值 最小值(min):邻域中最小的数值 中位数(median):邻域中数值从小到大排列后位于中间的数 平均值(mean):邻域中数值的算术平均 频率最小数(minority):邻域中出现频率最小的数值 范围(range):邻域中数值的范围,最大值与最小值之差 标准差(std):邻域中数值的标准差 和(sum):邻域中数值的和 变异度(varity):邻域中不同数值的个数
空间分析空间插值与地统计
或
E(X) xp(x)dx
i1
– 方差:二阶中心矩
D (X)E[XE(X)]2
– 协方差:二阶混合中心矩
C ov(X,Y)E [XE(X)][YE(Y)]
=E [X Y 整理] pptE [X]E [Y]
40
• 协方差函数
类似地,当Z(x)是区域化变量时,对于任意 两点si和sj ,空间随机过程的协方差函数为:
区域化变量,亦称区域化随机变量, Matheron(1963)将它定义为以空间点x的三 个直角坐标为自变量的随机场 Z(x)Z(xu,xv,xw)
区域化变量具有两个最显著,也是最重要 的特征:随机性和结构性。
整理ppt
34
随机变量
与时间有关的 随机函数
随机函数
带有多个(2个以上)自 变量的随机函数
点附近的6个数据点来计算方程式系数。
整理ppt
14
Deterministic Solutions
Predicted Model
Measured
First Order Polynomial Interpolation
Second Order (third, fourth, etc.) Polynomial Interpolation
36
区域化变量的功能:
由于区域化变量是一种随机函数,因而能同时反 映空间变量的结构性和随机性。 一方面,当空间点 x 固定后,Z(x)就是一个随
机变量,这体现了其随机性。 另一方面,在空间两个不同点 x 与 x+h 处的区
域化变量值具有某种程度的相关性,这体现了 其结构性。
整理ppt
37
区域化变量的组成部分
• 双三次多项式(样条函数)内插法是规则格网插 值的常用方法之一。这种方法通过一系列曲面片 段来拼接地形表面,最终得到一个1阶、2阶连续 的表面。该方法属于局部插值,计算负担中等; 对于平滑表面拟合效果最好,对于起伏的表面拟 合效果最差。
空间内插
经过压缩后获得新点序A‘:{As1, As2,As3,… Asn} 经过压缩后获得新点序A : As2,As3, 则压缩比为: 则压缩比为:a=m/n>1
数据压缩
数据压缩
光滑
道格拉斯——普克法 普克法 道格拉斯 (Douglas—Peucker)
基本思路是:对每一条曲线的首末点虚连一条直线, 基本思路是:对每一条曲线的首末点虚连一条直线,求 所有点与直线的距离,并找出最大距离值dmax dmax, 所有点与直线的距离,并找出最大距离值dmax,用dmax 与限差D相比: 与限差D相比: 若dmax<D,这条曲线上的中间点全部舍去; dmax< 这条曲线上的中间点全部舍去; 若dmax≥D,保留dmax对应的坐标点,并以该点为界, dmax≥D,保留dmax对应的坐标点,并以该点为界, dmax对应的坐标点 把曲线分为两部分,对这两部分重复使用该方法。 把曲线分为两部分,对这两部分重复使用该方法。
叠置法; 叠置法; 比重法;
§5-8 数据压缩
数据压缩的概念:从所取得的数据集中抽出一个子集, 数据压缩的概念:从所取得的数据集中抽出一个子集,将 这个子集作为一个新的数据源,来代替原数据集在GIS GIS中 这个子集作为一个新的数据源,来代替原数据集在GIS中 进行各种作业,从而减少存储空间,降低运算时间。 进行各种作业,从而减少存储空间,降低运算时间。 要求: 要求:1)在规定的精度范围内最好地逼近原集合; 在规定的精度范围内最好地逼近原集合; 2)取得尽可能大的压缩比。 取得尽可能大的压缩比。 压缩比:信息载量的减少程度。 压缩比:信息载量的减少程度。 对曲线的压缩中,原点序A 对曲线的压缩中,原点序A为:{A1,A2,A3,… {A1,A2,A3, Am}
局部函数法
空间插值介绍简洁明了
(2)“实际”验证
将部分已知变量值的样本点作为“训练数据集”,用于插值 计算;另一部分样点 “验证数据集”,该部分站点不参加 插值计算。然后利用“训练数据集” 样点进行内插,插值 结果与“训练数据集”验证样点的观测值对比,比较插值的 效果。
插值方法
1. 最近邻法(Nearest Neighbor) 2. 算术平均值(Arithmetic Mean) 3. 距离反比法(Inverse Distance) 4. 高次曲面插值(Multiquadric) 5. 趋势面插值(Polynomial) 6. 最优插值(Optimal) 7. 样条插值(Spline Surface) 8. 径向基函数插值(Radial Basis Functions) 9. 克里金插值(Kriging) 10. 最小曲率 (Minimum Curvature)
公式
其数学表达式为:
v e vi vi 表示 i 点的变量值。 其中ve 表示待估点变量值,
i 点必须满足如下条件:
d ei min( d e1 , d e 2 , d en )
d ij xi x j y i y j
一、最近邻法(Nearest Neighbor)
• 最近邻点法又叫泰森多边形方法。它采用一种极端的边界内 插方法—只用最近的单个点进行区域插值(区域赋值)。 • 泰森多边形按数据点位置将区域分割成子区域,每个子区域 包含一个数据点,各子区域到其内数据点的距离小于任何到 其它数据点的距离,并用其内数据点进行赋值。
⑤ 可视化、可操作性(插值软件选择):三维的透视图等。
插值验证
(1) 交叉验证 交叉验证法(cross-validation),首先假定每一测点 的要素值未知,而采用周围样点的值来估算,然后计算所有 样点实际观测值与内插值的误差,以此来评判估值方法的优 劣。 各种插值方法得到的插值结果与样本点数据比较。
空间插值方法
7.空间插值7.1空间插值的概念和理论空间插值常用于将离散点的测量数据转换为连续的数据曲面,以便与其它空间现象的分布模式进行比较,它包括了空间内插和外推两种算法。
空间内插算法是一种通过已知点的数据推求同一区域其它未知点数据的计算方法;空间外推算法则是通过已知区域的数据,推求其它区域数据的方法。
在以下几种情况下必须作空间插值:1)现有的离散曲面的分辨率,象元大小或方向与所要求的不符,需要重新插值。
例如将一个扫描影象(航空像片、遥感影象)从一种分辨率或方向转换到另一种分辨率或方向的影象。
2)现有的连续曲面的数据模型与所需的数据模型不符,需要重新插值。
如将一个连续的曲面从一种空间切分方式变为另一种空间切分方式,从TIN到栅格、栅格到TIN或矢量多边形到栅格。
3)现有的数据不能完全覆盖所要求的区域范围,需要插值。
如将离散的采样点数据内插为连续的数据表面。
空间插值的理论假设是空间位置上越靠近的点,越可能具有相似的特征值;而距离越远的点,其特征值相似的可能性越小。
然而,还有另外一种特殊的插值方法——分类,它不考虑不同类别测量值之间的空间联系,只考虑分类意义上的平均值或中值,为同类地物赋属性值。
它主要用于地质、土壤、植被或土地利用的等值区域图或专题地图的处理,在“景观单元”或图斑内部是均匀和同质的,通常被赋给一个均一的属性值,变化发生在边界上。
7.2空间插值的数据源连续表面空间插值的数据源包括:●摄影测量得到的正射航片或卫星影象;●卫星或航天飞机的扫描影象;●野外测量采样数据,采样点随机分布或有规律的线性分布(沿剖面线或沿等高线);●数字化的多边形图、等值线图;空间插值的数据通常是复杂空间变化有限的采样点的测量数据,这些已知的测量数据称为“硬数据”。
如果采样点数据比较少的情况下,可以根据已知的导致某种空间变化的自然过程或现象的信息机理,辅助进行空间插值,这种已知的信息机理,称为“软信息”。
但通常情况下,由于不清楚这种自然过程机理,往往不得不对该问题的属性在空间的变化作一些假设,例如假设采样点之间的数据变化是平滑变化,并假设服从某种分布概率和统计稳定性关系。
空间插值IDW
空间插值是用已知点的 数值来估算其它点的数 值的过程
例如:在一个没有数据记录的地点,其降水量可 通过对附近气象站已知降水量记录的插值来估 算出来。
为什么插值为栅格?
在GIS应用中主要用于估算出栅格 中每个象元的值。因此空间插值 是将点数据转换成面数据的一种 方法,目的是使点数据也能用于 空间分析和建模。
空间插值的理论假设是:空间位置上越靠近的点,越可能具有相 似的特征值,而距离越远的点,其特征值相似的可能性越小。空 间插值方法正是依据该假设设计的,分为整体插值方法和部分插值方 法两类。
整体插值:用研究区域所有采样点的数据进行全区域特征拟合, 如边界内插法、趋势面分析等。
部分插值:仅仅用邻近的数据点来估计未知点的值,如最邻近点 法(泰森多边形方法)、移动平均插值方法(距离倒数插值法)、 样条函数插值方法、空间自协方差最佳插值方法(克里金插值)等。
nA1 += nTemp; nValue += nTemp * ValueList[i]; }
nValue = nValue / nA1; return nValue; }
IDW实现-公共函数2
//获取要素参数 protected void getFeaturesParameters(ref double[] nPointsX, ref double[] nPointsY, ref double[] nValues)
nValues[i] = Convert.ToDouble(pFeature.get_Value(this.m_nFieldIndex)); i++; pFeature = pCursor.NextFeature(); } }
IDW实现-公共函数3
ArcGIS实验操作(十四)---采样数据的空间内插
ArcGIS实验操作(十四)采样数据的空间内插(Interpolate)空间插值常用于将离散点的测量数据转换为连续的数据曲面,以便与其它空间现象的分布模式进行比较,它包括了空间内插和外推两种算法。
空间内插算法是一种通过已知点的数据推求同一区域其它未知点数据的计算方法;空间外推算法则是通过已知区域的数据,推求其它区域数据的方法。
数据:在data/Ex14文件下:qiwen.shp 中有两个字段 Y01 Y02 记录的是16个气象观测站,2001年和2002年的年平均气温。
YNBoundary.shp 是云南省的边界。
要求:通过空间内插的方法将点上的数据扩展到连续的空间上,得到气温空间分布图。
操作步骤:1.加载图层:qiwen.shp 、YNBoundary。
2. 打开空间分析“Spatial Analyst ”工具栏,设置分析环境:选择same as Layer “YNBoundary”3.执行菜单命令<空间分析>-<内插成栅格>-<样条>在样条函数内插对话框中,按下图所示指定参数4.打开图层属性表:右击图层qiwen:则气温自动标注:5.对插值图层重新分类:点击classfy,采用间距为10进行分类:2001年平均气温样条函数空间内插6.参考以上操作,生成2002年的平均气温空间分布图(采用“距离权重倒数”(IDW)插值),通过设置相关选项和参数,重新进行空间插值:2002年采样点气温IDW插值通过对比两种插值方法,可见IDW内插效果更好。
7.鉴于IDW插值效果更好,同上对01年的采样点气温重新进行IDW插值。
8. 栅格单元统计(Cell Statistic)根据2001年和2002年的年平均气温得到多年平均气温空间分布图,打开“空间分析”工具栏,执行菜单命令<空间分析>-<像素统计>2001、2002年间平均气温空间内插9.将YNBoundary.shp转为栅格数据重分类,赋值为1:10.采用栅格计算器,裁切边界:多年平均气温空间分布图11.若要统计多年平均气温图的不同温度带分布面积,可以通过重分类,直接从属性表中获取。
空间内插方法比较
空间内插方法比较一、本文概述空间内插方法是一种在地理信息系统(GIS)和遥感技术中广泛使用的技术,用于根据已知的数据点推测未知区域的值。
这种方法在环境科学、气象学、城市规划、资源管理等众多领域都有着重要的应用。
本文旨在探讨和比较几种常见的空间内插方法,包括反距离权重法(IDW)、克里金插值法(Kriging)、自然邻点插值法(Natural Neighbors)以及多项式插值法等。
我们将首先简要介绍这些空间内插方法的基本原理和实施步骤,然后通过一个具体的案例或数据集来比较它们的性能。
我们将评估插值结果的精度、平滑度以及在不同应用场景下的适用性。
我们还将讨论这些方法的优缺点,以便读者能够根据自己的需求选择合适的空间内插方法。
通过本文的阅读,读者将对空间内插方法有更加深入的理解,能够掌握其基本原理和实施步骤,了解不同方法之间的差异和优缺点,并能够在实践中选择合适的空间内插方法。
二、空间内插方法概述空间内插是一种重要的地理信息系统(GIS)技术,用于估算在已知数据点之间或之外的未知地理位置的值。
它是通过分析和理解空间数据的分布模式,使用数学算法来预测和模拟这些模式在空间上的变化。
这种技术广泛应用于各种领域,包括环境科学、气象学、地质学、城市规划等。
空间内插方法大致可以分为两类:确定性方法和统计性方法。
确定性方法,如反距离权重法(IDW)、样条函数法(Spline)等,主要基于空间数据的物理特性和已知点之间的空间关系进行插值。
这类方法通常假设空间数据具有某种连续性和平滑性,通过最小化插值误差或最大化平滑度来得到预测值。
统计性方法,如克里金插值(Kriging)、协方差法等,则更多地依赖于对空间数据分布模式的统计分析和理解。
这类方法认为空间数据不仅具有空间相关性,而且可能存在某种潜在的随机性。
因此,它们通过构建和拟合空间统计模型,如变异函数或协方差函数,来估算未知位置的值。
每种空间内插方法都有其独特的优缺点和适用范围。
克里格内插法的总结
第三章第五节空间数据的内插方法总结
一、空间内插的概念:设一直一组空间数据,他们可以是离散点的形式,也可以是多边形分区数据的形式,现在要从这些数据中找到一个函数关系式,使关系式最好地逼近这些已知的空间数据,并能根据该函数关系式推求出区域范围内其它任意点或任意多边形分区范围的值。
这种通过已知点活多边形分区的数据,推求任意点或多边形分区数据的方法就称为空间数据的内插。
二、空间数据的内插分为两部分,一是点的内插;二是区域的内插;
点内插:地理信息系统书第96页,表3—3点的空间内插分类,知道每一个内插法的概念就可以了。
点内插重点放在克里金内插法,有普通、简单和通用内插法三种,记住原理概念就行的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要本文首先对空间插值的的理论基础包括空间插值的必要性以及目标等几个方面进行了介绍;在此基础上,对空间插值的几种方法包括反距离加权法、克里格法、泰森多边形法、样条函数法等进行了探讨和研究,对方法的适用范围、优缺点、插值精度等方面进行了总结;对反距离加权法和克里格法等的实现方法进行了研究;论文最后对空间内插的方法选择进行了归纳总结,并对空间内插今后有待进一步研究的方面以及发展应用方向进行了展望。
关键词:空间内插克里格反距离加权AbstractFirstly,theoretical basis,including the necessity of spatial interpolation, aim etc., is specifically introduced in this paper. Beside this, we have done studies and researches on several methods of spatial interpolation, e.g.Inverse Distance Weighted、Kriging、Thiesen、Spline, concluded on the range、merit and shortcoming,interpolation accuracy and so on. The thesis it makes research on the programming process of Inverse Distance Weighted and Kriging etc, The end of the paper gives a summary to the methods selection of spatial interpolation, and outlooks the further research and probable application to be developed in spatial interpolation.Keywords:Spatial Interpolation Kriging Inverse Distance Weighted0 前言:在地理信息系统(GlS)中,我们获得的空间数据往往是离散点的形式,或者是分区数据的形式。
由于观测到的数据往往不能满足要求,最理想的方法就是调查地理空间所有样本的信息,以穷尽样本属性值的方式来获得详尽的地理信息。
但这种方法从时间、经济角度上来说是行不通的,也是不现实的。
我们可以从离散分布的数据开始来构造一个连续的表面,但是问题在于如何构建一个连续的数据表面。
GIS空间内插方法为实现这个目的提供了有效的手段,它利用有限的观测数据,估计合理的空间分布、提高数据密度,获得完整空间信息分布,以填补缺失的数据,得到密集的数据分布。
此外,由于数据集的来源、采样点的数据类型不同,如何选择适当的内插方法成为迫切需要解决的问题,如若选择了不适当的内插方法将会直接导致对数据的错误内插,从而造成了对实际情况错误的认识。
每种内插方法都有各自的应用范围和优缺点,它们很大程度上依赖于采样数据原始的数学特征,不同的研究目的对内插都有特殊的要求。
针对某一特定的数据集,如何来选择最有效的内插方法,是一个重要的、极富挑战性的任务。
本文试图从GIS空间内插方法的理论基础、实际效果两个方面比较几种常用的内插方法的实现原理及其基本的适用条件,并对空间内插今后有待进一步研究的方面进行了展望。
1空间内插方法的划分和分析空间插值方法可以分为全局方法和局部方法两类。
全局方法用研究区每个可利用的控制点来构建一个方程或一个模型,而后该模型可用于估算未知点的数值;局部方法是用控制点的样本来估计未知点的值。
全局方法通常不直接用于空间插值,而是用来检测不同于总趋势的最大偏离部分,在去除了宏观地物特征后,可用剩余残差来进行局部插值。
由于全局方法将短尺度的、局部的变化看作随机的和非结构的噪声,从而丢失了这一部分信息。
局部插值方法恰好能弥补整体插值方法的缺陷,可用于局部异常值,而且不受插值表面上其它点的内插值影响。
全局方法全局方法利用每个可利用的控制点来构建一个方程或一个模型,而后该模型可用于估算未知值。
(一) 趋势面分析趋势面根据有限的观测数据拟合曲面,进行内插,具体做法是用多项式方程近似拟合已知数值的点,该方程又称趋势面模型,能用于估算其他点的数值。
线性或一阶趋势面用如下方程:y b x b b z y x 210,++=这里的特征值z 是x 和y 的函数。
系数由控制点估算。
因为趋势面模型至少需要二阶方程,其拟合程度可用相关系数确定(2R )。
而且,每个已知点观测值和估算值之间的偏差或残差可以计算出来。
多数自然现象的分布通常比由一次趋势面生成的倾斜面更复杂。
因此,拟合更复杂的面要求更高次的趋势面模型,例如,三次或三阶趋势面基于如下方程:3928273625423210,y b xy b y x b x b y b xy b x b y b x b b z y x +++++++++=趋势面是个平滑函数,很难正好通过原始数据点,除非是数据点少且趋势面次数高才能是曲面正好通过原始数据点,所以趋势面分析是一个近似插值方法。
实际上趋势面最有成效的应用是揭示区域中不同于总趋势的最大偏离部分,所以趋势面分析的主要用途是,在使用某种局部插值方法之前,可用趋势面分析从数据中去掉一些宏观特征,不直接用它进行空间插值。
(二) 边界内插方法边界内插方法假设任何重要的变化发生在边界上,边界内的变化是均匀的,同质的,即在各方向都是相同的。
边界内插方法最简单的统计模型是标准方差分析(ANOVAR )模型如下:()εαμ++=k x z 0式中,z 是在x0位置的属性值,μ是总体平均值,αk 是k 类平均值与μ的差,ε为类间平均误差(噪声)。
模型假设每一类别k 的属性值是正态分布;每类k 的平均值(μ+αk )由一个独立样品集估计,并假设它们是与空间无关的;类间平均误差ε假设所有类间都是相同的。
评价分类效果的指标是 , 为类间方差, 为总体方差,比值越小分类效果越好。
(三)回归模型回归模型把方程中的一个因变量和多个自变量联系起来,而后可用于预测或估算。
多元回归在数学上与趋势面很相似,但是,它们又有明显的不同。
首先,在趋势面分析中,x 和y 是与z 相关的特定坐标,而在回归模型中,它可以是任意变量,其次,在趋势面方法中,模型的拟合严格地遵从自常数、一次、二次、立方等的顺序,主要问题是确定模型的次数,因此,趋势面分析有内在的多重共线性问题;而在多元回归中,尽管也存在这样的问题,但它并非内在的,可以通过逐步回归解决,因此,相对于趋势面的选择次数,多元回归的核心问题是选择变量和区分模型。
局部方法局部插值方法用一组控制点样本来估算未知值,因此控制点个数和选取方法对该方法十分重要。
(一)最近邻法又称泰森多边形法(Thiessen)或冯罗诺多边形(Voronoi ),它采用了一种极端的边界内插方法,只用最近的单个点进行区域内插。
泰森多边形按数据点位置将区域分割成子区域,每个子区域包含一个数据点,各子区域到其内数据点的距离小于任何到其它数据点的距离,并用其内数据点进行赋值。
它的算法非常简单,未采样点的值等于与它距离最近的采样点的值。
(二)反距离权重插值(Inverse Distance Weighting 简称IDW )它假设未知值的点受较近控制点的影响比较远控制点的影响更大。
影响的程度(即权重)用点之间距离乘方的倒数表示。
乘方为1.0意味着点之间数值变化率为恒定,该方法称为线性插值法。
乘方为2.0或更高则意味着越靠近已知点,数值的变化率越大,远离已知点趋于平稳,其通用方程是:式中:0z 是点0的估计值;i z 是控制点i 的z 值;i d 是控制点i 与点0间的距离;s 是在估算中用到的控制点的数目;k 是指定的幂。
(三)样条曲线法样条函数是数学上与灵活曲线对等的一个数学等式,是一个分段函数,利用分块拟合的办法,用低阶多项式对局部进行拟合。
它将平面分成若干单元,在每一单元用低阶多项式,如三次多项式,构造一个局剖曲面,对单元内的数据点进行最佳拟合,在连接处保持连续,这样由局部曲面组成的整个表面连续。
样条函数就是可以修改少数数据点配准而不必重新计算整条曲线。
(b)图2-6 样条曲线的变化a :当二次样条曲线的一个点位置变化时,只需要重新计算四段曲线;b :而一次样条曲线的一个点位置变化时,只需要重新计算两段曲线。
∑∑===s i K isi K i i d d z z 11011一般的分段多项式p(x)定义为:P(x)=P i (x) X i <X < X i+1 (i=1, 2, 3…, k -1);()()i j i i j i x p x p )(1)(+= (j=0, 1, 2, ..., r-1; i=1, 2, ... , k-1);X 1, …, X k-1将区间(X 0,X k )分成K 个子区间,这些分割点称“断点”,曲线上具有这些X 值的点称为“节”。
函数P i (x)为小于等于m 次的多项式。
r 项用来表示样条函数的约束条件,即r=0,无约束;r=1,函数连续且对它的导数无任何约束;r=m-1,区间[X 0,X k ]可用一个多项式表示;r=m ,约束条件最多。
m=1,2,3时的样条分别为一次、二次、三次样条函数,其导数分别是0阶、1阶、2阶导数,二次样条函数的每个节点处必须有一阶连续导数,三次样条函数的每个节点初必须有二阶连续导数。
样条函数易操作,计算量不大,适合于非常平滑的表面,一般要求有连续的一阶和二阶导数;适合于根据很密的点内插等值线,特别是从不规则三角网(TIN )内插等值线。
最常用的有薄板样条函数,规则样条函数,张力样条。
(四)克里格法克里格法(Kriging )方法就是对空间数据进行加权插值的权值设计方法。
通过引进以距离为自变量的变异函数来计算权值,由于变异函数既可以反应变量的空间结构特性,又可以反应变量的随机分布特征,所以利用克里格方法进行空间数据插值往往可以取得理想的效果。
其具体实施步骤如下1衡量所选已知点之间空间相关程度的测度是半方差,由下式计算:21))()((21)(∑=+-=n i i i h x z x z n h γ式子中:h 是已知点之间的距离,常用于作为滞后系数;n 是被h 分开的成对样本点的数量;z 是属性值。
半方差随h 的增大而增大。
2 根据变量的特征和经验用一定的模型理论进行拟合。
其中常见的数学模型有高斯、线性、球形、圆形、和指数模型。