材料成形技术_金属材料成形基本原理
金属塑性成形
02
金属塑性成形的原理
金属塑性变形的物理基础
01
金属塑性变形的基本概念
金属塑性成形是通过外力作用使金属材料发生塑性变形,从而获得所需
形状和性能的过程。
02
金属的晶体结构与塑性变形
金属的晶体结构是影响其塑性变形行为的重要因素。金属的晶体结构决
定了其塑性变形的机制和特点。
03
温度对金属塑性变形的影响
塑性成形过程中的缺陷与控制
在塑性成形过程中,由于各种因素的影响,可能会出现裂纹、折叠、夹杂等缺陷。为了获得高质量的产 品,需要了解这些缺陷的形成原因,并采取相应的措施进行控制和预防。
03
金属塑性成形的方法
自由锻成形
总结词
自由锻成形是一种金属塑性加工方法,通过锤击或压力机等 工具对金属坯料施加外力,使其发生塑性变形,从而获得所 需形状和尺寸的金属制品。
随着科技的发展,精密金属塑性成形技术逐渐兴起,如精密锻造、精密轧制、精密冲压等 ,这些技术能够制造出更高精度、更复杂形状的金属零件。
数值模拟与智能化技术
近年来,数值模拟与智能化技术在金属塑性成形领域得到了广泛应用,通过计算机模拟技 术可以对金属塑性成形过程进行模拟分析,优化工艺参数,提高产品质量和生产效率。同 时,智能化技术的应用使得金属塑性成形过程更加自动化和智能化。
详细描述
挤压成形适用于生产各种复杂形状的管材、棒材和异型材等。由于其能够实现连续生产,因此具有较 高的生产效率。但挤压成形对设备和操作技术要求较高,且对原材料的表面质量、尺寸精度和化学成 分等要求严格。
拉拔成形
总结词
拉拔成形是一种金属塑性加工方法,通 过拉拔机对金属坯料施加拉力,使其发 生塑性变形,从而获得所需形状和尺寸 的金属制品。
材料成型原理与工艺
04
材料成求极高,需要具备轻质、高强度、 耐高温等特性。材料成型原理与工艺的发展为航空航天领域 提供了更多的选择,如钛合金、复合材料等。
这些新型材料的应用有助于减轻飞机和航天器的重量,提高 其性能和安全性。
汽车工业领域的应用
随着环保意识的提高和新能源汽车的 兴起,汽车工业对轻量化材料的需求 越来越大。
件。
锻造工艺
01
02
03
04
自由锻造
利用自由锻锤或压力机对坯料 进行锻打,形成所需形状和尺
寸的锻件。
模锻
利用模具对坯料进行锻打,使 坯料在模具中形成所需形状和
尺寸的锻件。
热锻
将坯料加热至高温后进行锻打 ,使材料易于塑性变形。
冷锻
在常温下对坯料进行锻打,适 用于塑性较差的材料。
焊接工艺
熔化焊
压力焊
材料成型原理与工艺的发展使得汽车 零部件的制造更加高效、精确,如铝 合金、镁合金等轻质材料的广泛应用 ,有助于降低汽车能耗和排放。
能源领域的应用
能源领域如核能、太阳能等需要大量的特殊材料,如耐高 温、耐腐蚀的材料。
材料成型原理与工艺的进步为能源领域提供了可靠的材料 解决方案,如高温合金、耐腐蚀涂层等,有助于提高能源 利用效率和安全性。
材料成型原理与工艺
• 材料成型原理概述 • 材料成型工艺介绍 • 材料成型原理与工艺的发展趋势 • 材料成型原理与工艺的应用前景
01
材料成型原理概述
材料成型的基本概念
材料成型是通过物理或化学手 段改变材料的形状,以达到所 需的结构和性能的过程。
材料成型涉及多种工艺和技术, 如铸造、锻造、焊接、注塑等。
泡沫金属
通过在金属基体中引入孔洞,制备 出具有轻质、高比强度的泡沫金属 材料。
材料成型工艺基础金属塑性成形
材料成型工艺基础:金属塑性成形1. 引言金属塑性成形是制造业中常见的一种材料成型工艺。
通过对金属材料施加力量,使其在一定的温度和应变条件下发生塑性变形,从而得到所需形状和尺寸的制品。
这种成形工艺广泛应用于汽车、航空航天、机械制造等领域。
本文将介绍金属塑性成形的基本概念、工艺流程以及常见的金属塑性成形方法。
2. 基本概念2.1 金属塑性成形的定义金属塑性成形是指将金属材料通过施加力量,在一定的温度和应变条件下,使其发生塑性变形,从而得到所需形状和尺寸的工艺过程。
2.2 塑性变形的基本概念塑性变形是指材料在一定的应力作用下,在超过其屈服点之后发生的可逆性变形。
在这种变形中,金属材料的原子结构会发生改变,从而改变了材料的形状和尺寸。
3. 工艺流程金属塑性成形的工艺流程主要包括以下几个步骤:3.1 原材料准备在金属塑性成形工艺中,首先需要准备好所需的金属原材料。
原材料的选择需要满足产品的要求,包括材料的强度、韧性、耐蚀性等。
3.2 材料加热在金属塑性成形之前,通常需要将金属材料进行加热。
加热可以使金属材料达到一定的塑性状态,更容易发生塑性变形。
加热的温度和时间需要根据不同的金属材料和成形要求进行调整。
3.3 成型工艺金属塑性成形的成型工艺包括以下几种常见方法:3.3.1 锻造锻造是一种利用压力将金属材料塑性变形成形的方法。
在锻造过程中,金属材料会经过压缩、拉伸、冷却等多个步骤,最终得到所需的形状。
3.3.2 拉伸拉伸是将金属材料放在拉伸机上,通过施加力量使其发生塑性变形的方法。
通过拉伸可以改变金属材料的形状和尺寸。
3.3.3 深冲深冲是将金属材料放在冲压机上,通过模具对材料进行冲压,使其发生塑性变形的方法。
通过调整模具的形状和尺寸,可以得到不同形状和尺寸的制品。
3.4 后处理在金属塑性成形完成之后,通常需要进行一些后处理工艺。
包括去除表面的氧化物、清洗、退火等。
后处理的目的是提高产品的表面质量和性能。
4. 常见的金属塑性成形方法4.1 冷镦成形冷镦成形是一种将金属材料通过冷镦机进行挤压、拉伸、弯曲等操作,使其发生塑性变形的方法。
wwei材料成形技术(塑性)1
二、金属塑性成形的基本生产方式 1、轧制:金属毛坯在两个轧辊之间受压变形而形成各 种产品的成形工艺,图6-1。 2、挤压:金属毛坯在挤压模内受压被挤出模孔而变形 的成形工艺,图6-3。 3、拉拔:将金属坯料拉过拉拔模的模孔而变形的成形 工艺,图6-5。 4、自由锻:金属毛坯在上下砥铁间受冲击或压力而变 形的成形工艺,图6-7(a)。 5、模锻:金属坯料在既有一定形状的锻模模膛内受击 力或压力而变形的成形工艺,图6-7(b) 。
塑性愈大、变形抗力愈小,材料的可锻性愈好
4、可锻性的影响因素
(1)化学成分 A、碳钢中碳和杂质元素的影响
C、H、P(冷脆)、S (热脆) B、合金元素的影响
塑性降低,变形抗力提高。
(2)内部组织
单相组织(纯金属或者固溶体)比多相组织塑性好。 细晶组织比粗晶组织好; 等轴晶比柱状晶好。 面心立方结构的可锻性最好,体心立方结构次之, 而密排六方结构可锻性最差。
冲击力和压力
锻压是锻造与冲压的总称。
★锻造:在加压设备及工(模)具作用下,使坯料、铸锭产生局 部或全部的塑性变形,以获得一定几何尺寸、形状和质量的锻件 的加工方法。锻造通常是在高温(再结晶温度以上)下成形的,
因此也称为金属热变形或热锻。
★锻造特点:1、压密或焊合铸态金属组 织中的缩孔、缩松、空隙、气泡和裂纹。 2、细化晶粒和破碎夹杂物,从而获得一 定的锻造流线组织。因此,与铸态金属 相比,其性能得到了极大的改善。 3、主要用于生产各种重要的、承受重载荷的机器零件或毛坯。 如机床的主轴和齿轮、内燃机的连杆、起重机的吊钩等。 4、高温下金属表面的氧化和冷却收缩等各方面的原因,锻件精度 不高、表面质量不好,加之锻件结构工艺性的制约。
2、晶粒和分布在晶界上的非金属夹杂物ห้องสมุดไป่ตู้沿变形方向被拉长, 但是拉长的晶粒可经再结晶又变成等轴细粒状,而这些夹杂物不能 改变,就以细长线条状保留下来,形成了所谓的纤维组织。 纤维组织的化学稳定性很高,只有经过锻压才能改变其分布方向, 用热处理是不能消除或改变纤维组织形态的。 纤维组织使金属的力学性能具有明显的方向性。
金属塑性成形课件
2023-11-06•金属塑性成形概述•金属塑性成形工艺•金属塑性成形设备•金属塑性成形技术的发展趋势•金属塑性成形过程中的缺陷与质量控制目•金属塑性成形实例分析录01金属塑性成形概述金属塑性成形是一种使金属材料发生塑性变形,以获得所需形状、尺寸和性能的加工方法。
金属塑性成形广泛应用于机械制造、航空航天、汽车、电子等领域,是一种重要的材料加工技术。
金属塑性成形的定义金属塑性成形可以制造出复杂形状的零件,并且能够获得较高的精度和表面质量。
与切削加工相比,金属塑性成形具有更高的材料利用率和更低的能耗。
金属塑性成形过程中材料的变形是均匀的,因此可以避免应力集中和裂纹等缺陷。
金属塑性成形的特点03金属塑性成形的基本原理包括应力状态、屈服准则、塑性流动规律等。
金属塑性成形的基本原理01金属塑性成形的原理是基于金属的塑性变形规律,即在外力作用下,金属材料会发生形状和尺寸的变化。
02在金属塑性成形过程中,材料的变形受到应力状态、变形温度、变形速度等因素的影响。
02金属塑性成形工艺自由锻工艺自由锻是利用冲击力或静压力使金属坯料变形,并施加外力将其锻造成所需形状和尺寸的锻造方法。
定义特点流程应用自由锻具有较大的灵活性,可以生产形状各异的锻件,但生产效率较低,适用于单件或小批量生产。
自由锻的流程包括坯料准备、加热、变形和锻后冷却。
自由锻主要用于大型锻件和难变形材料的加工,如轴、轮毂、法兰等。
模锻工艺模锻是利用模具使金属坯料变形,并施加外力将其锻造成所需形状和尺寸的锻造方法。
定义模锻具有较高的生产效率,且能获得较为精确的形状和尺寸,但模具制造成本较高。
特点模锻的流程包括坯料准备、加热、放入模具、变形、锻后冷却和修整。
流程模锻广泛应用于中小型锻件的生产,如齿轮、轴套、法兰等。
应用板料冲压工艺板料冲压是利用冲压机将金属板料变形,并施加外力将其冲制成所需形状和尺寸的加工方法。
定义板料冲压具有较高的生产效率,且能获得较为精确的形状和尺寸,但模具对材料的厚度和硬度有一定要求。
金属材料成型基础资料.pptx
电阻热:Q=I2Rt
焊条
-
焊接电弧
工件
d
+
d离
焊接电弧的稳定燃烧 — 就是带电粒子产生、 运动、复合、产生的动态平衡过程。
第5页/共60页
2 . 电弧的构造及热量分布 阴极区:2400k 36% 阳极区:2600k 42% 弧柱区:5000~8000k 21%
3 . 电弧的极性
1 . 设备简单、应用灵活方便。
2 . 劳动条件差、生产率低、质量不稳定。
二、手工电弧焊焊接过程
①引弧 ② 形成熔池
三、焊接电弧
③形成焊缝
1 . 焊接电弧的概念
第4页/共60页
在焊条末端和工件两极之间的气体介 质中,产生强烈而持久的放电现象。
使气体电离 具备两个条件
阴极发射电子
接触电阻:R 短路电流:I
适用于易氧化的有色金属及合金钢材料的焊接。 如:铝、镁、钛及其合金和耐热钢、不锈钢等。
第29页/共60页
三、 CO2气体保护焊
以CO2气体作为保护性介质的电弧焊方法。
焊接热源:电弧热
保护介质:CO2
① 与金属发生化学反应—产生夹渣缺陷
CO2 ② 溶解于液体金属中—产生 CO 气孔缺陷
③ 比重大于空气(25%)
第26页/共60页
非熔化极亚弧焊
熔化极亚弧焊
第27页/共60页
第28页/共60页
3)氩弧焊的特点及应用 ① 机械保护效果好,焊缝金属纯净,焊缝成形美观,
焊接质量优良。 ② 电弧燃烧稳定,飞溅小。 ③ 焊接热影响区和变形小。 ④ 可进行全位置焊接。 ⑤ 氩气昂贵,设备造价高。
应用: 适用所有金属材料的焊接。
镍及镍合金焊条—Ni ; 铜及铜合金焊条—T;
实验报告一-材料成形技术
实验一材料成形技术材料成形制造工艺多利用模型使原材料形成零件或毛坯。
材料成形加工过程中,原材料的形状、尺寸、组织状态,甚至结合状态都会改变。
由于成形精度一般不高,材料成形制造工艺常用来制造毛坯。
也可以用来制造形状复杂但精度要求不太高的零件。
材料成形工艺的生产效率较高。
常用的成形工艺有铸造、锻压、粉末冶金等。
1、不同类型成型技术a. 铸造成型:卡特挖机CAT :1、铸造成型:其原理是铸造是将所需的金属熔化成液体,浇注到铸型中,待其冷却凝固后获得铸件(毛坯)的。
因此,铸造也可以称为液态成形。
铸造是毛坯或机器零件成形的重要方法之一。
2、铸造成形优缺点:优点:(1)适应性广泛,铸件材质、大小、形状几乎不受限制;不宜塑性加工或焊接成形的材料,铸造成形尤具优势。
(2) 可形成形状复杂的零件;(3)生产成本较低。
铸造用原材料来源广泛,价格低廉。
铸件与最终零件的形状相似,尺寸相近,加工余量小。
由于铸造具有如此突出的优点,所以才会经久不衰,且不断发展,直到现在仍然在制造业中得到广泛应用。
缺点:涉及生产工序较多,过程难以精确控制,废品率较高;铸件组织疏松,晶粒粗大,铸件某些力学性能较低;铸件表面粗糙,尺寸精度不高。
工作环境较差,工人劳动强度大。
3、主要工艺特点:铸造是生产零件毛坯的主要方法之一,尤其对于有些脆性金属或合金材料 (各种铸铁件、有色合金铸件等) 的零件毛坯,铸造几乎是唯一的加工方法。
与其它加工方法相比,铸造工艺具有以下特点:(1)铸件可以不受金属材料、尺寸大小和重量的限制。
铸件材料可以是各种铸铁、铸钢、铝合金、铜合金、镁合金、钛合金、锌合金和各种特殊合金材料;铸件可以小至几克,大到数百吨;铸件壁厚可以从0.5毫米到1 米左右;铸件长度可以从几毫米到十几米。
(2)铸造可以生产各种形状复杂的毛坯,特别适用于生产具有复杂内腔的零件毛坯,如各种箱体、缸体、叶片、叶轮等。
(3)铸件的形状和大小可以与零件很接近,既节约金属材料,又省切削加工工时。
材料成形技术_金属材料成形基本原理
材料成形技术_金属材料成形基本原理金属材料成形是指通过外力对金属材料进行塑性变形,改变其形状和尺寸的过程。
这是一种广泛应用于制造业的加工技术,包括锻造、压力加工、剪切、折弯、旋压、挤压等多种方法。
下面将介绍金属材料成形的基本原理。
金属材料成形的基本原理可以归结为三个参数:应力、变形和温度。
这三个参数相互作用,影响金属的成形过程和结果。
首先是应力。
应力是指施加在金属材料上的力。
成形过程中,应力会使金属材料内部的晶粒沿着位移方向产生塑性滑移,从而发生变形。
应力的大小和方向会影响金属材料的变形方式和形态。
接下来是变形。
变形是指金属材料在外力作用下发生的形状和尺寸变化。
变形包括弹性变形和塑性变形两种形式。
弹性变形是指金属材料受到外力作用后,恢复到起初形状的一种变形方式。
而塑性变形是指金属材料受到外力作用后,改变形状和尺寸,不会恢复到起初形状的一种变形方式。
金属材料的塑性变形是成形加工中的主要目标。
最后是温度。
温度是指金属材料在成形过程中的温度变化。
温度的变化会影响金属材料的变形行为。
一般来说,金属在高温下更容易发生塑性变形。
高温有助于降低金属的屈服强度和粘滞阻力,使其更易于变形。
但是温度过高会引起金属的晶粒长大,从而降低了材料的性能。
金属材料成形技术的具体方法包括锻造、压力加工、剪切、折弯、旋压、挤压等。
这些方法中,锻造是最常用的一种成形方法。
锻造是通过对金属材料施加冲击或压力,使其产生塑性变形,从而得到所需的形状和尺寸。
锻造包括自由锻、模锻和挤压锻等多种方式。
总之,金属材料成形是一种重要的制造技术,通过对金属材料施加力和温度的控制,可以对材料进行塑性变形,从而得到所需的形状和尺寸。
了解金属材料成形的基本原理对于选择适当的成形方法和实现高质量的产品具有重要意义。
材料成型基本原理完整版
第一章:液态金属的结构与性质1雷诺数Re:当Re>2300时为紊流,Re<2300时为层流。
Re=Du/v=Duρ/η,D为直径,u 为流动速度,v为运动粘度=动力粘度η/密度ρ。
层流比紊流消耗能量大。
2表面张力:表面张力是表面上平行于切线方向且各方向大小相同等的张力。
润湿角:接触角为锐角时为润湿,钝角时为不润湿。
3压力差:当表面具有一定的曲度时,表面张力将使表面的两侧产生压力差,该压力差值的大小与曲率半径成反比,曲率半径越小,表面张力的作用越显著。
4充型能力:充型过程中,液态金属充满铸型型腔,获得形状完整轮廓清晰的铸件的能力,即液态金属充型能力。
5长程无序、近程有序:液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性,表现出长程无序特征;而相对于完全无序的气体,液体中存在着许多不停游荡着的局域有序的原子集团,液体结构表现出局域范围内的近程有序。
拓扑短程序:Sn Ge Ga Si等固态具有共价键的单组元液体,原子间的共价键并未完全消失,存在着与固体结构中对应的四面体局域拓扑有序结构。
化学短程序:Li-Pb Cs-Au Mg-Bi Mg-Zn Mg-Sn Cu-Ti Cu-Sn Al-Mg Al-Fe等固态具有金属间化合物的二元熔体中均有化学短程序的存在。
6实际液态金属结构:实际金属和合金的液体由大量时聚时散、此起彼伏游动着的原子团簇空穴所组成,同时也含有各种固态液态和气态杂质或化合物,而且还表现出能量结构及浓度三种起伏特征,其结构相对复杂。
能量起伏:液态金属中处于热运动的原子的能量有高有低,同一原子的能量也在随时间不停的变化,时高时低,这种现象成为能量起伏。
结构起伏:由于能量起伏,液体中大量不停游动的局域有序原子团簇时聚时散,此起彼伏而存在结构起伏。
浓度起伏:游动原子团簇之间存在着成分差异,而且这种局域成分的不均匀性随原子热运动在不时发生着变化,这一现象成为浓度起伏。
金属塑性成形原理pdf
金属塑性成形原理pdf
金属塑性成形(MPM)是一种成型工艺,它包括冷弯折形、冷拉伸、热弯形、热拉伸、冲压和挤压等,它能够将金属材料塑性变形,从而制造成各种形状和尺寸的部件或零件。
虽然它与铸造有许多相似之处,但具有明显的不同,它更多的是在金属材料弯折或拉伸的基础上进行裁剪和成型。
金属塑性成形的主要原理是材料的塑性变形,当金属或其它金属材料受力时,它会发生塑性变形,例如在冷弯折形时,金属材料会受到压力而不会断裂。
冷拉伸的原理与冷弯折形的原理基本相同,只是它使用的是拉伸力而非压力。
热弯形和热拉伸原理与冷弯折形和冷拉伸的原理大致相同,只是需要加热材料来使其塑性变形。
冲压和挤压是两种机器成型工艺,它们通过对金属材料施加压力而产生细小的型腔,从而制造出不同形状的部件或零件。
金属塑性成形的另一个重要原理是金属温度、应力和应变。
温度变化会影响材料的变形性能,应力和应变是金属材料变形的两个重要参数,它们可以帮助确定材料的力学性能,从而选择合适的成形工艺来完成成型任务。
最后,成形过程中还需要考虑工具的
使用,例如冲床、挤压机、回转机等,这些工具可以应用到金属塑性成形中,使金属材料发挥更好的塑性变形性能。
总之,金属塑性成形技术的主要原理是材料的塑性变形,应力、应变和温度等因素的影响,以及工具的使用。
这些原理可以用来帮助确定正确的成型工艺和工具,从而产生精确度相当高的金属零件。
金属工艺及材料成形技术
形和制造的一系列技术和工艺。
这涵盖了从原材料到最终成品的整个生产链,包括金属的选材、切割、成形、焊接、表面处理等方面。
下面将详细介绍金属工艺及材料成形技术的各个方面。
1. 金属工艺概述金属工艺是指对金属材料进行各种物理和化学处理,使其达到预定形状、尺寸、性能和表面状态的技术。
金属工艺的主要步骤包括原材料准备、熔炼、成型、加工、焊接、表面处理等。
在整个金属工艺过程中,材料的性能、工艺的精密性和效率都是关键因素。
2. 金属材料成形技术a. 锻造(Forging)锻造是一种通过对金属施加压力,使其发生塑性变形,从而改变其形状的成形工艺。
这可以通过冷锻和热锻两种方式进行。
锻造可用于制造各种零部件,如飞机零件、汽车零件和工业设备。
b. 拉伸成形(Stretch Forming)拉伸成形是一种通过对金属板材施加拉力,使其在一定的模具上拉伸成所需形状的成形工艺。
这在航空航天领域中广泛应用,制造复杂曲面的零部件。
c. 冲压成形(Stamping)冲压成形是将金属板或带料通过冲裁模、弯曲模、拉伸模等多个工序,使其发生塑性变形,形成零部件的工艺。
这是大规模生产金属零部件的一种有效方式。
d. 旋转成形(Spinning)旋转成形是通过将金属板材固定在旋转工具上,通过压力使其沿轴线旋转,从而形成圆筒状或锥形状的零部件的工艺。
常见的应用包括制造锅、盘子等器皿。
e. 挤压(Extrusion)挤压是将金属通过模具压出所需形状的工艺。
这广泛应用于制造铝型材、管道等。
通过挤压,可以生产复杂截面的产品。
f. 注塑成形(Injection Molding)虽然常用于塑料,但注塑成形也可用于金属粉末,通过在高温高压下使金属粉末熔化,并注射到模具中成形。
这是制造小型零部件的一种方法。
3. 金属加工技术a. 数控加工(CNC Machining)加工具有高精度、高效率和灵活性的优势,广泛应用于定制零部件制造。
b. 电火花加工(EDM)电火花加工是通过电脉冲放电的方式在金属工件上形成微小的放电坑,从而实现零部件的精密加工。
材料成形技术基础知识点总结
材料成形技术基础知识点总结1.材料成形的基本原理:材料成形是通过施加外力使材料发生形状和/或尺寸改变的过程。
常见的成形方法包括压力成形、热成形、热力复合成形等。
不同的成形方法有不同的原理和适用范围,可以选择最适合的方法进行成形。
2.压力成形技术:压力成形是指通过施加压力使材料发生形状和/或尺寸改变的成形方法。
常见的压力成形技术包括锻造、压力铸造、挤压、拉伸、冲压等。
这些技术可以用于加工金属材料和非金属材料,具有高效率和高精度的特点。
3.热成形技术:热成形是指通过加热材料使其变软,然后进行形状和/或尺寸改变的成形方法。
常见的热成形技术包括热压缩、热拉伸、热挤压、热转锻等。
热成形可以用于加工高温材料和难塑料材料,可以提高材料的可塑性和改善成形效果。
4.热力复合成形技术:热力复合成形是指通过加热和施加压力使两个或多个材料发生结合的成形方法。
常见的热力复合成形技术包括焊接、热压焊、热胶合等。
这些技术可以用于加工复合材料,可以获得更强的接合强度和更好的接合效果。
5.材料成形工艺的设计:材料成形工艺的设计是指根据产品的要求和材料的性能选择合适的成形方法,并确定合理的工艺参数。
工艺参数包括温度、压力、速度等,对成形效果和产品质量具有重要影响。
工艺设计需要考虑材料的可塑性、成形难度、成形精度等因素,可以通过实验和数值模拟来优化设计。
6.材料成形工具的设计与制造:材料成形工具是实现成形过程的重要设备,需要根据产品的形状和尺寸设计相应的工具。
工具设计包括毛坯设计、凸模设计、模具结构设计等。
材料成形工具的制造需要精密的加工工艺和高质量的材料,可以采用数控加工、电火花等先进技术来提高工具的精度和寿命。
7.材料成形过程的监测与控制:材料成形过程需要对温度、压力、力量、速度等进行监测和控制,以确保成形效果和产品质量的稳定。
常用的监测和控制技术包括传感器、自动控制系统等。
这些技术可以实时监测成形过程的参数,并根据需求调整工艺参数,以达到最佳的成形效果。
材料成型基本原理总结
材料成型力学原理部分第十四章金属塑性变形的物理基础1、塑形成形:利用金属的塑性,使金属在外力作用下成形的一种加工方法,亦称金属塑性加工或金属压力加工。
2、金属塑性成形的优点:生产效率高、材料利用率高、组织性能亦改变、尺寸精度高。
3、塑性成形工艺:锻造、轧制、拉拔、挤压、冲裁、成型4、金属冷塑形变形的形式:1、晶内变形:滑移和孪生2、晶间变形:晶粒间发生相互滑动和转动5、加工硬化:在常温状态下,金属的流动应力随变形程度的增加而上升,为了使变形继续下去,就需要增加变形外力或变形功。
(指应变对时间的变化率)6、热塑性变形时金属组织和性能的变化1、改善晶粒组织2、锻合内部缺陷3、破碎并改善碳化物和非金属夹杂物在钢中的分布4、形成纤维组织5、改善偏析7、织构的理解:多晶体取向分布状态明显偏离随机分布的取向分布结构。
8、细化晶粒:1、晶粒越细小,利于变形方向的晶粒越多2、滑移从晶粒内发生止于晶界处,晶界越多变形抗力越大9、热塑性变形机理:晶内滑移、晶界滑移和扩散蠕变10、塑性:不可逆变形,表征金属的形变能力11、塑性指标:金属在破坏前产生的最大变形程度12、影响塑性的因素:1、化学成分和合金成分对金属塑性的影响2、组织状态对金属塑性的影响3、变形温度4、应变速率5、应力状态13、单位流动压力P:接触面上平均单位面积上的变形力14、碳和杂质元素的影响碳:其含量越高,塑性越差;磷:冷脆;硫:热脆性;氧:热脆性;氮:时效脆性、蓝脆、气孔;氢:氢脆、白点、气孔和冷裂纹等15、合金元素的影响:塑性降低硬度升高16、金属组织的影响(1)晶格类型(2)晶粒度(3)相组成(4)铸造组织17、变形温度对金属塑性的影响:对大多少金属而言,总的趋势是随着温度升高,塑性增加。
但是这种增加并不是线性的,在加热的某些温度区间,由于相态或晶界状态的变化而出现脆性区,使金属的塑性降低。
(蓝脆区和热脆区)18、变形抗力:指金属在发生塑性变形时,产生抵抗变形的能力一般用接触面上平均单位面积变形力来表示,又称单位面积上的流动压力19、质点的应力状态:变形体内某点任意截面上应力的大小和方向20、对变形抗力的影响因素:①化学成分:纯金属和合金②组织结构:组织状态、晶粒大小和相变③变形温度④变形程度:加工硬化⑤变形速度⑥应力状态21、金属的超塑性:细晶超塑性、相变超塑性第十五章应力分析1、研究塑性力学时的四个假设:①连续性假设:变形体不存在气孔等缺陷②匀质性假设:质点的组织、化学成分等相同③各向同性假设④体积不变假设2、质点:有质量但不存在体积或形状的点3、内力:在外力作用下,物体内各质点之间就会产生相互作用的力。
材料成形技术金属材料成形基本原理
图2-13 收缩应力的形成
图2-14 同时凝固原则
4)设法改善铸型、型芯的退让性,合理设置浇冒口。 5 )对铸件进行时效处理。自然时效、人工时效(去应力 退火)和共振时效。
1.1.3.3 铸件的变形与裂纹
1.铸件的变形 残留铸造应力超过铸件材料的屈服极限时产生的翘曲 变形。如图2-15所示的框架铸件,图2-16的T形梁,当刚度 不够时,将产生如图所示的变形。再如图 2-17所示的车床 床身的变形。
铸造:将液态金属浇注到与零件形状、尺寸相适应的铸 型型腔中,待其冷却凝固后,获得一定形状的毛坯或零 件的方法。铸造是生产机器零件毛坯的主要方法之一, 其实质是液态金属逐步冷却凝固成形。
铸造的优点:
1)可以铸出内腔、外形很复杂的毛坯; 2)工艺灵活性大。几乎各种合金,各种尺寸、形状、 重量和数量的铸件都能生产; 3)成本较低。原材料来源广泛,价格低廉。
热阻碍:铸件各部分由于冷却速度不同,收缩量 不同而引起的阻碍,由其引起的应力称热应力。
机械阻碍:铸型、型芯对铸件收缩的阻碍 , 由其 引起的应力称机械应力(收缩应力)。
1.热应力 由热阻碍引起,落砂后热应力仍存在于铸件内,是一 种残留铸造应力,以框架铸件为例,说明残留热应力的形 成过程,如图2-12所示,其热应力形成过程分三阶段。 第 一 阶 段, 两 者 都塑性 变形,无热应力; 第 二 阶 段, 一 塑 性, 一 弹性,仍无热应力; 第 三 阶 段, 两 者 均弹性 变 形, 冷却 慢 的 受拉 , 快的受压。残留热应力 和 合 金 的弹 性 模 量、 线 收 缩 系 数、 铸 件 各部分 壁 厚 差 别及 温 度 差成正 比。
图2-4铅锡合金的流动性与相图的关系
图2-5 结晶特性对流动性的影响 a)恒温下 b)一定温度范围
成型法的加工原理
成型法的加工原理材料成形方法是零件设计的重要内容,也是加工过程中的关键因素,除了机加工外,金属注射成型、塑性成型以及近年兴起的3D打印都是主要技术,下面就来细数一下这些金属成形工艺的特点。
铸造液态金属浇注到与零件形状、尺寸相适应的铸型型腔中,待其冷却凝固,以获得毛坯或零件的生产方法,通常称为金属液态成形或铸造。
工艺流程:液体金属→充型→凝固收缩→铸件工艺特点:1、可生产形状任意复杂的制件,特别是内腔形状复杂的制件。
2、适应性强,合金种类不受限制,铸件大小几乎不受限制。
3、材料来源广,废品可重熔,设备投资低。
4、废品率高、表面质量较低、劳动条件差。
铸造分类:(1)砂型铸造(sand casting)在砂型中生产铸件的铸造方法。
钢、铁和大多数有色合金铸件都可用砂型铸造方法获得。
工艺流程:技术特点:1、适合于制成形状复杂,特别是具有复杂内腔的毛坯;2、适应性广,成本低;3、对于某些塑性很差的材料,如铸铁等,砂型铸造是制造其零件或,毛坯的唯一的成形工艺。
应用:汽车的发动机气缸体、气缸盖、曲轴等铸件(2)熔模铸造(investmentcasting)通常是指在易熔材料制成模样,在模样表面包覆若干层耐火材料制成型壳,再将模样熔化排出型壳,从而获得无分型面的铸型,经高温焙烧后即可填砂浇注的铸造方案。
常称为“失蜡铸造”。
工艺流程:优点:1、尺寸精度和几何精度高;2、表面粗糙度高;3、能够铸造外型复杂的铸件,且铸造的合金不受限制。
缺点:工序繁杂,费用较高应用:适用于生产形状复杂、精度要求高、或很难进行其它加工的小型零件,如涡轮发动机的叶片等。
(3)压力铸造(die casting)利用高压将金属液高速压入一精密金属模具型腔内,金属液在压力作用下冷却凝固而形成铸件。
工艺流程:优点:1、压铸时金属液体承受压力高,流速快2、产品质量好,尺寸稳定,互换性好;3、生产效率高,压铸模使用次数多;4、适合大批大量生产,经济效益好。
成形制造技术介绍
成形制造技术介绍成形制造技术是一种以材料为基础,通过特定的加工方法,将材料加工成特定形状和尺寸的技术。
成形制造技术在工业生产中占有重要地位,广泛应用于汽车制造、航空航天、电子设备等领域。
本文将介绍成形制造技术的基本原理和常见的成形加工方法,以及其在工业生产中的应用。
成形制造技术的基本原理是通过施加力量对材料进行加工,使材料的形状和尺寸发生变化。
成形制造技术主要分为塑性成形、压力成形和去除成形三类。
首先介绍塑性成形技术。
塑性成形技术是利用材料在一定温度和应力条件下的塑性变形特性进行加工,常见的塑性成形工艺包括锻造、压铸和挤压等。
其中锻造是将金属材料放在模具中,通过施加压力使其产生塑性变形,最终得到所需的形状和尺寸。
压铸是将熔化的金属注入模具中,等待其凝固后取出成品。
挤压是将金属材料置于挤压机中,通过挤压力使其变形成所需形状的工艺。
这些塑性成形工艺在制造行业中广泛应用,可以高效地生产出各种零部件和产品。
其次介绍压力成形技术。
压力成形技术是通过加压对材料进行加工,使其填充模具腔室并形成所需形状的加工方法。
压力成形技术主要包括冷冲压、热冲压和深冲压等。
冷冲压是利用冲床对金属材料进行加工,常用于生产汽车车身零部件等。
热冲压则是在一定温度下对金属材料进行加工,以提高金属的塑性变形能力。
深冲压是将金属材料冲压成深层次的形状,常用于生产各种金属容器和零部件。
这些压力成形工艺能够高效地生产出各种金属零部件,具有高精度和高效率的特点。
最后介绍去除成形技术。
去除成形技术是通过去除材料使其形成所需的形状和尺寸的加工方法,主要包括数控加工、激光切割和电火花加工等。
数控加工是利用数控机床对材料进行精细加工,能够生产出高精度的零部件。
激光切割是利用激光对金属材料进行切割,具有高速、高效的特点。
电火花加工是利用电脉冲在导电材料上进行加工,常用于加工复杂零部件和模具。
这些去除成形工艺能够满足对零部件形状和尺寸精度要求高的需求,具有高精度和复杂形状加工的优势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1.2.1 充型能力
充型能力:熔融金属或合金充满铸型型腔,获得形 状完整、轮廓清晰铸件的能力。主要影响因素有:
1. 金属或合金的流动性
流动性是熔融金属的流动能 力,合金的流动性用浇注流动性 试样的方法来衡量,一般采用如 图 2-3 所 示 的 螺 旋 形 试 样 。 流 动 距离越长,表明流动性越好。
金属材料成形技术
第 七 组
材料加工概述
零件或材料的四种加工方法: 1.成形加工:凝固成形、塑性成形、焊接成形、粉末压制、塑料成形; 2.切除加工:车、铣、刨、钻、磨、电火花、电解、超声加工、激光加工等; 3.表面成形加工:表面形变、淬火强化、化学强化、表面镀层、气相沉积镀膜; 4.热处理加工:退火、正火、淬火、回火;
3. 铸型条件
1)铸型的蓄热能力越强,充型能力越差; 2)铸型温度越高,充型能力越好; 3)铸型中的气体阻碍充型; 4)铸件结构,壁厚过小、壁厚变化剧烈、结构复杂、大 平面都影响充型。
1.1.2.2 合金的收缩
1、收缩。合金从液态冷却至常温的过程中,体积或尺寸缩 小的现象。通常用体收缩率或线收缩率来表示:
金熔点最低,ห้องสมุดไป่ตู้流动性最好。
而亚共晶合金,为中间凝固方 式,复杂枝晶阻碍流动,故流
图2-4铅锡合金的流动性与相图的关系
动性差,如图2-5b所示。
图2-5 结晶特性对流动性的影响 a)恒温下 b)一定温度范围
3)杂质和含气量。固态夹杂物使粘度增加,流动性下降; 如灰铁中的MnS;含气量越少,流动性越好。
2)液态金属的性质:具有粘度和表面张力。
2. 液态金属的凝固 液态金属由液态转变为固态的过程,包括形核和长
大两个过程。得到的凝固组织(铸态晶粒形态、大小、 分布、缺陷等)取决于成分、冷却速度、形核条件等。
3. 铸件的凝固方式
在铸件凝固过程中,铸件断面上存在三个区域,即固相 区、凝固区和液相区。其中凝固区对铸件质量有较大影响。 铸件的凝固方式也可根据凝固区的宽窄来划分,如图2-1。
铸件温度梯度主要取决于:
a) 合金的性质。合金的凝固温 度越低、热导率越高、结晶潜 热越大,温度梯度越小,如多 数铝合金。
b) 铸型的蓄热能力越强,激冷
能力越强,温度梯度越大,如
金属型铸造易得致密组织。
图2-2 温度梯度对凝固区域的影响
c) 浇注温度越高,温度梯度减小。
1.1.2 金属与合金的铸造性能
2. 浇注条件
1)浇注温度 浇注温度越高,保持液态的时间越长,流 动性越好;温度越高,合金粘度越低,阻力越小,充型 能力越强。故提高浇注温度能有效提高充型能力;但过 高吸气量和总收缩大,易产生铸造缺陷。故在保证充型 能力的前提下温度应尽量低。生产中薄壁件常采用较高 温度,厚壁件采用较低浇注温度。
2)充型压力 压力越大,充型能力越强。
4. 影响铸件凝固方式的因素
1)合金的结晶温度范围: 结晶温度范围越小,凝固区域 越窄,越倾向于逐层凝固。低碳钢,近共晶成分铸铁倾 向于逐层凝固,高碳钢、远离共晶成分铸铁倾向于糊状 凝固。
2)铸件的温度梯度:在合金的结晶温度范围已定时,若铸 件的温度梯度由小变大,则凝固区由宽变窄,倾向于逐层凝 固。如图2-2所示。
铸造:将液态金属浇注到与零件形状、尺寸相适应的铸 型型腔中,待其冷却凝固后,获得一定形状的毛坯或零 件的方法。铸造是生产机器零件毛坯的主要方法之一, 其实质是液态金属逐步冷却凝固成形。
铸造的优点:
1)可以铸出内腔、外形很复杂的毛坯;
2)工艺灵活性大。几乎各种合金,各种尺寸、形状、 重量和数量的铸件都能生产;
体收缩率 线收缩率
V
V0 V0
V1
100
%
V
t0
t1 100 %
l
l0 l1 l0
100 %
l t0
t1 100 %
式中 V0 、V1 ——合金在 t0 、t1 时的体积(m3); l0 、l1 ——合金在 t0 、t1 时的长度( m ); V 、 l ——合金在 t0 至t1 温度范围内的体收缩系数
表2-1 各类机械工业中铸件重量比
机械类别
%
机床、内燃机、重型机器 风机、压缩机 拖拉机 农业机械 汽车
70 ~ 90 60 ~ 80 50 ~ 70 40 ~ 70 20 ~ 30
1.1.1 金属的凝固
1. 液态金属的结构与性质
1)液态金属的结构:固态金属经加热变为熔融状态即得 液态金属,是由呈有序排列的游动原子集团组成,其结 构与原有固体结构相似,但热运动剧烈,温度越高,热 运动越剧烈,原子集团越小,游动越快。
1)逐层凝固:纯 金属或共晶成分的 合金的凝固,如图 2-1a;
2)糊状凝固:结 晶温度范围很宽的 合金的凝固,如图 2-1c;
图2-1 铸件的凝固方式
a) 逐层凝固 b) 中间凝固 c) 糊状凝固
3)中间凝固:介于逐层凝固和糊状凝固之间,大多数合 金为此凝固方式,如图2-1b所示。
铸件质量与凝固方式有关,逐层凝固时,合金充型能 力强(流动性好),便于防止缩孔、缩松。而糊状凝固时, 充型能力差,易产生缩松。
3)成本较低。原材料来源广泛,价格低廉。
铸造的缺点:
1)铸造组织疏松、晶粒粗大,内部易产生缩孔、缩松、 气孔等缺陷。 2)铸件的机械性能较低。 3)铸造工序多,难以精确控制,使铸件质量不够稳定。
4)劳动条件较差,劳动强度较大。
铸造在机械制造业中应用十分广泛,在各种类型的 机器设备中铸件占很大比重。如表2-1所示。
材料基本加工要素及流程
原材料 (锭料、轧材)
凝固成形 塑性成形 焊接成形
切削加工 凝固成形 塑性成形 焊接成形
表面加工
毛坯 切削加工
零件
热处理
热处理 切削加工
装配
机器
金属材料成型的几种基本原理
1.1 铸造成形基本原理 1.2 塑性成形基本原理 1.3 焊接成形基本原理
一: 铸造成形基本原理
1.1.1 熔融金属的充型凝固过程 1.1.2 金属与合金的铸造性能 1.1.3 铸件的组织与性能
图2-3 螺旋形标准试样
决定合金流动性的主要因素有:
1)合金的种类。
2)合金的成分。同种合金,成 分不同,其结晶特点不同,流 动性也不同。如图2-4所示铅锡 合金的流动性与相图的关系;
纯金属和共晶合金在恒温下结 晶,为逐层凝固方式,如图2-5a 所示,凝固层表面光滑,阻力
小,故流动性好,同时共晶合