矩阵的秩及其求法

合集下载

矩阵求秩方法

矩阵求秩方法

矩阵求秩方法
求矩阵的秩是线性代数中常见的问题,以下是关于矩阵求秩的10条方法及其详细描述:
1. 奇异值分解法:通过对矩阵进行奇异值分解,将矩阵变换为一个对角矩阵,其中非零元素的个数即为矩阵的秩。

2. 初等变换法:利用矩阵的初等行(列)变换,将矩阵化简为行简化阶梯型矩阵,其中非零行的个数即为矩阵的秩。

3. 极大线性无关组法:通过逐步选择矩阵中的列,构建一个极大线性无关组,其中向量的个数即为矩阵的秩。

4. 秩-零空间法:矩阵的秩与其零空间的维数之和为矩阵的列数。

可以通过计算矩阵的零空间 (null space) 的维数来求解矩阵的秩。

5. 行列式法:矩阵的行列式非零的最大子阵的阶数就是矩阵的秩。

6. 直接检验法:将矩阵转换为梯形矩阵或行阶梯矩阵,其中非零行的个数即为矩阵的秩。

7. 特征值法:矩阵的秩等于其特征值不为零的个数。

8. 与单位矩阵求秩法:通过将矩阵与单位矩阵进行连接,得到一个增广矩阵,进而将其化简为行简化阶梯型矩阵,其中非零行的个数即为矩阵的秩。

9. Gauss-Jordan消元法:通过高斯消元法和高斯约当消元法将矩阵化简为行简化阶梯型矩阵,其中非零行的个数即为矩阵的秩。

10. 极大线性无关组与生成组比较法:利用极大线性无关组与生成组的关系来求解矩阵的秩,其中生成组的个数等于矩阵的秩。

2.5 矩阵的秩及其求法

2.5 矩阵的秩及其求法

求 R( A).
1 0 2 −4 1 0 2 −4 −4 → 0 1 −1 2 r 2r , 解 A 2 − 0 1 −1 2 r1 → r3 + 1 0 −1 1 − 2 0 0 0 0
R(A) = 2
13
1 −1 1 2 例5 设A = 3 λ −1 2, 且R(A) 2 = ,求λ, µ 5 3 µ 6
∴ R( A) = 3
A为满秩方阵。
19
若求A 若求 的标准型矩阵
1 − 2 1 − 4 0 −1 −1 3 → 0 0 1 9 0 0 0 0
2 1 1 0 →0 2 0 0
0 −1 2 1 0 0
4 0 12 3 1 9 2 0 0 0
矩阵A 的第一、三行,第二、四列相交处的元素 所构成的二阶子式为
2 −1 D2 = 0 −1
3 5 为 A 的一个三阶子式。

1 2 D3 = 4 6
1 0 −1
k k m× n 矩阵 A 共有 cmcn 个 k 阶子式。 显然,
4

A = (aij )m×n 当 A=0 时,它的任何子式都为零。
⑤ R(AB)≤ min{R(A),R(B)} ⑥ 若 Am×nBn×s=0,则 R(A)+R(B)≤n
24
例8
设A为n阶矩阵,证明R(A+E)+R(A-E)≥n 证: ∴ 而 ∴ ∵ (A+E)+(E-A)=2E r(A+E)+ r( E-A )≥ r(2E)=n r( E-A )= r( A-E ) r(A+E)+r(A-E)≥n
7
矩阵秩的求法 二、矩阵秩的求法 1、子式判别法 定义 。 、子式判别法(定义 定义)。

矩阵的秩及其求法矩阵秩求法演示文稿

矩阵的秩及其求法矩阵秩求法演示文稿

5 3 6
0
8
5
4
1 1 1 2
0 3 4 4 0 5 1 0
R(A) 2, 5 0, 1 0
5, 1
三、满秩矩阵 定义3 A 为 n 阶方阵时,
RA n, 称 A 是满秩阵,(非奇异矩阵)
RA n, 称 A 是降秩阵,(奇异矩阵) 可见:RA n A 0
RA n A ~ E
RA n A ~ En
例如 1 A 2 3
2 1 1
3 2 2
1 0 0
2 3 2
3 1 4 0 3 0
0 1 2
0 1 3
1 0 0
0 0
1 0 E 0 1
RA 3
A为满秩方阵。
关于矩阵的秩的一些重要结论:
定理5
R(AB) R(A), R(AB) R(B),即
对于满秩方阵A施行初等行变换可以化为单位阵E, 又根据初等阵的作用:每对A施行一次初等行变换, 相当于用一个对应的初等阵左乘A, 由此得到下面的 定理
定理3 设A是满秩方阵,则存在初等方阵
P1, P2,, Ps. 使得 Ps Ps1 , P2P1A E
对于满秩矩阵A,它的行最简形是 n 阶单位阵 E .
2 1 所构成的二阶子式为 D2 0 1
12 3 而 D3 4 6 5 为 A 的一个三阶子式。
1 0 1
显然, m n 矩阵 A 共有 cmk cnk 个 k 阶子式。
2. 矩阵的秩
定义2 设 A aij mn ,有r 阶子式不为0,任何r+1阶
子式(如果存在的话)全为0 , 称r为矩阵A的秩,
0 1
2 3
4 6
求 RA.
1 1 1 2

矩阵的秩

矩阵的秩
D4 3 0 21 D5 3 6 2 4 0
D3
1 6 0 4 0 6
4
2 7
D6 7 4 42 Nhomakorabea高 等 代 数
●矩阵的秩的概念
定义2.5.2 矩阵A中所有不为零的子式的最高阶数,称为 矩阵A的秩,记作 R(A) 或 r(A)。 如果 R(A)=r,则 A 中至少有一个 r 阶子式不等于零,
高 等 代 数
定理2.5.2 n阶矩阵A可逆的充要条件是R(A)=n
定理2.5.3 n阶矩阵A可逆的充要条件是方阵A满秩序。
定理2.5.4 一个方阵满秩的充要条件是它能表示为初等矩阵的乘积
高 等 代 数
所有高于 r 阶的子式都为零。
例如
1 2 3 A 2 2 1 3 4 4
因为 所以
高 等 代 数
A 0
1 2 2 0 2 2
R( A) 2
1 3 2 2 0 2 1 3 的秩. 例 求矩阵A= 2 0 1 5 解: 因为 1 3 2 0, 计算A的3阶子式. 0 2 1 3 2 0 2 1 0, 2 0 1 1 2 2 0 1 3 0, 2 1 5 1 3 2 0 2 3 0, 2 0 5 3 2 2 2 1 3 0. 0 1 5 所以, R(A)=2.
高 等 代 数
●利用矩阵的初等变换求矩阵的秩
定理2.5.1 设矩阵A经过初等变换化为B,则A有不等于零的 K阶子式当且仅当B有不等于零的K阶子式 推论2.5.1 矩阵的初等变换不改变矩阵的秩。
初等变换求矩阵秩的方法: 用初等行变换把矩阵变成 为行阶梯形矩阵, 行阶梯形矩阵中非零行的行数就是 矩阵的秩.
一、矩阵的秩概念 二、矩阵的秩求法

线性代数-矩阵的秩

线性代数-矩阵的秩

设A
=
2 −2 3
−4 4 −6
8 −2 0
−036 , b
=
2 43
求矩阵A及矩阵B = ( A b)的秩. 解 分析:设 B 的行阶梯形矩阵为 B~ = ( A~,b~),
则 A~ 就是 A 的行阶梯形矩阵, 故从 B~ = ( A~,b~) 中可同时看出 R( A) 及 R(B).
1 − 2 2 − 1 1
故 R(AT A) = R(A).
又由于 B 也可经一次初等变换变为 A, 故也有 R(B) ≤ R( A).
因此 R( A) = R(B).
经一次初等行变换矩阵的秩不变,即可知经 有限次初等行变换矩阵的秩仍不变.
设A经初等列变换变为 B,也有R( A) = R(B).
设 A 经初等列变换变为 B, 则 AT 经初等行变换变为 BT , R( AT ) = R(BT ),
6 11
则这个子式便是A 的一个最高阶非零子式.
设 n 阶可逆矩阵 A, A ≠ 0, ∴ A 的最高阶非零子式为 A, R( A) = n, 故 A 的标准形为单位阵 E, A ~ E.
可逆矩阵的秩等于阶数 ,故称可逆矩阵 为满秩矩阵. 奇异矩阵为降秩矩阵 .
1 − 2 2 − 1 1
例5
− 2 0 1 5

13 02 −2 0
1 0
3 = 2 ≠ 0, 2
计算A的3阶子式,
−2
1 3 2 1 −2 2
− 1 = 0, 0 2 3 = 0, 0 − 1 3 = 0,
1
−2 0 5 −2 1 5
3 −2 2
2 − 1 3 = 0, ∴ R(A) = 2.
015
1 3 − 2 2 另解 对矩阵 A = 0 2 − 1 3 做初等变换,

矩阵的秩及其求法课件

矩阵的秩及其求法课件
矩阵的秩及其求法课件
目 录
• 矩阵的秩的定义 • 矩阵的秩的求法 • 矩阵的秩的应用 • 矩阵的秩的特殊情况 • 矩阵的秩的注意事项
矩阵的秩的定义
01
秩的定义

一个矩阵的秩是其行向量组或列向量组的一个最大线性无关组中所含向量的个数。
定义中的关键词
线性无关、最大、个数。
秩的性质
性质1
矩阵的秩是其行向量组的秩或列向量组的秩,即r(A)=r(A 的行向量组)=r(A的列向量组)。
矩阵的秩的特殊情
04

零矩阵的秩
要点一
总结词
零矩阵的秩总是为0。
要点二
详细描述
对于任何n阶零矩阵,其秩都为0,因为零矩阵其行列式值。
详细描述
对于n阶方阵A,其秩r(A)等于其行列式值|A|,当且仅当 A是满秩矩阵时。
特殊矩阵的秩
总结词
特殊矩阵的秩可以通过其元素性质计算。
详细描述
对于一些具有特定元素性质的矩阵,如上三 角矩阵、下三角矩阵、对角矩阵等,其秩可
以通过元素的性质直接计算得出。
矩阵的秩的注意事
05

秩的计算与误差
计算方法
矩阵的秩可以通过多种方法计算,如行初等变换法、 列初等变换法、子式法等。
误差控制
在计算过程中,应尽量减少误差,确保结果的准确性 。
精度要求
方法2
初等列变换法。通过初等列变换将矩阵化为阶梯形矩阵,阶梯形矩阵中非零行的行数即为 原矩阵的秩。
方法3
利用子式求秩。一个n阶矩阵的秩等于其所有n阶子式的秩,而n阶子式的秩又等于其所有 元素的最高次幂系数乘积不为0时的最高阶数。
矩阵的秩的求法
02
行列式法

求矩阵的秩的三种方法

求矩阵的秩的三种方法

求矩阵的秩的三种方法矩阵是线性代数中的一个重要概念,它由一个数域中的矩形阵列组成,是线性变换的一种表现形式。

矩阵的秩是矩阵的重要性质之一,它可以告诉我们矩阵中行向量或列向量之间的关系。

在实际应用中,求解矩阵的秩是非常常见的问题。

本文将介绍矩阵的三种求解秩的方法。

方法一:高斯消元法高斯消元法是求解矩阵秩的一种基础方法。

对于一个矩阵A,如果它的秩为r,则A必然存在一个大小为r的非零行列式。

我们可以通过对矩阵A进行初等行变换将矩阵转化为行简化阶梯矩阵,然后统计矩阵中非零行的个数来确定矩阵的秩。

具体步骤如下:1. 对矩阵A进行高斯列变换,将A转化为行简化阶梯矩阵形式。

2. 统计矩阵中非零行的个数,即为矩阵的秩。

对于下面的矩阵A,我们可以通过高斯消元法求解矩阵的秩:$$A=\begin{bmatrix}1 &2 & 3\\4 &5 & 6\\7 & 8 & 9\end{bmatrix}$$按照高斯消元法的步骤对A进行初等行变换,得到行简化阶梯矩阵:方法二:矩阵的列空间对于一个矩阵A,其列空间是由A中所有列向量所张成的向量空间。

矩阵的秩等于它的列空间的维度。

我们可以先求解矩阵A的列空间的维度,然后确定矩阵A的秩。

具体步骤如下:2. 取矩阵A中与非零列对应的列向量,将它们作为张成列空间的一组基。

3. 求解列空间的维度,即为矩阵A的秩。

阶梯矩阵中非零列的位置分别是1和2,因此取A中的第1列和第2列作为列空间的一组基。

可以看出,这组基中存在一个线性关系:第2列 = 2*第1列。

矩阵A的列空间实际上只由A中的第1列张成,其维度为1,因此矩阵A的秩为1。

总结:本文介绍了求解矩阵秩的三种方法:高斯消元法、矩阵的列空间和矩阵的行空间。

对于一般的矩阵,三种方法的求解结果并不一定相同。

但无论采用哪种方法,都能够有效地求解矩阵的秩。

还有一些特殊的矩阵,它们的秩具有一些特殊性质:1. 对于一个n阶矩阵A,如果它是一个可逆矩阵,那么它的秩为n。

矩阵的秩及求法

矩阵的秩及求法

矩阵的秩及求法矩阵是线性代数中重要的概念,它有许多重要的性质和应用。

其中,矩阵的秩可以用来描述一个矩阵的性质,是矩阵理论中的重要概念之一。

本文将介绍矩阵的秩及求法。

1. 矩阵的秩矩阵的秩是描述矩阵线性无关的最大列数或行数,可以用来判断矩阵的特征和性质。

矩阵的秩可以分为列秩和行秩,两者是相等的。

当矩阵的行秩或列秩为r时,称该矩阵的秩为r,用rank(A)表示。

矩阵的秩可以看作是矩阵中某个部分的线性独立数量,它可以影响到方程组的解的数目,同时也可以影响到矩阵的行列式的值,因此矩阵的秩是矩阵理论中非常重要的一个概念。

求矩阵的秩是矩阵理论中常见的问题之一,有许多的求法。

下面我们将介绍几种常用的求法。

2.1 高斯消元法高斯消元法是求解矩阵秩的一种常用方法。

具体操作步骤如下:1)将矩阵A转化为行阶梯形矩阵U。

2)计算矩阵U中非零行的数量,这个数量就是矩阵A的秩。

例如,对于如下的矩阵:$$\left[ \begin{matrix}1&2&1\\2&2&-1\\-1&-1&2\end{matrix} \right]$$非零行的数量为3,因此该矩阵的秩为3。

2.2 奇异矩阵判定法奇异矩阵是指矩阵的行列式为0的矩阵。

如果一个矩阵是奇异矩阵,则其秩为小于矩阵的维数。

因此,我们可以通过判断矩阵的行列式是否为0来快速判定矩阵是否是奇异矩阵。

其行列式可以计算得到:$det(A)=-1$,因此该矩阵不是奇异矩阵,秩为3。

2.3 矩阵的基变换法我们可以进行列基变换,将其转化为:3. 总结矩阵的秩是描述矩阵线性无关的最大列数或行数。

我们可以通过高斯消元法、奇异矩阵判定法、矩阵的基变换法等方法来求解矩阵的秩。

在实际问题中,矩阵的秩有着重要的应用价值,例如矩阵的逆矩阵等。

3.2 矩阵的秩

3.2 矩阵的秩

非零元为对角元素的3阶行列式
2 0 0 1 3 0 3 2 = 4
24 0,
B =
返回
2 0 0 0
1 3 0 0
下页
0 1 0 0
3 2 2 5 . 3 0

首页
上页
从例 1可知, 对于一般的矩阵, 当行数与列数
首页
上页
返回
下页
结束

二、初等行变换法求秩
1 3 1 2 例2.求矩阵 A= 2 1 2 3 的秩。 3 2 1 1 1 4 3 5 1 3 1 2 1 3 1 2 1 3 1 2 0 7 4 7 0 7 4 7 2 1 2 3 解:A= , 0 7 4 7 0 0 0 0 3 2 1 1 0 7 4 7 0 0 0 0 1 4 3 5 所以R(A)=2。
2 2 6
1

3
1
1 1
4 5 1

+3
8

r3 r 2
1 0 0
2 4 0
上页
1
+3
5
返回
4 1 1
下页 结束 铃
首页
因为R(A)=2,
所以
5 = 0, = 5, 即 1 = 0, = 1.
1 0 0
首页 上页 返回
2 4 0
下页
1
+3
5
结束
4 1 1

课堂练习 P58 29
30
首页
上页
返回
下页
结束

矩阵秩的本质
A 的秩 R(A) 就是 A 中不等于 0 的子式的最高阶数.

线性代数-1.矩阵的秩及其求法

线性代数-1.矩阵的秩及其求法

1
例2 设 A 为 n 阶方阵且 r (A)=n 2,求 r (A*).
解 由 r ( A) n 2 知:A的所有n 1阶子式全为零, 故 A* 0,从而r ( A*) 0.
a 1 例3 设A 1 1 1 1 1 a 1 1 ,若r ( A) 3,求a. 1 a 1 1 1 a
矩阵的秩及其求法
1. 利用定义求矩阵的秩
利用定义求矩阵的秩就是利用矩阵的子式或行列式是 否为零来确定矩阵的秩. 例1 设A (aij ) nn 为非零矩阵,Aij为aij的代数余子式,
若aij=Aij,求r ( A).
解 因为A 0,所以至少有一个元素aij 0;
将 | A | 按第 i 行展开,有
1 0 2 例5 设 A 为 4 3 阶矩阵且 r (A) 2 , B 0 2 0 . 求 r (AB). 1 0 3
r3 r1
解 因为 B
1 0 2 0 2 0 , 0 0 5
所以 r ( B) 3,即 B 为满秩阵,
2 | A | aij Aij aij 0, j 1 j 1 n n
故 r ( A) n.
注:我们一般在两个地方用到Aij;一是行列式按行(列)展开; 另一个是A *; 若在A *中用,这时题目常常与求逆有关.
A aij
33
* T O,aij Aij 0, A ____ . aij Aij A A .
-3 由于 A 的 3 阶子式 1 1
1 -3 1
1 1 =-16 0, r ( A) 3,故a 3. -3
一般地,若
a b b b b a b b An b b b a

矩阵的秩

矩阵的秩

r3 5 r4 r3
1 2 2 1 1 0 0 2 1 0 0 0 0 0 1 0 0 0 0 0
R( A) 2, R(B) 3.
三、小结
1. 矩阵秩的概念 2. 求矩阵秩的方法 (1)利用定义 (即寻找矩阵中非零子式的最高阶数); (2)初等变换法
(把矩阵用初等行变换变成为行阶梯形矩阵,行 阶梯形矩阵中非零行的行数就是矩阵的秩).
2 1 3 而 0 3 2 0,
00 4
r(B) 3.

已知
A
1 0
3 2
2 1
2 3
,求该矩阵的秩.
2 0 1 5

1
3 2 0,
计算A的3阶子式,
02
1 3 2 1 3 2 3 2 2 1 2 2
0 2 1 00, 2 3 20, 1 3 00, 1 3 0,
2 0 1 2 0 5 0 1 5 2 1 5
3 2 5 32 5 2 0 52 0 5 3 2 6 6 0 11
25
2
16 0.
6 11
则这个子式便是A 的一个最高阶非零子式.
设 n 阶可逆矩阵 A, A 0, A 的最高阶非零子式为 A, R( A) n, 故 A 的标准形为单位阵E, A ~ E.
可逆矩阵的秩等于阶数,故称可逆矩阵 为满秩矩阵. 奇异矩阵为降秩矩阵.
1 2 2 1 1
B
2 2
4 4
8 2
0 3
2 3
3 6 0 6 4
r2 2r1 1 2 2 1 1
r3 2r1 0 0 4 2 0
r4 3r1
0 0
0 0
2 1 5 6 3 1
r2 2 1 2 2 1 1 r3 r2 0 0 2 1 0

3-4矩阵的秩

3-4矩阵的秩
向量组 α1 , α 2 ,L , α n 称为矩阵A的列向量组.
α1
α2
αj
αn
高等代数
类似地 , 矩阵A = (a ij )m×n 又有m 个n维行向量
a 11 a 21 M A= a i1 M a m1
a a a
12 22
M
i2
M
a
m2
L 2n M L a in M L a mn L
个线性无关的行向量, 是r个线性无关的行向量, 则该向量组的延伸组 个线性无关的行向量
(a11 , a21 ,L , ar 1 , ar +1,1 ,L , a s1 ),L ,(a1r , a2 r ,L , arr , ar +1,r ,L , a sr )
也线性无关. 于是矩阵A的列秩 也线性无关. 于是矩阵 的列秩 r1 ≥ r . 同理可证 r1 ≤ r. 所以 r1 = r .
高等代数
a11 0 A= L 0
a12 ′ a22 L ′ an 2
L L L L
a1n ′ a2 n = a11 L ′ ann
′ a22 L ′ an 2
L L L
′ a2 n L a′ nn
ai 1 ′ 其中 (0, ai′2 ,L , ain ) = α i − α1 , i = 2,L , n a11
a11 x1 + a12 x 2 + L + a1n xn = 0 a21 x1 + a22 x2 + L + a2 n xn = 0 LLLLLLLLLL = 0 a x + a x +L + a x = 0 r2 2 rn n r1 1

高等数学第三章课件-矩阵的秩

高等数学第三章课件-矩阵的秩

定理2 设 A = (aij )n×n , 则 R( A) = n ⇔ | A |≠ 0 R( A) < n ⇔ | A |= 0
(满秩矩阵) (降秩矩阵)
k 级子式
定义 在一个 s×n 矩阵 A 中任意选定 k 行 k 列
(1 ≤ k ≤ min(s,n)) , 位于这些行和列的交点上的 k 2
就是A行(列)向量组的一个极大无关组.

⎛1 1 1 ⋯ 1⎞
⎜ ⎜
a1
a2
a3

an
⎟ ⎟
设 A = ⎜ a12 a22 a32 ⋯ an2 ⎟ , 其中 a1 , a2 ,⋯, an
⎜ ⎜





⎟ ⎟
⎜ ⎝
a s−1 1
a s−1 2
a s−1 3

a s−1 n
⎟ ⎠
互不相同, 且 s ≥ n,求 R(A).
所以方程组 x1α1 + x2α2 + ⋯ + xrαr = 0 只有零解.

⎧ ⎪ ⎨
aa11⋯21xx1⋯1 ++⋯aa22⋯21xx⋯22++⋯⋯⋯⋯++⋯aa⋯rr12xx⋯rr ==
0 0
⎪ ⎩
a1n
x1
+
a2n
x2
+

+
arn xr
=
0
(2)
只有零解. 由引理1,方程组(2)的系数矩阵
定理3 矩阵 A的秩为 r 的充要条件是 A中有一 个 r 级子式不等于0,且所有 r + 1 级子式等于0.

① R( A) ≤ r ⇔ A的所有 r + 1级子式等于0; R( A) ≥ r ⇔ A有一个 r 级子式不为0.

线性代数第二章

线性代数第二章

例3
1 11 2 0 4 1 设 A 11 4 56 2 1 5
例4
1 1 2 参 数 ____ 时, 矩 阵 2 1 5 的 秩 最 小 1 10 6 1
例3
1 11 2 2 0 4 1 1 设 A , 求 rA 11 4 56 5 2 1 5 6
1 1 1 例4 令A 1 1 0 1 1 1 1 1 0 1 1 1 2 0 2 1 1 解:A 0 0 0 3 0 2 1 4 1 1 1 2 0 2 1 1 0 0 0 3 0 0 0 0
说 明
(5)n阶矩阵A为满秩矩阵 A可逆 |A 0 | (6)n阶矩阵A为降秩矩阵 rA n |A 0 |
2.矩阵秩的求法 定理 矩阵经初等变换后秩不变 推论1 注: 推论2 若A ≌ B , 则 rA= rB 若rA= rB , A 与B不一定等价
若A 、B是同阶矩阵, 则A ≌ B当且仅当rA= rB
1 A 4 2 2 5 0 3 6 1 4 0 8 1 三阶子式: 4 2 2 5 0 4 0 8
说 明

定义
若在m×n矩阵A中 有一个r阶子式不为0, 而所有r +1阶子式全为0, 则称数r为A的秩. 记为rank(A)=r 或 rA = r
rA=m, 则称A为行满秩矩阵;
五. 矩 阵 的 秩

1. 概念

2.矩阵秩的求法
1. 概念
定义 设A=(aij)m×n , 任取k行k列,1≤k ≤min{m, n}, 位于 这些行列交点处的k2 个元素, 按其在A中原相对 位置构成的k阶行列式称为A的k阶行列式 (1) aij即为A的1阶子式 (2)n阶矩阵A, 其行列式|A|是A的唯一的n阶子式

1.5矩阵的秩与方阵的逆

1.5矩阵的秩与方阵的逆

r3 k
1 0 E5 0 0 0
0 1 0 0
0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1
c3 k
1 0 0 0 0
0 1 0 0
0 0 0 0 0 0 0 1 0 0 k 0 0 0 0 1
的秩.
1.5.1矩阵的秩及其求法
1 2 2 1 1 2 4 8 0 2 例4:设 A ,求矩阵 A 及矩阵 , b 2 4 2 3 3 3 6 0 6 4
B = (A, b) 的秩. 分析:对 B 作初等行变换变为行阶梯形矩阵,设 B 的行阶梯 形矩阵为 B ( A, b ) ,则 A 就是 A 的行阶梯形矩阵,因此可从
中同时看出R(A)及 R(B) .
1 2 2 1 2 4 8 0 解:B 2 4 2 3 3 6 0 6 1 1 2 2 r 0 0 ~ 3 0 0 4 0 0 2 1 1 2 1 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 记作 E5(3, 5) 0 0 1 0 0 1 0 0
r3 r5
0 0 c 3 c5 0 0 0 0 0 1
1 0 0 0 0
0 1 0 0
线性代数
1.5矩阵的秩与方阵的逆
1.5.1矩阵的秩及其求法
定义:在 m×n 矩阵 A 中,任取 k 行 k 列( k ≤ m,k≤n),位于这k 行 k 列交叉处的元素, 按照原来的位置构成的 一个k 阶行列式,称为矩 阵 A 的一个 k 阶子式.
k k C C 显然,m×n 矩阵 A 的 k 阶子式共有 m n

求矩阵的秩的步骤

求矩阵的秩的步骤

求矩阵的秩的步骤矩阵的秩计算方法:利用初等行变换化矩阵A为阶梯形矩阵B ,数阶梯形矩阵B非零行的行数即为矩阵A的秩。

例题如下:在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。

类似地,行秩是A的线性无关的横行的极大数目。

通俗一点说,如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。

矩阵的秩的性质:1、矩阵的行秩,列秩,秩都相等。

2、初等变换不改变矩阵的秩。

3、矩阵的乘积的秩Rab<=min{Ra,Rb}。

4、P,Q为可逆矩阵,则r(PA)=r(A)=r(AQ)=r(PAQ)。

5、当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。

6、当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。

方阵(行数、列数相等的矩阵)的列秩和行秩总是相等的,因此它们可以简单地称作矩阵A的秩。

通常表示为r(A),rk(A)或。

m×n矩阵的秩最大为m和n中的较小者,表示为min(m,n)。

有尽可能大的秩的矩阵被称为有满秩;类似的,否则矩阵是秩不足(或称为“欠秩”)的。

设A是一组向量,定义A的极大无关组中向量的个数为A的秩。

定义1. 在m*n矩阵A中,任意决定k行和k列交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。

例如,在阶梯形矩阵中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式就是矩阵A的一个2阶子式。

定义2. A=(aij)m×n的不为零的子式的最大阶数称为矩阵A 的秩,记作rA,或rankA或R(A)。

特别规定零矩阵的秩为零。

显然rA≤min(m,n) 易得:若A中至少有一个r阶子式不等于零,且在r<min(m,n)时,A中所有的r+1阶子式全为零,则A的秩为r。

矩阵的秩

矩阵的秩

可逆矩阵又称满秩矩阵,不可逆矩阵 (奇异矩阵)
又称降秩矩阵.
例 4 求矩阵 A 和 B 的秩,其中
1 A 2 4 2 3 7 2 3 0 5 , B 0 1 0 1 3 0 0 0 1 0 0 3 2 4 0 2 5 . 3 0
C C
k m
k 个. n
定义 4 设在矩阵 A 中有一个不等于 0 的 r
阶子式 D , 且所有 r+1 阶子式(如果存在的话)
那么 D 称为矩阵 A 的最高阶非零子 全等于 0 ,
并规定零 式,数 r 称为矩阵 A 的秩,记作 R(A).
矩阵的秩等于 0 .
由行列式的性质可知,在 A 中当所有 r + 1 阶 子式全等于 0 时,所有高于 r + 1 阶的子式也全等 于 0 ,因此 A 的秩 R(A) 就是 A 中不等于 0 的子 式的最高阶数.
三、 主要结论
定理 2 若 A ~ B, 则 R(A) = R(B).
推论 若可逆矩阵 P、Q 使 PAQ = B,则
R(A) = R(B).
四、矩阵秩的求法
根据这一定理, 为求矩阵的秩, 只要把矩阵 用初等行变换变成行阶梯矩阵, 行阶梯形矩阵 中非零行的行数即是该矩阵的秩.
下面用该方法求矩阵的秩.
第三节
主要内容
定义
矩 阵 的 秩
主要结论 矩阵秩的求法 矩阵秩的性质
二、 定义
定义 3 在 矩阵 A 中, 任取 k 行与 k 列
( k m, k n ), 位于这些行列交叉处的 k2 个元
素,不改变它们在 A中所处的位置次序而得到的
k 阶行列式,称为矩阵 A 的 k 阶子式. m n 矩阵 A 的 k 阶子式共有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五节:矩阵的秩及其求法
一、矩阵秩的概念 1. k 阶子式
定义1 设 在A 中任取k 行k 列交叉处元素按原相对位置组成的
阶行列式,称为A 的一个k 阶子式。

例如 共有 个二阶子式,有 个三阶子式
矩阵A 的第一、三行,第二、四列相交处的元素所构成的二阶子式为 而
为 A 的一个三阶子式。

显然, 矩阵 A 共有 个 k 阶子式。

2. 矩阵的秩
定义2 设 有r 阶子式不为0,任何r +1阶子式(如果存在的话)全
为0 ,
称r 为矩阵A 的秩,记作R (A )或秩(A )。

规定: 零矩阵的秩为 0 .
注意:(1) 如 R ( A ) = r ,则 A 中至少有一个 r 阶子式 所有 r + 1 阶子式为 0,且更高阶子式均为 0,r 是 A 中不为零的子式的最高阶数,是唯一的 .
(2) 有行列式的性质, (3) R(A ) ≤m , R (A ) ≤n , 0 ≤R (A ) ≤min { m , n } . (4) 如果 An ×n , 且 则 R ( A ) = n .反之,如 R ( A ) = n ,则 因此,方阵 A 可逆的充分必要条件是 R ( A ) = n . 二、矩阵秩的求法
1、子式判别法(定义)。

例1 设 为阶梯形矩阵,求R (B )。


由于 存在一个二阶子式不为0,而任何三阶子式全为0,则 R (B ) = 2.
结论:阶梯形矩阵的秩=台阶数。

例如
一般地,行阶梯形矩阵的秩等于其“台阶数”——
非零行的行数。

()
n m ij a A ⨯={}),m in 1(n m k k ≤≤⎪

⎪⎭⎫ ⎝⎛----=110145641321A 182423=C C 43334=C C 101
22--=
D 1
0156
43213-=D n m ⨯k
n k m c
c ()
n
m ij a A ⨯=0,r D ≠
()().
T R A R A =0,A ≠0.A ≠⎪⎪⎪

⎫ ⎝⎛=000007204321B 0
2
021≠⎪⎪⎪⎭⎫ ⎝⎛=010*********A ⎪⎪⎪⎭⎫ ⎝⎛=001021B ⎪⎪⎪⎭
⎫ ⎝⎛=100010011C 125034000D ⎛⎫ ⎪
= ⎪ ⎪
⎝⎭2
123508153000720
0000E ⎛⎫

⎪= ⎪

⎝⎭
()3=A R ()2=B R ()3=C R ()2R D =()3
R E =
例2 设 如果 求 a .

或 例3

2、用初等变换法求矩阵的秩
定理2 矩阵初等变换不改变矩阵的秩。

即 则 注: 只改变子行列式的符号。

是 A 中对应子式的 k 倍。

是行列式运算的性质。

求矩阵A 的秩方法:
1)利用初等行变换化矩阵A 为阶梯形矩阵B
2)数阶梯形矩阵B 非零行的行数即为矩阵A 的秩。

例4 求
解 R(A ) = 2

⎪⎪⎭

⎝⎛=a a a A 111111(),3<A R ()3<A R a
a a
A 1111
1
1=0
)1)(2(2
=-+=a a 1=∴a 2-=a ⎪⎪⎪⎪⎪⎭


⎛=K K
K K A 1
1111
1111111()3=A R
=K 3-()3
11111113(1)(3)111
111K A K K K K K
=+=-+B A →)
()(B R A R =j i r r ↔.1i r k .2j i kr r +.3⎪⎪⎪⎭

⎝⎛-----=211163124201A ().A R −−→
−-1
22r r A ⎪⎪⎪⎭
⎫ ⎝⎛----211021104201⎪⎪⎪⎭⎫
⎝⎛--→000021104201
例5
三、满秩矩阵
定义3 A 为 n 阶方阵时, 称 A 是满秩阵,(非奇异矩阵) 称 A 是降秩阵,(奇异矩阵) 可见: 对于满秩方阵A 施行初等行变换可以化为单位阵E , 又根据初等阵的作用:每对A 施行一次初等行变换,相当于用一个对应的初等阵左乘A,
由此得到下面的定理. 定理3 设A 是满秩方阵,则存在初等方阵
使得
对于满秩矩阵A ,它的行最简形是 n 阶单位阵 E . 例如
A 为满秩方阵。

关于矩阵的秩的一些重要结论:
定理5 R (AB ) R (A ),
R (AB ) R (B ), 即R (AB ) min{R (A ),R (B )}
设A 是 矩阵,B 是 矩阵, 性质1 性质2 如果 A B = 0 则 性质3 如果 R (A )= n, 如果 A B = 0 则 B = 0。

性质4 设A,B 均为 矩阵,则 例8 设A 为n 阶矩阵,证明R (A+E )+R (A-E )≥n 证: ∵ (A+E )+(E-A )=2E
∴ R (A+E )+ R ( E-A )≥ R (2E )=n 而 R ( E-A )=R ( A-E )
∴ R (A+E )+R (A-E )≥n
μλμλ,2,6352132111,求)(且设=⎪

⎪⎭
⎫ ⎝⎛--=A R A ⎪⎪⎪⎭⎫ ⎝⎛--=6352132111μλA ⎪⎪⎪⎭⎫ ⎝⎛----+-→458044302111μλ⎪⎪⎪
⎭⎫ ⎝⎛----+-→01504430211
1μλλ,
2)(=A R 1
,5==∴μλ0
1,05=-=-∴μλ(),n A R =(),n A R <()0
≠⇔=A n A R .
,,,21s P P P E
A P P P P s s =-121, ()E
A n
A R ~= ()n
E A n A R ~⇔=⎪⎪⎪⎭⎫ ⎝⎛=213212321A ⎪⎪⎪⎭⎫ ⎝⎛----→320430321⎪⎪⎪⎭⎫ ⎝⎛→320110001E
=⎪⎪⎪⎭

⎝⎛→100010001()3
=∴A R ≤
≤≤
n m ⨯t n ⨯).
()()(AB R n B R A R ≤-+.
)()(n B R A R ≤+n m ⨯).
()()(B R A R B A R +≤±。

相关文档
最新文档