东南大学信息学院_系统实验(通信组)_第一次实验
南理工通信原理实验报告
目录实验一抽样定理实验 (3)实验七HDB3码型变换实验 (14)实验十一BPSK调制与解调实验 (21)实验十九滤波法及数字锁相环法位同步提取实验 (29)实验一抽样定理实验一、实验目的1.了解抽样定理在通信系统中的重要性。
2.掌握自然抽样与平顶抽样的实现方法。
3.理解低通采样定理的原理。
4.理解实际的采样系统。
5.理解低通滤波器的幅频特性和对抽样信号恢复的影响。
6.理解带通采样定理的原理。
二、实验器材1.主控&信号源、3号模块。
各一块2.双踪示波器一台3.连接线若干三、实验原理1.实验原理框图2.实验框图说明抽样信号由抽样电路产生。
将输入的被抽样信号与抽样脉冲相乘就可以得到自然抽样信号,自然抽样信号经过保持电路得到平顶抽样信号。
平定抽样和自然抽样信号是通过S1切换输出的。
抽样信号的恢复是将抽样信号经过低通滤波器,即可得到恢复的信号。
这里滤波器可以选用抗混叠滤波器(8阶的巴特沃斯低通滤波器)或fpga数字滤波器(有FIR、IIR两种)。
反sinc滤波器不是用来恢复抽样信号的,而是用来应对孔径失真现象。
要注意,这里的数字滤波器是借用的信源编译码部分的端口。
在做本实验室与信源编译码的内容没有联系。
四、实验结果与波形观测实验项目一抽样信号观测及抽样定理验证概述:通过不同频率的抽样时钟,从时域与频域两方面观测自然抽样和平顶抽样的输出波形,以及信号恢复的混叠情况,从而了解不同抽样方式的输出差异和联系,验证抽样定理。
注:通过观测频谱可以看到当抽样脉冲小于2倍被抽样信号频率时,信号会产生混叠。
源端口目标端口连线说明信号源:MUSIC模块3:TH1(被抽样信号) 将被抽样信号送入抽样单元信号源:A-OUT 模块3:TH2(抽样脉冲)提供抽样时钟模块3:TH3(抽样输出)模块3:TH5(LPF-IN)送入模拟低通滤波器2. 开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】。
调节主控模块的W1使A-out输出峰峰值为3V。
通信电路与系统实验一
班级: 05111104 学号: 1120111244 姓名: 李伟奇 桌号:实验一 电容反馈三点式振荡器的实验研究一、实验目的1.通过实验深入理解电容反馈三点式振荡器的工作原理,熟悉改进型电容反馈三点式振荡器的构成及电路各元件作用;2.研究在不同的静态工作点时,对振荡器起振、振荡幅度和振荡波形的影响;3.学习使用示波器和数字式频率计测量高频振荡器振荡频率的方法;4.观察电源电压和负载变化对振荡幅度、频率及频率稳定性的影响。
二、实验原理电容反馈三点式振荡器的基本原理电路(考比兹振荡器)如图2-1(a)所示。
由图可知,反馈电压由C 1和C 2分压得到,反馈系数为112C B C C =+ (2-1) 起振的幅度条件为 p m g B g 1>(忽略三极管g e ) (2-2) 其中,g m 为晶体管跨导,g p 为振荡回路的等效谐振电导。
图2-1(a)所示等效电路中的回路总电容为2121C C C C C +⋅=(2-3) 振荡频率近似为LC f g π21≈ (2-4)当外界条件(如温度等)发生变化时,振荡回路元件及晶体管结电容要发生变化,从而使得振荡频率发生漂移。
因此,为了改善普通电容反馈三点式振荡器的频稳度,可在振荡回路中引入串接电容C 3,如图2-1(b)所示,当满足C 3<< C 1、C 2时,C 3明显减弱了晶体管与振荡回路的耦合程度。
为了得到较宽的波段覆盖效果,引入并联电容C 4(它和C 3为同一个数量级),回路总电容近似为C≈C 3+C 4。
这种改进型电容反馈振荡器称为西勒电路,其振荡频率为)(2143C C L f g +≈π (2-5) 当改变C 4调节f g 时,振荡器的反馈系数不会受显著影响。
三、实验电路说明本实验电路采用西勒振荡器,如图2-2所示。
由图可知,电容C 1、C 2、C 3、C 4和电感L 1组成振荡回路。
晶体管VT 1的集电极直流负载为R C ,偏置电路由R 1、R 2、W 1和R e 构成,改变电位器W 1可改变VT 1的静态工作点。
东南大学信息科学与工程学院2013级课程描述
学生了解近现代中国在改革浪潮中的大事变。
26 马克思主义基本原理必修 3 48 主要介绍马克思主义及其原理,包括世界的物质性及其发展规律,事物的普遍联系与发展,客观规律性与主
41 军事地形学与野外生存选修 2 33 介绍现代战争中地形对战略和战术的影响、现代军事侦查技术对士兵技能的要求、野外生存必备的生物、物
54 大数据(卓工)限选 2 32 内容包括大数据技术基本原理和Hadoop 的基础知识,了解SQL语言。
68 系统试验(通信组)限选 1.5 48 内容包括信道的定义、分类及模型,模拟调制系统的基本原理、性能指标及分析设计方法,让学生掌握数字。
水下科学筑梦人——记东南大学信息科学与工程学院教授陶俊
62 科学中国人 2019年1月 【创新之路】Way of Innovation水下科学筑梦人——记东南大学信息科学与工程学院教授陶俊□ 武光磊2012年6月24日,这是注定要被写入中国载人深潜历史的一天。
这天,伴着太平洋海面的波涛汹涌,我国首台载人深潜器“蛟龙号”正做着深潜7000米海试第四次下潜前的“热身”准备。
与海浪一同翻滚的还有无数海试队员们的心,谁也不知道下潜过程中会发生什么,结果又会是如何。
时间一分一秒地过去,终于到了下潜的关键时刻。
通过水声通信机,“蛟龙号”首先与母船“向阳红09”建立了稳定的通信联系,各种相关数据也随之不断地传到指挥室中。
随后,当“蛟龙号”潜至7020米,试航员又成功使用通信机的水声电话功能向指挥室报告深潜突破7000米的那一刻,整个指挥室“沸腾”了。
“蛟龙号”创造了我国载人深潜的新纪录,并在后续作业中多次传回清晰的图像数据。
而在其中发挥关键作用的仍然是“蛟龙号”上搭载的水声通信机。
在万里之外的大洋彼岸,有一位与水声通信结缘十几年之久的科研人员同样目不转睛地关注着电视上正在直播的“蛟龙号”下潜画面,直到数据传输成功,他心里的一块石头才终于落地。
他就是东南大学信息科学与工程学院教授陶俊,十几年来,他始终扎根于无线通信领域里,尤其在水声通信研究领域做出了多项突出贡献。
对他来说,能够使水声通信技术成功得到应用,就是身为一个水声通信研究者最大的价值所在。
探寻通信之谜水声通信,顾名思义就是将声波作为载体,在水下进行信息传输的一项技术,是当前海洋军事与民用中最为重要和关键的技术之一。
即便是在陆地上,通信也会存在各种不便之处,在水下更是异常困难,这主要是由于水声传播信道的时变多径效应、多普勒效应、可用频带窄、信号衰减严重等原因造成的,特别是在长距离传输中这些“小缺点”更会被放大。
为了克服这些缺点,陶俊从2007年年底便开始从事水声通信研究。
当时他还在美国密苏里大学电气与计算机工程系攻读博士,起初研究方向主要偏重无线电通信,后来在导师的建议下,他才与水声通信结缘,并对其产生了极大的研究兴趣。
通信原理实验指导书(完整)
实验一:抽样定理实验一、实验目的1、熟悉TKCS—AS型通信系统原理实验装置;2、熟悉用示波器观察信号波形、测量频率与幅度;3、验证抽样定理;二、实验预习要求1、复习《通信系统原理》中有关抽样定理的内容;2、阅读本实验的内容,熟悉实验的步骤;三、实验原理和电路说明1、概述在通信技术中为了获取最大的经济效益,就必须充分利用信道的传输能力,扩大通信容量。
因此,采取多路化制式是极为重要的通信手段。
最常用的多路复用体制是频分多路复用(FDM)通信系统和时分多路复用(TDM)通信系统。
频分多路技术是利用不同频率的正弦载波对基带信号进行调制,把各路基带信号频谱搬移到不同的频段上,在同一信道上传输。
而时分多路系统中则是利用不同时序的脉冲对基带信号进行抽样,把抽样后的脉冲信号按时序排列起来,在同一信道中传输。
利用抽样脉冲把一个连续信号变为离散时间样值的过程称为“抽样”,抽样后的信号称为脉冲调幅(PAM)信号。
在满足抽样定理的条件下,抽样信号保留了原信号的全部信息。
并且,从抽样信号中可以无失真地恢复出原信号。
抽样定理在通信系统、信息传输理论方面占有十分重要的地位。
数字通信系统是以此定理作为理论基础的。
在工作设备中,抽样过程是模拟信号数字化的第一步。
抽样性能的优劣关系到整个系统的性能指标。
作为例子,图1-1示意地画出了传输一路语音信号的PCM系统。
从图中可以看出要实现对语音的PCM编码,首先就要对语音信号进行抽样,然后才能进行量化和编码。
因此,抽样过程是语音信号数字化的重要环节,也是一切模拟信号数字化的重要环节。
图1-1 单路PCM系统示意图为了让实验者形象地观察抽样过程,加深对抽样定理的理解,本实验提供了一种典型的抽样电路。
除此,本实验还模拟了两路PAM通信系统,从而帮助实验者初步了解时分多路的通信方式。
2、抽样定理抽样定理指出,一个频带受限信号m(t)如果它的最高频率为f H(即m(t)的频谱中没有f H以上的分量),可以唯一地由频率等于或大于2f H的样值序列所决定。
东南大学计算机网络实验报告一
东南大学自动化学院实验报告课程名称:信息通信网络概论第1次实验实验名称:TCP/IP协议与Socket编程认识实验院(系):自动化专业:自动化姓名:学号:实验室:金智楼5楼实验组别:同组人员:实验时间:2016 年11 月29日评定成绩:审阅教师:目录一.实验目的和要求 (3)二.实验原理 (3)三. 实验方案与实验步骤 (5)四.实验设备与器材配置 (7)五.实验记录 (7)六.实验总结 (9)七.思考题或讨论题 (9)附录:部分代码一.实验目的和要求1)熟悉TCP/IP协议的功能和网络操作;2)了解基于SOCKET的编程原理;3)编写一个小型的Socket实用程序,初步了解Windows环境下使用Socket的编程。
二.实验原理1、什么是Windows Sockets规范?Windows Sockets规范以U.C. Berkeley大学BSD UNIX中流行的Socket接口为范例定义了一套Micosoft Windows下网络编程接口。
它不仅包含了人们所熟悉的Berkeley Socket 风格的库函数;也包含了一组针对Windows的扩展库函数,以使程序员能充分地利用Windows消息驱动机制进行编程。
Windows Sockets规范本意在于提供给应用程序开发者一套简单的API,并让各家网络软件供应商共同遵守。
此外,在一个特定版本Windows的基础上,Windows Sockets也定义了一个二进制接口(ABI),以此来保证应用Windows Sockets API的应用程序能够在任何网络软件供应商的符合Windows Sockets协议的实现上工作。
因此这份规范定义了应用程序开发者能够使用,并且网络软件供应商能够实现的一套库函数调用和相关语义。
遵守这套Windows Sockets规范的网络软件,我们称之为Windows Sockets兼容的,而Windows Sockets兼容实现的提供者,我们称之为Windows Sockets提供者。
东南大学实验四系统频率特性测试实验报告
东南大学实验四系统频率特性测试实验报告东南大学自动控制实验室实验报告课程名称:自动控制原理实验实验名称:实验四系统频率特性的测试院(系):自动化专业:自动化姓名:学号:实验室:417实验组别:同组人员:实验时间:20166年年1122月月202日评定成绩:审阅教师:目录一..实验目的33二.实验原理33三.实验设备33四..实验线路图44五、实验步骤44六、实验数据55七、报告要求66八、预习与回答10九、实验小结10一、实验目的(1)明确测量幅频和相频特性曲线的意义(2)掌握幅频曲线和相频特性曲线的测量方法(3)利用幅频曲线求出系统的传递函数二、实验原理在设计控制系统时,首先要建立系统的数学模型,而建立系统的数学模型是控制系统设计的前提和难点。
建模一般有机理建模和辨识建模两种方法。
机理建模就是根据系统的物理关系式,推导出系统的数学模型。
辨识建模主要是人工或计算机通过实验来建立系统数学模型。
两种方法在实际的控制系统设计中,常常是互补运用的。
辨识建模又有多种方法。
本实验采用开环频率特性测试方法,确定系统传递函数,俗称频域法。
还有时域法等。
准确的系统建模是很困难的,要用反复多次,模型还不一定建准。
模型只取主要部分,而不是全部参数。
另外,利用系统的频率特性可用来分析和设计控制系统,用Bode图设计控制系统就是其中一种。
幅频特性就是输出幅度随频率的变化与输入幅度之比,即A=UoUi(),测幅频特性时,改变正弦信号源的频率测出输入信号的幅值或峰峰值和输输出信号的幅值或峰峰值。
测相频有两种方法:(1)双踪信号比较法:将正弦信号接系统输入端,同时用双踪示波器的Y1和Y2测量系统的输入端和输出端两个正弦波,示波器触发正确的话,可看到两个不同相位的正弦波,测出波形的周期T和相位差t,则相位差=∆tT360。
这种方法直观,容易理解。
就模拟示波器而言,这种方法用于高频信号测量比较合适。
(2)李沙育图形法:将系统输入端的正弦信号接示波器的X轴输入,将系统输出端的正弦信号接示波器的Y轴输入,两个正弦波将合成一个椭圆。
南信大 计算机组成原理实验TEC-8实验指导书
5.2 简易频率计实验……………………………………………………………………..78 5.3 简易交通灯实验……………………………………………………………………..83 5.4 VGA 接口设计………………………………………………………………………..86
4
第 1 章 TEC-8 计算机硬件综合实验系统
1.2 TEC-8 实验系统技术特点
⑴ 模型计算机采用 8 位字长、简单而实用,有利于学生掌握模型计算机整机的工作原 理。 通过 8 位数据开关用手动方式输入二进制测试程序, 有利于学生从最底层开始了解计算 机工作原理。 ⑵ 指令系统采用 4 位操作码,可容纳 16 条指令。已实现加、减、与、加 1、存数、取 数、条件转移、无条件转移、输出、中断返回、开中断、关中断和停机等 14 条指令,指令 功能非常典型。 ⑶ 采用双端口存储器作为主存,实现数据总线和指令总线双总线体制,实现指令流水 功能,体现出现代 CPU 设计思想。 ⑷ 控制器采用微程序控制器和硬连线控制器 2 种类型,体现了当代计算机控制器技术 的完备性。 ⑸ 微程序控制器和硬连线控制器之间的转换采用独创的一次全切换方式,切换不用关 掉电源,切换简单、安全可靠。 2 ⑹ 控制存储器中的微代码可用 PC 计算机下载,省去了 E PROM 器件的专用编辑器和对 器件的插、拔。 ⑺ 运算器中 ALU 采用 2 片 74181 实现,4 个 8 位寄存器组用 1 片 EPM7064 实现,设计 新颖。 ⑻ 一条机器指令的时序采用不定长机器周期方式,符合现代计算机设计思想。 ⑼ 通用区提供了若干双列直插的器件插座,用于《数字逻辑和数字系统》课程的基本 实验。 ⑽ 1 片在系统可编程器件 EPM7128 既可用于作为硬连线控制器使用,又可用于《数字 逻辑与数字系统》课程的大型设计实验。为了安排大型设计实验,提供了用发光二极管代表 的按东、西、南、北方向的安排的 12 个交通灯,6 个数码管,1 个喇叭和 1 个 VGA 接口。 ⑾ 设计《计算机组织与体系结构》课程实验考虑了与前导课程《数字逻辑与数字系统》 实验的衔接。由于在《数字逻辑与数字系统》实验中已经进行了大量的接、插线实践,因此 在 TEC-8 上进行《计算机组成与体系结构》课程实验接线较少,让学生把精力集中在实验现 象的观察、思考和实验原理的理解上。
东南大学信息学院-系统实验(通信组)-第一次实验
信源编译码实验抽样定理告诉我们:如果对某一带宽有限的模拟信号进行抽样,且抽样速率达到一定的数值时,那么根据这些抽样值就可以准确地还原信号。
也就是说传输模拟信号的采样值就可以实现模拟信号的准确传输。
电路图可以看出,抽样脉冲先对原始信号进行自然或者平顶抽样,将得到的抽样信号进行传输到接收端,接收端进行滤波即可恢复到原始波形,但是要注意,满足抽样脉冲的频率大于等于原始信号的两倍才可以准确恢复。
5.2自然抽样验证各参数的设置如下:信号类型频率幅度占空比原始信号2000Hz 20 /抽样信号8000Hz / 4/82K正弦波3K 2K 1.5倍抽样脉冲2K正弦波4K 2K 2倍抽样脉冲2K正弦波8K 2K 4倍抽样脉冲2K正弦波16K 2K 8倍抽样脉冲出,当抽样脉冲频率小于4k取样信号的频谱发生混叠,无法准确的恢复出原始信号,但是当频率大于4k时将不会发生混叠,随着频率增大,恢复的越来越好。
1K三角波16K 2K 复杂信号恢复1K三角波16K 6K 复杂信号恢复频率才可以较准确的恢复出原始信号,当然还会有混叠,所以无法真正的恢复出原始信号。
从中可以看出,虽然恢复出了原始信号,但是仍有一定的失真。
从频谱图也可以看出,出现一定的混叠。
5.3频谱混叠现象验证设置原始信号为:“正弦”,1000hz,幅度为20;设置抽样脉冲:频率:8000hz,占空比:4/8(50%);恢复滤波器截止频率:2K信号类型频率幅度占空比原始信号1000Hz 20 /抽样信号8000Hz / 4/8使用示波器观测原始信号3P2,恢复后信号6P4。
当3P2为6k时,记录恢复信号波形及频率;当3P2为7k时,记录恢复信号波形及频率;记录3P2为不同情况下,信号的波形,6k 2k原始信号恢复信号7k 2K2k低通滤波器之后,高频分量被去掉,所以基本恢复为2k正弦波。
但是通频带之内仍然有低频的杂波分量,所以信号的毛刺比较明显。
5.4抽样脉冲占空比恢复信号影响设置原始信号为:“正弦”,1000hz ,幅度为20;设置抽样脉冲:频率:8000hz ,占空比:4/8(50%);恢复滤波器截止频率:2K 信号类型 频率 幅度 占空比 原始信号 1000Hz 20 / 抽样信号 8000Hz / 4/8 维持原始信号不变,不断改变占空比记录波形如下:占空比 第一个零点1/864k2/832k4/816k从图中可以看出,第一个过零点的值为抽样频率乘以占空比的倒数,也就是说当占空比增大时,第一个过零点的值逐渐减小,另外占空比越大,恢复的信号幅度越大,这是因为占空比越大使得发送的信号功率越大。
计算机科学基础课程教学大纲-东南大学信息科学与工程学院
(平时考试)
合计
第一章
8
8
第二章
12
12
第三章
14
2(期中考试)
16
第四章
6
6
第五章
2
2
第六章
8
8
第七章
6
6
第八章
4
4
复习
2
2
总计
62
64
六、考核方式
总评成绩=平时成绩(包括作业及出勤率)+期中考试成绩+期末考试成绩
平时成绩占10%
期中考试成绩占10%
期末考试成绩占80%
七、教材及参考书
教材:
黄学良 主编 电路基础 机械工业出版社.2007
5.函数与预处理
掌握函数定义与函数的调用、函数的参数传递、返回值及函数原型说明、全局变量、局部变量。理解函数调用机制、变量的存贮类型、作用域。掌握函数的递归调用、函数重载。理解缺省变元、内置函数。掌握函数模板及应用。理解头文件与多文件结构。了解编译预处理.
6.C++的数组类型
掌握数组的定义与初始化方法。理解数组名、字符串的含义。掌握数组的赋值与引用。
8.了解非线性电阻电路的基本概念和图解分析法,分段线性化方法,小信号分析法等基本方法。
三、上机实习要求
无
四、能力培养的要求
1.计算能力、分析能力的培养:主要是对电路分析能力的培养。
2自学能力的培养:通过本课程的教学,要培养和提高学生对所学知识进行整理、概括、消化吸收的能力,以及围绕课堂教学内容,阅读参考书籍和资料,自我扩充知识领域的能力。
3.逻辑函数与门网络:熟练掌握逻辑代数的基本知识、逻辑函数及其描述方法和门电路的基本知识,掌握组合逻辑电路的分析方法和设计方法,熟悉常用的组合逻辑模块和可编程逻辑器件(PLD),了解电子设计自动化和逻辑模拟,理解产生门网络的竞争与险象的原因和消除方法。
光纤通信第一次实验报告
四川大学电气信息学院光纤通信第一次实验报告组员:__报告撰写人:学号:实验1电光、光电转换传输实验一、实验目的:目的:了解本实验系统的基本组成结构,初步了解完整光通信的基本组成结构,掌握光通信的通信原理。
要求:1.画出实验过程中测试波形,标上必要的实验说明。
2.结合实验步骤,叙述光通信的信号变换、传输过程。
3.画出两实验箱间进行双工通信的连接示意图,标上必要的实验说明。
4.如果将光跳线分别连接TX1310、RX1550两法兰接口,P204测试点是否有信号,信号与TX1310是否一样,写出你的答案,通过实验验证你的答案。
二、实验基本原理图:本实验系统主要由两大部分组成:电端机部分、光信道部分。
电端机又分为电信号发射和电信号接收两子部分,光信道又可分为光发射端机、光纤、光接收端机三个子部分。
实验系统(光通信)基本组成结构(光通信)如下图所示:三、实验步骤1.连接电路用光跳线连接TX1310、RX1310接口(注意收集好器件的防尘帽)。
打开系统电源,液晶菜单选择“码型变换实验一CMI码PN”,在P101 口输出32KHZ的15位m序列。
通过示波器确认有相应的基带波形输出后,连接P101、P201两铆孔,示波器A通道测试TX1310测试点,调节W201改变送入光发端机信号幅度,不超过5V。
然后观察示波器B通道测试光收端机输出电信号的P202测试点,看是否有与TX1310 测试点一样或类似的信号波形。
2.采用固定CMI码作为基带信号重复以上步骤,并记录波形。
3.观察接口影响轻轻拧下TX1310或RX1310法兰接口的光跳线,观测P202测试点的示波器B通道是否还有信号波形?重新接好,此时是否出现信号波形。
4.如果要求两实验箱间进行双工通信,如何设计连接关系,设计出实验方案,并进行实验。
5.如果将光跳线分别连接TX1310、RX1550两法兰接口,P204测试点是否有信号,信号与TX1310是否一样,写出你的答案,通过实验验证你的答案。
通信原理课程实验指导书
(2)以发送时钟(TPM01)作同步,观测发送信号(TPi03)的波形。测量过零点抖动与眼皮厚度(换算成码元宽度的百分数)。
(3)用KG02输入不同的测试数据(0/1码,11101010),观察TPi03的信号(主要从信号的最佳点收敛情况、过零抖动情况进行判断)。总结信号特征并解释原因。
其中,α是滚降因子,取值范围为0到1。一般α=0.25~1时,随着α的增加,相邻符号间隔内的时间旁瓣减小,这意味着增加α可以减小位定时抖动的敏感度,但增加了占用的带宽。对于矩形脉冲BPSK信号能量的90%大约在1.6Rb的带宽内,而对于α=0.5升余弦滤波器,所有能量则在1.5Rb的带宽内。如图1.1Nyquist升余弦滤波基带传输频域与时域特性
注意:FSK的数据输入信号来源于基带成形模块的测试序列,其通过KG02来选择不同的数据,数据速率受KG03控制,在FSK实验中KG03设置在500bps(KG03处于2-3状态)。
FSK解调框图见图2.2:
图2.2 FSK解调方框图
FSK解调的工作原理是用一个模拟锁相环UE02(CD4046)对输入的FSK信号进行鉴频。在解调模块中采用一个PLL环,当输入的FSK频率出现变化时,锁相环也随之变化,它是通过控制环路的输入电压TPE04来达到的。这样当输入信号频率为20~24KHz时,锁相环的VCO控制电压为高电平,输出码元为1;反之当输入信号频率为6~9KHz时,锁相环的VCO控制电压为低电平,输出码元为0。压控振荡器(VCO)的控制电压直接反映了FSK信号中的码元变化。将该VCO的输入控制电压送入比较器中之后就能得到的FSK接收解调的数字信号。
图1.4基带传输的框图
东大信息学院通信原理教学大纲
(7)带通数据传输:掌握2ASK、2FSK、2PSK和2DPSK数字调制的基本原理、调制和解调框图及系统的抗噪声性能并进行比较;理解多种改进型数字调制方式;掌握在高斯白噪声条件下对上述调制信号的相干检测和非相干检测;了解数字信号通过公众电话交换网发送和接收的调制解调器;理解多信道调制和离散多音;掌握同步技术。
东南大学信息科学与工程学院:通信原理(上)教学大纲
(总学分:3 总上课时数:48)
1.课程的性质与目的
本课程是为通信与信息学科专业学生开设的第一门通信专业基础课程。它既是通信专业知识的入门课又是重要的通信的专业基础课。本课程的主要任务是通过讲课和练习,使学生掌握通信原理的基础知识,掌握通信系统一般问题的解决方法。
(4)教学内容紧密结合当前现代通信技术的最新进展,使学生能理论联系实际,培养创新能力。
4.能力培养的要求
(1)教材每章都附有习题和思考题,学生要独立、按时完成老师布置的基本题目,加深理解课堂讲授的理论知识,培养学生的分析和计算能力。
(2)一些扩展性的内容作为课后阅读布置作为熟悉和了解的要求,培养学生的自学能 力。
(3)教学内容尽量与信号与系统、电子线路、数字电路、概率论、随机过程、线性代数、数字图像处理、移动通信等课程衔接,使学生能不断充实和完善所学知识,融会贯通地建立较为合理的整体知识体系;
东南大学信息科学与工程学院:通信原理(下)教学大纲
(总学分:3 总上课时数:32)
东南大学 信息学院 电子线路 模电实验四报告 -差分放大器 word版
实验四差分放大器姓名:学号:实验目的:1.掌握差分放大器偏置电路的分析和设计方法;2.掌握差分放大器差模增益和共模增益特性,熟悉共模抑制概念;3.掌握差分放大器差模传输特性。
实验内容:一、实验预习根据图4-1所示电路,计算该电路的性能参数。
已知晶体管的导通电压V BE(on)=0.55, β=500,|V A|=150 V,试求该电路中晶体管的静态电流I CQ,节点1和2的直流电压V1、V2,晶体管跨导g m,差模输入阻抗R id,差模电压增益A v d,共模电压增益A v c和共模抑制比K CMR,请写出详细的计算过程,并完成表4-1。
图4-1. 差分放大器实验电路表4-1:I CQ(mA)V1(V)V2(V)g m(mS)R id(kΩ)A v d A v c K CMR1 8.2 8.2 38.5 20.3 -261.8 -3.4 38.5二、仿真实验1. 在Multisim中设计差分放大器,电路结构和参数如图4-1所示,进行直流工作点分析(DC 分析),得到电路的工作点电流和电压,完成表4-2,并与计算结果对照。
表4-2:I CQ(mA)V1(V)V2(V)V3(V)V5(V)V6(V)0.997565 8.219 8.219 1.998 2.647 2.548仿真设置:Simulate → Analyses → DC Operating Point,设置需要输出的电压或者电流。
2. 在图4-1所示电路中,固定输入信号频率为10kHz,输入不同信号幅度时,测量电路的差模增益。
采用Agilent示波器(Agilent Oscilloscope)观察输出波形,测量输出电压的峰峰值(peak-peak),通过“差模输出电压峰峰值/差模输入电压峰峰值”计算差模增益A v d,用频谱仪器观测节点1的基波功率和谐波功率,并完成表4-3。
表4-3:1 10 20输入信号单端幅度(mV)A v d-239.23 -229.25 -208-24.021 -5.417 -0.474基波功率P1(dBm)-91.635 -52.095 -40.529二次谐波功率P2(dBm)-96.405 -41.272 -25.723三次谐波功率P3(dBm)仿真设置:Simulate →Run,也可以直接在Multisim控制界面上选择运行。
通信信号与系统实验指导书
《信号与系统》实验指导书王晓春编沈阳大学信息工程学院目录实验一:DDS信号发生器实验 (6)实验二:函数信号发生器 (9)实验三:扫频信号源 (12)实验四:频率计和交流毫伏表实验 (15)实验五:阶跃响应与冲激响应 (19)实验六:零输入响应和零状态响应...............................................................2 2 实验七:信号的抽样与恢复 (25)实验八:串联谐振电路的特性研究 (29)实验九:二阶无源滤波器 (32).课程编号:11211391 课程类别:专业必修适用层次:本科(2本3本)适用专业:通信工程课程总学时:80 适用学期:第4学期实验学时:20 开设实验项目数:10撰写人:王晓春审核人:周昕教学院长:范立南信号与系统实验箱介绍一、概述“信号与系统”是电子信息工程、通信工程、无线电技术、自动控制、生物医学电子工程等专业的重要专业基础课,也是国内各院校相应专业的主干课程。
当前,科学技术的发展趋势既高度综合又高度分化,这要求高等院校培养的大学生,既要有坚实的理论基础,又要有严格的工程技术训练,不断提高实验研究能力、分析计算能力、总结归纳能力和解决各种实际问题的能力。
由于该课程核心的基本概念、基本理论和分析方法非常重要,而且系统性、理论性很强,为此在学习本课程时,开设必要的实验,对学生加深理解深入掌握基本理论和分析方法,培养学生分析问题和解决问题的能力,以及使抽象的概念和理论形象化、具体化,对增强学习的兴趣有极大的好处,做好本课程的实验,是学好本课程的重要教学辅助环节。
通过本实验课程学习要求达到下列目标:1、巩固和加深所学的理论知识。
2、掌握万用表、数字电压表、直流稳压电源、函数信号发生器、示波器等常用电表和电子仪器的使用方法及测量技术。
3、培养选择实验方法、整理实验数据、绘制曲线、分析实验结果、撰写实验报告的能力。
通信系统第一次大作业—OFDM系统仿真实验报告
通信系统第⼀次⼤作业—OFDM系统仿真实验报告通信信号处理第⼀次⼤作业—OFDM系统仿真实验报告⽆210 孙⽂钰2012010999⼀、OFDM系统模型说明1.基于IFFT/FFT的OFDM系统模型基于IFFT/FFT的OFDM系统框图如图1.1所⽰:图1.1 基于IFFT/FFT的OFDM系统其中调制模块本次实验采⽤的是16QAM调制。
同时根据所给的参数,带宽5MHz,⼦载波间隔15kHz,⼦载波个数5M/15k=332,做512点FFT/IFFT,剩余180个点补零以过采样,CP长度为OFDM符号长度的7%,CP点数为332*7%=24点。
采⽤16QAM及1/2码率的编码⽅法,则系统的最⾼可达数据率为:332?20.0714ms=9300k=9.3Mbit/s系统的频谱效率为:9.3Mbit/s15kHz=620bit/s/HZ2.发射机模型发射机模型框图如图1.2所⽰:图1.2 发射机模型考虑多径传播延时的影响,在发射端IFFT变换后的时域信号之间插⼊保护间隔,同时为了不影响⼦载波间的正交性,保护间隔为循环前缀。
3.接收机模型接收机模型框图如图1.3所⽰:图1.3 接收机模型在接收端A/D转换后去循环前缀,并将时域信号通过FFT变换到原来的频域信号后进⾏判决,最后进⾏16QAM的解调。
4.本次实验的做法本次实验没有考虑模拟信号的处理,假设载波频偏估计准确,不考虑采样时钟的偏差。
对于多径传播延迟,模型简单假定为符号间延迟的相⼲叠加,因此在延迟情况下进⾏FFT相当于循环卷积,还原时需要除以旋转相位。
5.减⼩峰均⽐PAR的⽅案OFDM系统的⼀个缺点是峰均⽐过⾼,本实验采⽤了3种⽅式减⼩峰均⽐,分别是选择性映射(SLM)、压缩扩展变换(C变换)和最直接的硬限幅⽅法。
报告后⾯会逐⼀⽐较这些⽅案的性能。
6.⼆、绘制误码率与信噪⽐曲线代码见main_sim.m第⼀部分:%% SNR与误码率的关系在多径效应简单考虑为符号延时的相⼲叠加情况下,保护间隔为24点,假定延迟为0(⽆延迟)、10(在保护间隔内)、30(超过保护间隔)下仿真结果如图2.1与图2.2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信源编译码实验
抽样定理告诉我们:如果对某一带宽有限的模拟信号进行抽样,且抽样速率达到一定的数值时,那么根据这些抽样值就可以准确地还原信号。
也就是说传输模拟信号的采样值就可以实现模拟信号的准确传输。
电路图可以看出,抽样脉冲先对原始信号进行自然或者平顶抽样,将得到的抽样信号进行传输到接收端,接收端进行滤波即可恢复到原始波形,但是要注意,满足抽样脉冲的频率大于等于原始信号的两倍才可以准确恢复。
5.2自然抽样验证
2K正弦波3K 2K 1.5倍抽样脉冲
2K正弦波4K 2K 2倍抽样脉冲
2K正弦波8K 2K 4倍抽样脉冲2K正弦波16K 2K 8倍抽样脉冲
当原始信号频率保持2k不变时,抽样脉冲的频率从3k到16k变化时,我们可以看出,当抽样脉冲频率小于4k取样信号的频谱发生混叠,无法准确的恢复出原始信号,但是当频率大于4k时将不会发生混叠,随着频率增大,恢复的越来越好。
1K三角波16K 2K 复杂信号恢复
1K三角波16K 6K 复杂信号恢复
对于三角波来说,三角波的频域是无限扩展的,所以一定要选取远大于奈奎斯特采样频率才可以较准确的恢复出原始信号,当然还会有混叠,所以无法真正的恢复出原始信号。
从中可以看出,虽然恢复出了原始信号,但是仍有一定的失真。
从频谱图也可以看出,出现一定的混叠。
5.3频谱混叠现象验证
设置原始信号为:“正弦”,1000hz,幅度为20;设置抽样脉冲:频率:8000hz,占空
频率;当3P2为7k时,记录恢复信号波形及频率;记录3P2为不同情况下,信号的波6k 2k
原始信号恢复信号
7k 2K
当信号频率为6k、7kHz时,都超出抽样频率8k*1/2=4k,因此会发生频谱混叠。
经过2k低通滤波器之后,高频分量被去掉,所以基本恢复为2k正弦波。
但是通频带之内仍然有低频的杂波分量,所以信号的毛刺比较明显。
5.4抽样脉冲占空比恢复信号影响
设置原始信号为:“正弦”,1000hz,幅度为20;设置抽样脉冲:频率:8000hz,占空
从图中可以看出,第一个过零点的值为抽样频率乘以占空比的倒数,也就是说当占空比增大时,第一个过零点的值逐渐减小,另外占空比越大,恢复的信号幅度越大,这是因为占空比越大使得发送的信号功率越大。
5.5 平顶抽样验证
(1).修改参数进行测量
通过实验框图上的“原始信号”、“抽样脉冲”按钮,设置实验参数;如:设置原始信号为:“正弦”,1000hz,幅度为20;设置抽样脉冲:频率:8000hz,占空比:4/8(50%);
(2).对比自然抽样和平顶抽样频谱
使用示波器的FFT功能或频谱仪观测抽样后信号3P6。
在实验框图上通过“切换开关”,自然抽样平顶抽样
PCM编译码实验
5.2 PCM编码原理验证
抽样脉冲信号以及输出时钟信号图如下:
从图中我们可以看出来,抽样脉冲宽度是输出时钟宽度的两倍,同时频率是它的1/8,同步沿为下降沿。
PCM编码输出数据与抽样脉冲信号的关系图如下:
从图中可以看出,1次抽样8位编码输出,在抽样脉冲下降沿同步,编码输出与输出时钟同步。
液晶屏上观测PCM编码
六、实验报告
描述PCM编码串行同步接口的时序关系。
增量调制(cvsd)编译码验证
CVSD的过载观测
正常情况下,增量调制本地译码信号和原始信号会有“跟随效果”,即原始信号和本地译码信号会有同样的变化规律。
但是当量阶过小,或者本地信号幅度变化太快,则会出现本地译码跟随不了原始信号的情况,即过载量化失真。
在实验中,尝试逐渐增大原始信号的幅度,观察过载量化失真现象。
观察过载量化失真是:增量调制编码器输出交替的长连
频率过高,原始信号变化更快,编码跟踪变难。
当固定输入信号频率时,时钟频率降低,临界过载电平也相应减少,这是因为时钟降低导致编码速率降低以至于无法准确跟踪信号的变化。
编码时钟对编码系统的影响
编码时钟频率越大,恢复信号越准确。
5.8 测量系统的最大信噪比
(1).设置“原始信号”为:“正弦”,1000hz,用示波器观察比较“本地译码”与“模拟
输入”的波形,在编码器临界过载的情况下,测量系统的最大信噪比。
实际工作时,通常采用失真度仪来测量最大信号量化噪声比。
因为失真度与信噪比互为倒数,所以当用失真度仪测出失真度为x值时,取其倒数1/x即为信噪比,即失真度。