2020年最新高考数学公式及知识点总结
2020年高考数学公式及知识点总结
目录高考前数学知识点总结 .......................................................................................................................... 1 一. 备考内容: ....................................................................................................................................... 1 二. 复习过程: ....................................................................................................................................... 1 解析:有放回地抽取3次(每次抽1件),∴n =103 ..................................................................... 19 解析:∵一件一件抽取(有顺序) .................................................................................................... 19 (2)决定组距和组数; ...................................................................................................................... 19 (3)决定分点; .................................................................................................................................. 19 (4)列频率分布表; .......................................................................................................................... 19 (5)画频率直方图。
高考数学必背公式总结(2020年7月整理).pdf
高考公式大总结
根式
当 n 为奇数时, n an = a ;
当 n 为偶数时, n
an
=
a
=
a, a − a,
a
0
0
.
数,并把 log10N 记作_lg 10; ② 自然对数:以_e_为底的对数称为自然对
数,并把 logeN 记作 ln N.
1.同角三角函数的基本关系
sin 2 + cos2 = 1
则 ai + ak = am + an
2 、 点 到 直 线 距 离 : 点 P(x0 , y0 ) , 直 线 l : 等比数列的性质:{ an }为等差数列,若 i + k = m + n ,
Ax + By + C = 0 , 则 点 P 到 直 线 l 的 距 离 则 ai ak = am an
③ log a M n = n log a M ;
○4
log am
M
n
=
n log m
a
M
① 常用对数:以 10 为底的对数叫做常用对
sin( ) = sin cos cos sin ;
cos( ) = cos cos sin sin ;
tan( ) = tan tan ;
180 270
角 的
弧度数 0
sin
0
cos
1
tan
0
64
1
2
2
2
32 22
3
1
3
2 5
3
2
36
3
1
2
1 32 2
3
2
-1
新高考数学公式知识点汇总
新高考数学公式知识点汇总在新高考改革背景下,学生们在数学考试中将会遇到更加注重能力培养和实际运用的题目。
而数学公式作为数学学习的重要基础,对于学生而言也是必备的知识点。
下面将为大家整理一份新高考数学公式的知识点汇总,希望能够对大家的学习有所帮助。
一、平面解析几何公式平面解析几何公式是数学中的重要内容,建立在笛卡尔坐标系的基础上,主要用于描述平面上的几何关系。
1. 点到直线的距离公式设直线的方程为Ax+By+C=0,点的坐标为(x0, y0),则点到直线的距离为:d = |Ax0 + By0 + C| / √(A^2 + B^2)2. 直线的斜率公式设直线上两点的坐标分别为(x1, y1)和(x2, y2),则直线的斜率为:k = (y2 - y1) / (x2 - x1)3. 直线的点斜式和斜截式设直线通过点(x0, y0),斜率为k,则直线的点斜式和斜截式分别为:点斜式:y - y0 = k(x - x0)斜截式:y = kx + b二、立体几何公式立体几何公式主要涉及到空间中的几何图形的计算,是解决空间几何问题的基础。
1. 球体积公式设球体半径为r,则球体积为:V = (4/3)πr^32. 圆柱体体积公式设圆柱体的底面半径为r,高为h,则圆柱体体积为:V = πr^2h3. 圆锥体体积公式设圆锥体的底面半径为r,高为h,则圆锥体体积为:V = (1/3)πr^2h三、数列与级数公式数列与级数是数学中的重要概念,它们有着广泛的应用,特别是在数学建模等领域。
1. 等差数列通项公式设等差数列的首项为a1,公差为d,则第n项为:an = a1 + (n-1)d2. 等差数列求和公式设等差数列的首项为a1,末项为an,项数为n,则等差数列的和为:Sn = (n/2)(a1 + an)3. 等比数列通项公式设等比数列的首项为a1,公比为q,则第n项为:an = a1 * q^(n-1)四、微积分基本公式微积分是数学中的重要分支,研究函数的变化规律和求解曲线下的面积等问题。
高考数学公式及知识点总结
高考数学公式及知识点总结高考数学是许多同学感到头疼的科目,但只要掌握了重点公式和知识点,就能在考试中取得更好的成绩。
以下是对高考数学中重要公式和知识点的详细总结。
一、函数1、函数的定义:设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函数。
2、函数的性质单调性:设函数 f(x)的定义域为 I,如果对于定义域 I 内某个区间D 上的任意两个自变量的值 x1,x2,当 x1<x2 时,都有 f(x1)<f(x2)(或 f(x1)>f(x2)),那么就说函数 f(x)在区间 D 上是增函数(或减函数)。
奇偶性:对于函数 f(x)的定义域内任意一个 x,都有 f(x)=f(x),则f(x)为偶函数;对于函数 f(x)的定义域内任意一个 x,都有 f(x)=f(x),则 f(x)为奇函数。
周期性:对于函数 y=f(x),如果存在一个不为零的常数 T,使得当x 取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数 y=f(x)叫做周期函数,不为零的常数 T 叫做这个函数的周期。
3、常见函数的图像和性质一次函数:y = kx + b(k、b 为常数,k≠0),图像是一条直线。
二次函数:y = ax²+ bx + c(a≠0),图像是一条抛物线。
当 a>0 时,开口向上;当 a<0 时,开口向下。
对称轴为 x = b/2a,顶点坐标为(b/2a,(4ac b²)/4a)。
反比例函数:y = k/x(k 为常数,k≠0),图像是双曲线。
当 k>0 时,图像在一、三象限;当 k<0 时,图像在二、四象限。
二、三角函数1、三角函数的定义正弦函数:sinα =对边/斜边余弦函数:cosα =邻边/斜边正切函数:tanα =对边/邻边2、特殊角的三角函数值|角度|0°|30°|45°|60°|90°|||||||||sin|0|1/2|√2/2|√3/2|1||cos|1|√3/2|√2/2|1/2|0||tan|0|√3/3|1|√3|不存在|3、三角函数的基本关系式sin²α +cos²α = 1tanα =sinα/cosα4、三角函数的图像和性质正弦函数y =sin x 的图像,定义域为R,值域为-1,1,周期为2π,对称轴为 x =kπ +π/2(k∈Z),对称中心为(kπ,0)(k∈Z)。
新高考数学知识点公式汇总
新高考数学知识点公式汇总数学是一门既有逻辑性又有创造性的学科,在新高考中扮演着重要的角色。
掌握数学知识点和公式是学生取得好成绩的关键之一。
本文将对新高考数学中的一些重要知识点和公式进行系统的汇总,帮助学生更好地备考。
一. 几何1. 直角三角形直角三角形的边长关系:勾股定理a² + b² = c²2. 距离公式两点之间的距离:已知坐标(x₁,y₁)和(x₂,y₂)d = √((x₂ - x₁)² + (y₂ - y₁)²)3. 向量向量的模:已知向量(x,y)|v| = √(x² + y²)4. 平行四边形相邻两边相等:已知边长a和高hA = a × h5. 圆周长公式:已知半径rC = 2πr面积公式:已知半径rA = πr²二. 代数1. 一元二次方程解一元二次方程:已知方程ax² + bx + c = 0 x = (-b ± √(b² - 4ac)) / 2a2. 指数与对数指数的性质:aⁿ × aᵐ = a^(n+m)(aⁿ)ᵐ= a^(n×m)a⁰ = 1aⁿ / aᵐ = a^(n-m)对数的性质:logₐ(xy) = logₐx + logₐylogₐ(x/y) = logₐx - logₐylogₐ(x^m) = mlogₐxlogₐ₁₀x = logₐx / logₐ₁₀3. 等比数列通项公式:已知首项a₁和公比raₙ = a₁ × r^(n-1)求和公式:Sₙ = a₁(1 - rⁿ) / (1 - r)4. 复数复数的运算:加法:(a + bi) + (c + di) = (a + c) + (b + d)i 减法:(a + bi) - (c + di) = (a - c) + (b - d)i乘法:(a + bi) × (c + di) = (ac - bd) + (ad + bc)i除法:(a + bi) ÷ (c + di) = (ac + bd)/(c² + d²) + (bc - ad)i/(c² + d²)三. 概率与统计1. 随机事件随机事件发生的几率:已知样本空间S和随机事件EP(E) = E的可能性数 / S的可能性数2. 概率的计算加法原理:P(A ∪ B) = P(A) + P(B) - P(A ∩ B)乘法原理:P(A ∩ B) = P(A) × P(B|A)3. 排列与组合排列公式:从n个不同的元素中取出m个元素A(n,m) = n! / (n-m)!组合公式:从n个不同的元素中取出m个元素,不考虑顺序C(n,m) = n! / (m!(n-m)!)四. 数列与数集1. 等差数列通项公式:已知首项a₁和公差daₙ = a₁ + (n-1)d求和公式:Sₙ = (a₁ + aₙ) × n / 22. 集合并集:A ∪ B 表示A和B中的元素组成的集合交集:A ∩ B 表示A和B共有的元素组成的集合差集:A - B 表示在A中但不在B中的元素组成的集合以上仅是新高考数学中的一部分重要知识点和公式汇总,希望能对广大学生备考有所帮助。
2020年高考数学公式(含学生填空帮助记忆)精华版(版共16页)
2020年高考数学常用公式及结论-精华版1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.包含关系A B A A B B =⇔=I U U U A B C B C A ⇔⊆⇔⊆ U A C B ⇔=ΦI U C A B R ⇔=U2.集合12{,,,}n a a a L 的子集个数共有 个;真子集有 个;非空子集有个;(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠.4.充要条件(1)充分条件:若 ,则p 是q 充分条件. (2)必要条件:若 ,则p 是q 必要条件.(3)充要条件:若 ,且 ,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.5.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.6.分数指数幂(1)m na 0,,a m n N *>∈,且1n >).(2)1m n mna a -=(0,,a m n N *>∈,且1n >).7.根式的性质(1)n a =;(2)当n a =;当n ,0||,0a a a a a ≥⎧==⎨-<⎩.8.有理指数幂的运算性质(1) (0,,)rsr sa a aa r s Q +⋅=>∈.(2) ()(0,,)r srsa a a r s Q =>∈. (3)()(0,0,)rr rab a b a b r Q =>>∈.9.指数式与对数式的互化式 log b a N b a N =⇔=(0,1,0)a a N >≠>. 10.对数的换底公式log log log m a m N N a=(0a >,且1a ≠,0m >,且1m ≠, 0N >). 推论 log log mn a an b b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).11.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+; (2) log log log a a a M M N N =-;(3)log log ()n a a M n M n R =∈.12.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++L ). 13.等差数列的通项公式 a n = ;其前n 项和公式为S n = = . 14.等比数列的通项公式an= ;其前n 项的和公式为S n = .15.同角三角函数的基本关系式:22sin cos 1θθ+=;tan θ=θθcos sin 。
高考数学必修公式大全
数学必修1-5常用公式及结论必修1: 一、集合1、含义与表示:(1)集合中元素的特征:确定性,互异性,无序性 (2)集合的分类;有限集,无限集(3)集合的表示法:列举法,描述法,图示法2、集合间的关系:子集:对任意x A ∈,都有 x B ∈,则称A 是B 的子集。
记作A B ⊆ 真子集:若A 是B 的子集,且在B 中至少存在一个元素不属于A ,则A 是B 的真子集, 记作A ≠⊂B 集合相等:若:,A B B A ⊆⊆,则A B =3. 元素与集合的关系:属于∈ 不属于:∉ 空集:φ4、集合的运算:并集:由属于集合A 或属于集合B 的元素组成的集合叫并集,记为 A B U交集:由集合A 和集合B 中的公共元素组成的集合叫交集,记为A B I补集:在全集U 中,由所有不属于集合A 的元素组成的集合叫补集,记为U C A 5.集合12{,,,}n a a a L 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个; 6.常用数集:自然数集:N 正整数集:*N 整数集:Z 有理数集:Q 实数集:R 二、函数的奇偶性1、定义: 奇函数 <=>f (– x ) = – f ( x ),偶函数 <=>f (–x ) = f ( x )(注意定义域)2、性质:(1)奇函数的图象关于原点成中心对称图形; (2)偶函数的图象关于y 轴成轴对称图形;(3)如果一个函数的图象关于原点对称,那么这个函数是奇函数; (4)如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 二、函数的单调性1、定义:对于定义域为D 的函数f (x ),若任意的x 1, x 2∈D ,且x 1< x 2① f ( x 1) < f ( x 2) <=> f ( x 1) – f ( x 2) < 0<=>f (x )是增函数 ② f ( x 1) > f ( x 2) <=> f ( x 1) – f ( x 2) > 0<=>f (x )是减函数 2、复合函数的单调性:同增异减三、二次函数y =ax 2 +bx +c (0a ≠)的性质1、顶点坐标公式:⎪⎪⎭⎫ ⎝⎛−−a b ac a b 44,22, 对称轴:a bx 2−=,最大(小)值:a b ac 442−2.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =−+≠; (3)两根式12()()()(0)f x a x x x x a =−−≠. 四、指数与指数函数 1、幂的运算法则:(1)a m • a n =a m + n ,(2)n m n m a a a −=÷,(3)(a m )n =a m n (4)(ab )n = a n • b n(5) n n nb a b a =⎪⎭⎫⎝⎛(6)a 0 = 1 ( a ≠0)(7)n n a a 1=− (8)m n m n a a =(9)m n m naa 1=−2、根式的性质(2)当na =; 当n ,0||,0a a a a a ≥⎧==⎨−<⎩.4、指数函数y = a x (a > 0且a ≠1)的性质:(1)定义域:R ; 值域:( 0 , +∞) (2)图象过定点(0,1)5.指数式与对数式的互化: log b a N b a N =⇔=(0,1,0)a a N >≠>. 五、对数与对数函数 1对数的运算法则:(1)a b = N <=> b = log a N (2)log a 1 = 0(3)log a a = 1(4)log a a b = b (5)a log a N = N(6)log a (MN) = log a M + log a N (7)log a (N M) = log a M -- log a N(8)log a N b = b log a N (9)换底公式:log a N =aNb b log log (10)推论 log log m n a a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). (11)log a N =aN log 1(12)常用对数:lg N = log 10 N (13)自然对数:ln A = log e A (其中 e = 2.71828…) 2、对数函数y = log a x (a > 0且a ≠1)的性质:(1)定义域:( 0 , +∞) ; 值域:R (2)图象过定点(1,0)六、幂函数y = x a 的图象:(1) 根据 a例如:y = x 221x x y == 11−==x xy七.图象平移:若将函数)(x f y =的图象右移a 、上移b 个单位, 得到函数b a x f y +−=)(的图象; 规律:左加右减,上加下减 八. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+. 九、函数的零点:1.定义:对于()y f x =,把使()0f x =的X 叫()y f x =的零点。
新高考数学必背公式
一、代数部分平方差公式:公式:a² - b² = (a + b)(a - b)全平方公式:公式:a²± 2ab + b² = (a ± b)²立方和与立方差公式:立方和公式:a³ + b³ = (a + b)(a² - ab + b²)立方差公式:a³ - b³ = (a - b)(a² + ab + b²)因式分解公式:a² - b² = (a + b)(a - b),a³ + b³ = (a + b)(a² - ab + b²),等等。
集合运算性质:并集:A∪B=B∪A,A∪A=A,A∪∅=∅∪A=A交集:A∩B=B∩A,A∩A=A,A∩∅=∅∩A=∅德·摩根定律:(A∩B)=(A)∪(B)(A∪B)=(A)∩(B)不等式性质:如果a<b,c<d,那么a+c<b+d如果a<b,c>0,那么ac<bc如果a<b,c<0,那么ac>bc基本不等式:a+b≥2(a,b∈R+),当且仅当a=b时等号成立柯西不等式:二维柯西不等式:(a+b)(c+d)≥(ac+bd),当且仅当ad=bc时成立伯努利不等式:对于实数x>-1,n≥1时,有(1+x)n≤1+nx成立,当且仅当n=0,1,或x=0时,等号成立。
二、三角函数部分正弦、余弦、正切的定义:sin = 对边/斜边cosθ = 邻边/斜边tanθ = 对边/邻边三角函数的和差公式:sin(α + β) = sinαcosβ + cosαsinβcos(α + β) = cosαcosβ - sinαsinβtan(α + β) = (tanα + tanβ) / (1 - tanαtanβ)三角函数的倍角公式:sin2α = 2sinαcosαcos2α = cos²α - sin²αtan2α = 2tanα / (1 - tan²α)三、几何部分圆的周长和面积公式:周长:C = 2πr面积:S = π*r²三角形的面积公式:S = 1/2 * 底 * 高平行四边形的面积公式:S = 底 * 高四、微积分部分导数的定义:(x) = lim(Δx→0) [f(x + Δx) - f(x)] / Δx 积分的基本公式:∫f(x)dx = f(x) + C(C为常数)。
高考数学公式总结大全
高考数学公式总结大全高考数学公式总结大全高考数学公式在备考中起到了至关重要的作用。
熟练掌握数学公式,能够为我们解题提供方便和效率。
下面是一份高考数学公式总结大全,供广大考生参考使用。
一、代数公式1. 二项式定理:$$(a+b)^n=\sum_{k=0}^{n}C_n^k \cdot a^{n-k} \cdot b^k$$2. 一元二次方程解的公式:$$x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}$$3. 二次根式:$$\sqrt{mn}=\sqrt{m}\sqrt{n}, \;\left(\frac{m}{n}\right)^{\frac{1}{2}}=\frac{\sqrt{m}}{\sqrt{n}} $$4. 分式:$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}, \;\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{ad}{bc}$$5. 指数幂:$$a^m \cdot a^n = a^{m+n}, \; \frac{a^m}{a^n} =a^{m-n}, \; (a^m)^n = a^{mn}$$6. 对数换底公式:$$\log_a{x}=\frac{\log_b{x}}{\log_b{a}}$$7. 三角函数:$$\sin{2x} = 2\sin{x}\cos{x}, \; \cos{2x} =\cos^2{x}-\sin^2{x}, \; \tan{x} = \frac{\sin{x}}{\cos{x}}$$8. 三角三倍角公式:$$\sin{3x} = 3\sin{x}-4\sin^3{x}, \; \cos{3x} = 4\cos^3{x}-3\cos{x}, \; \tan{3x} = \frac{3\tan{x}-\tan^3{x}}{1-3\tan^2{x}}$$9. 三角和差公式:$$\sin{(a \pm b)} = \sin{a}\cos{b} \pm\cos{a}\sin{b}, \; \cos{(a \pm b)} = \cos{a}\cos{b} \mp\sin{a}\sin{b}$$10. 对数运算:$$\log_a{(mn)} = \log_a{m}+\log_a{n}, \;\log_a{\left(\frac{m}{n}\right)} = \log_a{m}-\log_a{n}$$二、几何公式1. 三角形面积公式:$$S = \frac{1}{2}bh, \; S =\frac{1}{2}ab\sin{C}, \; S = \sqrt{s(s-a)(s-b)(s-c)}$$2. 三角形周长公式:$$C = a+b+c$$3. 三角形中位线定理:三条中线交于同一点,且该点距离三个顶点的距离分别为各边长度的一半。
高考必备数学公式大全
高考必备数学公式大全一、集合。
1. 集合的基本运算。
- 交集:A∩ B={xx∈ A且x∈ B}- 并集:A∪ B ={xx∈ A或x∈ B}- 补集:∁_UA={xx∈ U且x∉ A}(U为全集)2. 集合元素个数公式。
- n(A∪ B)=n(A)+n(B)-n(A∩ B)二、函数。
1. 函数的定义域。
- 分式函数y = (f(x))/(g(x)),定义域为g(x)≠0的x的取值范围。
- 偶次根式函数y=sqrt[n]{f(x)}(n为偶数),定义域为f(x)≥slant0的x的取值范围。
2. 函数的单调性。
- 设x_1,x_2∈[a,b]且x_1,对于函数y = f(x)- 若f(x_1),则y = f(x)在[a,b]上是增函数,f^′(x)≥slant0(可导函数时)。
- 若f(x_1)>f(x_2),则y = f(x)在[a,b]上是减函数,f^′(x)≤slant0(可导函数时)。
3. 函数的奇偶性。
- 对于函数y = f(x),定义域关于原点对称。
- 若f(-x)=f(x),则y = f(x)是偶函数,其图象关于y轴对称。
- 若f(-x)= - f(x),则y = f(x)是奇函数,其图象关于原点对称。
4. 一次函数y=kx + b(k≠0)- 斜率k=frac{y_2-y_1}{x_2-x_1},截距为b。
5. 二次函数y = ax^2+bx + c(a≠0)- 对称轴x =-(b)/(2a)。
- 顶点坐标(-(b)/(2a),frac{4ac - b^2}{4a})。
- 当a>0时,函数开口向上,在x =-(b)/(2a)处取得最小值frac{4ac -b^2}{4a};当a<0时,函数开口向下,在x =-(b)/(2a)处取得最大值frac{4ac -b^2}{4a}。
6. 指数函数y = a^x(a>0,a≠1)- 性质:当a > 1时,函数在R上单调递增;当0 < a < 1时,函数在R上单调递减。
数学高考知识点总结2020最新_高考数学知识点
数学高考知识点总结2020最新_高考数学知识点学习任何一门科目都离不开对知识点的总结,尤其是同学们在学习数学时,更要总结各个知识点,这样也方便同学们日后的复习。
下面就是小编给大家带来的高考数学知识点总结,希望能帮助到大家!高考数学知识点总结11.数列的定义、分类与通项公式(1)数列的定义:①数列:按照一定顺序排列的一列数.②数列的项:数列中的每一个数.(2)数列的分类:分类标准类型满足条件项数有穷数列项数有限无穷数列项数无限项与项间的大小关系递增数列an+1 an其中n∈N_减数列an+1 an p= 常数列an+1=an(3)数列的通项公式:如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.2.数列的递推公式如果已知数列{an}的首项(或前几项),且任一项an与它的前一项an-1(n≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式.3.对数列概念的理解(1)数列是按一定“顺序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关,这有别于集合中元素的无序性.因此,若组成两个数列的数相同而排列次序不同,那么它们就是不同的两个数列.(2)数列中的数可以重复出现,而集合中的元素不能重复出现,这也是数列与数集的区别.4.数列的函数特征数列是一个定义域为正整数集N_或它的有限子集{1,2,3,…,n})的特殊函数,数列的通项公式也就是相应的函数解析式,即f(n)=an(n∈N_.高考数学知识点总结2符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹.轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】就是与几何轨迹对应的代数描述。
2020高中高考必背88个数学公式 高中所有数学公式整理(完整版)
2020高中必背88个数学公式高中所有数学公式整理目录1圆的公式 (1)2椭圆公式 (1)3两角和公式 (2)4倍角公式 (2)5半角公式 (2)6和差化积 (2)7等差数列 (3)8等比数列 (3)9抛物线 (4)10正余弦定理 (4)11诱导公式 (5)1圆的公式1、圆体积=4/3(pi)(r^3)2、面积=(pi)(r^2)3、周长=2(pi)r4、圆的标准方程(x-a)2+(y-b)2=r2【(a,b)是圆心坐标】5、圆的一般方程x2+y2+dx+ey+f=0【d2+e2-4f>0】2椭圆公式1、椭圆周长公式:l=2πb+4(a-b)2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差.3、椭圆面积公式:s=πab4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率t,但这两个公式都是通过椭圆周率t推导演变而来。
3两角和公式1、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa2、cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb3、tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)4倍角公式1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a5半角公式1、sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)2、cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)3、tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))4、ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))6和差化积1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb7等差数列1、等差数列的通项公式为:an=a1+(n-1)d(1)2、前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0.在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式.3、从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aqSm-1=(2n-1)an,S2n+1=(2n+1)an+1Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等.和=(首项+末项)*项数÷2项数=(末项-首项)÷公差+1首项=2和÷项数-末项末项=2和÷项数-首项项数=(末项-首项)/公差+18等比数列1、等比数列的通项公式是:An=A1*q^(n-1)2、前n项和公式是:Sn=[A1(1-q^n)]/(1-q)且任意两项am,an的关系为an=am·q^(n-m)3、从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}4、若m,n,p,q∈N*,则有:ap·aq=am·an,等比中项:aq·ap=2arar则为ap,aq等比中项.记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列.在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的.性质:①若m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq;②在等比数列中,依次每k项之和仍成等比数列.“G是a、b的等比中项”“G^2=ab(G≠0)”.在等比数列中,首项A1与公比q都不为零.9抛物线1、抛物线:y=ax*+bx+c就是y等于ax的平方加上bx再加上c。
高考数学必考知识点及公式
高考数学必考知识点及公式总结是对某一特定时间段内的学习和工作生活等表现情况加以回顾和分析的一种书面材料,它可以帮助我们有寻找学习和工作中的规律。
下面是收集整理的“高考数学必考知识点总结” ,欢迎各位考生参考阅读。
最后祝各位考生高考顺利。
高考数学必考知识点及公式高考数学必考知识点1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h 为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高,3、正方体a-边长,S=6a2,V=a34、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc5、棱柱S-底面积h-高V=Sh6、棱锥S-底面积h-高V=Sh/37、棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/38、拟柱体S1-上底面积,S2-下底面积,S0-中截面积h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—侧面积,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)11、直圆锥r-底半径h-高V=πr^2h/312、圆台r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/315、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/616、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/417、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)高考数学必考公式知识点1.适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。
高考数学必背公式整理(衡水中学高中数学组)
高考数学必背公式整理一、平面几何公式1. 直线方程- 一般式:Ax + By + C = 0- 斜截式:y = kx + b- 截距式:x/a + y/b = 1- 两点式:(y-y₁)/(x-x₁) = (y₂-y₁)/(x₂-x₁)2. 圆的方程- 标准方程:(x-a)² + (y-b)² = r²- 一般方程:x² + y² + Dx + Ey + F = 0 - 中心半径方程:(x-h)² + (y-k)² = r²3. 直角三角形- 勾股定理:a² + b² = c²- 正弦定理:a/sinA = b/sinB = c/sinC - 余弦定理:c² = a² + b² - 2abcosC- 正切定理:tanA = b/a4. 圆锥曲线- 椭圆:x²/a² + y²/b² = 1- 双曲线:x²/a² - y²/b² = 1- 抛物线:y² = 2px二、空间几何公式1. 空间中的直线- 参数方程:x = x₁ + at, y = y₁ + bt, z = z₁ + ct - 对称式:(x-x₁)/l = (y-y₁)/m = (z-z₁)/n2. 空间中的平面- 一般方程:Ax + By + Cz + D = 0- 点法式:A(x-x₁) + B(y-y₁) + C(z-z₁) = 0- 三点式:[ABCD] = 03. 空间中的球面- 标准方程:(x-a)² + (y-b)² + (z-c)² = r²- 一般方程:x² + y² + z² + Dx + Ey + Fz + G = 0 - 中心半径方程:(x-h)² + (y-k)² + (z-l)² = r²4. 空间向量- 点积:a·b = |a| |b| cosθ- 叉积:a×b = |a| |b| sinθn- 混合积:[a,b,c] = a·(b×c)三、解析几何公式1. 直线和平面- 平面方程:Ax + By + Cz + D = 0- 直线方程:(x-x₁)/l = (y-y₁)/m = (z-z₁)/n- 点到直线距离:d = |Ax₀ + By₀ + Cz₀ + D|/√(A² + B² + C²) - 点到平面距离:d = |Ax₀ + By₀ + Cz₀ + D|/√(A² + B² + C²)2. 点、向量和运算- 点积:a·b = |a| |b| cosθ- 叉积:a×b = |a| |b| sinθn3. 曲线和曲面- 曲线斜率:y‘ = f'(x) = dy/dx- 曲面切面:z = f(x, y)- 曲线弧长:L = ∫√(1 + (dy/dx)²)dx四、数列与级数公式1. 数列- 等差数列通项公式:aₙ = a₁ + (n-1)d- 等比数列通项公式:aₙ = a₁qⁿ⁻¹- 通项公式求和:Sₙ = (a₁+aₙ)n/22. 级数- 等差级数求和:Sₙ = n(a₁+aₙ)/2- 等比级数求和:Sₙ = a₁(1-qⁿ)/(1-q)3. 数学归纳法- 数学归纳法证明- 数学归纳法应用五、概率统计公式1. 概率- 事件概率:P(A) = n(A)/n(Ω)- 加法公式:P(A∪B) = P(A) + P(B) - 条件概率:P(A|B) = P(A∩B)/P(B)2. 统计- 样本均值:μ = Σxᵢ/n- 样本方差:σ²= Σ(xᵢ-μ)²/n- 标准差:σ = √σ²3. 随机变量- 期望:E(X) = ΣxᵢP(X=xᵢ)- 方差:Var(X) = E(X²) - [E(X)]²- 协方差:Cov(X,Y) = E((X-E(X))(Y-E(Y)))六、函数与导数公式1. 基本函数- 幂函数:f(x) = xⁿ- 指数函数:f(x) = aⁿ- 对数函数:f(x) = logₐx- 三角函数:f(x) = sinx, cosx, tanx2. 函数性质- 奇函数和偶函数- 单调性和极值- 函数图像和性态3. 导数与微分- 导数定义:f'(x) = lim(h→0)(f(x+h)-f(x))/h - 函数求导:(xⁿ)’ = nxⁿ⁻¹- 链式法则:(f(g(x)))’ = f’(g(x))·g’(x)- 微分运算:dy = f’(x)dx七、积分公式1. 不定积分- 基本积分公式 - 定积分计算 - 变限积分求导2. 定积分- 定积分性质 - 定积分应用 - 变限积分求导3. 微分方程- 微分方程定解 - 微分方程解法 - 微分方程应用八、高等代数公式1. 行列式- 二阶行列式 - 三阶行列式 - 克拉默法则2. 矩阵运算- 矩阵相加- 矩阵相乘- 矩阵转置3. 线性方程组- 高斯消元法- 矩阵法解方程组- 克拉默法则以上是高考数学必背公式的整理,希望同学们能够认真学习并灵活运用这些公式,提高数学应用能力,取得优异的成绩。
高考数学公式总结大全
高考数学公式总结大全数学在高考中占据着非常重要的地位,而数学公式更是考试中必不可少的部分。
掌握好数学公式,对于高考取得好成绩至关重要。
因此,我将在这里为大家总结一些高考数学中常用的公式,希望能够帮助大家更好地备战高考。
一、代数部分。
1. 二次函数的顶点坐标公式:对于二次函数y=ax^2+bx+c,其顶点坐标为,(-b/2a, -Δ/4a),其中Δ=b^2-4ac。
2. 二次方程求根公式:对于一元二次方程ax^2+bx+c=0,其根的公式为,x1,2=(-b±√Δ)/2a,其中Δ=b^2-4ac。
3. 等差数列前n项和公式:对于等差数列an=a1+(n-1)d,其前n项和Sn=(a1+an)n/2。
4. 等比数列前n项和公式:对于等比数列an=a1q^(n-1),其前n项和Sn=a1(1-q^n)/(1-q)。
5. 二项式定理:(a+b)^n = C0n a^n + C1n a^(n-1)b + C2n a^(n-2)b^2 + ... + Cnn b^n。
二、几何部分。
1. 直角三角形斜边长公式:对于直角三角形,斜边长c的计算公式为,c=√(a^2+b^2)。
2. 圆的面积和周长公式:圆的面积公式为,S=πr^2,周长公式为,C=2πr。
3. 三角形面积公式:对于三角形,其面积S可以通过海伦公式计算,S=√[p(p-a)(p-b)(p-c)],其中p为半周长,a、b、c为三边长。
4. 直线斜率公式:直线斜率的计算公式为,k=(y2-y1)/(x2-x1)。
5. 圆锥、圆柱、圆球体积公式:圆锥体积V=1/3πr^2h,圆柱体积V=πr^2h,圆球体积V=4/3πr^3。
三、概率与统计部分。
1. 事件的概率公式:对于事件A发生的概率P(A)的计算公式为,P(A)=n/N,其中n为A发生的次数,N为总次数。
2. 期望值公式:对于随机变量X的期望值E(X)的计算公式为,E(X)=∑(xP(x)),即所有可能取值的乘积再求和。
高考数学必考必背公式全集(2020年整理)
高考数学必考必背公式全集(2020年整理).doc学海无涯对数运算公式:1.loga(MN) = logaM + logaN2.loga(M/N) = logaM - logaN3.loga(M^k) = klogaM4.loga(1) = 05.loga(a) = 16.loga(1/M) = -logaM7.loga(M^n) = nlogaM___9.logaM = logcM / logca 三角函数运算公式:1.sinα = tanα / cosα2.sin^2α + cos^2α = 13.sin(2kπ + x) = sin(x) cos(2kπ + x) = cos(x)___(2kπ + x) = tan(x) sin(π + x) = -sin(x)cos(π + x) = -cos(x)tan(π + x) = -tan(x)4.sin(α ± β) = sinαcosβ ± cosαsinβcos(α ± β) = cosαcosβ ∓ sinαsinβtan(α ± β) = (tanα ±tanβ) / (1 ∓ tanαtanβ)5.sin2α = 2sinαcosαcos2α = cos^2α - sin^2α = 2cos^2α - 1 = 1 - 2sin^2αtan2α = (2tanα) / (1 - tan^2α)6.a sinθ + b cosθ = √(a^2 + b^2) sin(θ + φ)。
where tanφ = b/a and |φ| < π/27.sin^2θ = (1 - cos2θ) / 2cos^2θ = (1 + cos2θ) / 2tanθ = sinθ / cosθ三角函数图像与性质:1.The domain of y = sin x。
y = cos x is R。
and the domain of y = tan x is {x | x ≠ kπ + π/2.k ∈ Z}.2.The range of y = sin x。
高考数学基础知识点公式总结归纳
高考数学基础知识点公式总结归纳数学作为高考的一门重要科目,其基础知识点和公式的掌握对于学生的成绩至关重要。
下面将对高考数学中常见的基础知识点和公式进行总结和归纳,帮助同学们更好地备考。
一、代数运算1. 加法和减法法则:a+b=b+a,a-b=b-a。
2. 乘法法则:a*b=b*a,(a+b)*c=a*c+b*c。
3. 幂运算法则:a^n*a^m=a^(n+m),(a^n)^m=a^(n*m),(a*b)^n=a^n*b^n。
4. 分式运算法则:a/b=a*b^(-1),a/b/c=a/(b*c)。
二、方程与函数1. 一次方程:ax+b=0,x=-b/a。
2. 二次方程求根公式:x=(-b±√(b^2-4ac))/(2a)。
3. 直线方程:y=kx+b。
4. 函数求导:对于函数f(x),f'(x)=lim(h→0)[f(x+h)-f(x)]/h。
5. 反函数求导:如果f(x)和g(x)互为反函数,则g'(x)=1/f'(g(x))。
三、三角函数1. 三角函数定义:sinθ=对边/斜边,cosθ=邻边/斜边,tanθ=对边/邻边。
2. 基本三角函数值:sin0=0,cos0=1,tan0=0,sinπ/6=1/2,cosπ/6=√3/2,tanπ/6=√3/3,sinπ/4=cosπ/4=√2/2,tanπ/4=1。
3. 三角函数的关系式:sin^2θ+cos^2θ=1,tanθ=sinθ/cosθ,secθ=1/cosθ,cscθ=1/sinθ,cotθ=1/tanθ。
四、立体几何1. 圆的面积公式:S=πr^2。
2. 圆的周长公式:C=2πr。
3. 球的体积公式:V=(4/3)πr^3。
4. 圆柱体的体积公式:V=πr^2h。
5. 圆锥体的体积公式:V=(1/3)πr^2h。
6. 立方体的体积公式:V=a^3。
五、概率与统计1. 期望公式:E(X)=∑(x*p(x)),其中x为取值,p(x)为概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考前数学知识点总结一. 备考内容:知识点总结二. 复习过程:高考临近,对以下问题你是否有清楚的认识?1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
中元素各表示什么?注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
3. 注意下列性质:(3)德摩根定律:4. 你会用补集思想解决问题吗?(排除法、间接法)6. 命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。
)原命题与逆否命题同真、同假;逆命题与否命题同真同假。
7. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B中有元素无原象。
)8. 函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域)9. 求函数的定义域有哪些常见类型?10. 如何求复合函数的定义域?义域是_____________。
11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?12. 反函数存在的条件是什么?(一一对应函数)求反函数的步骤掌握了吗?(①反解x;②互换x、y;③注明定义域)13. 反函数的性质有哪些?①互为反函数的图象关于直线y=x对称;②保存了原来函数的单调性、奇函数性;14. 如何用定义证明函数的单调性?(取值、作差、判正负)如何判断复合函数的单调性?∴……)15. 如何利用导数判断函数的单调性?值是()A. 0B. 1C. 2D. 3∴a的最大值为3)16. 函数f(x)具有奇偶性的必要(非充分)条件是什么?(f(x)定义域关于原点对称)注意如下结论:(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。
17. 你熟悉周期函数的定义吗?函数,T是一个周期。
)如:18. 你掌握常用的图象变换了吗?注意如下“翻折”变换:19. 你熟练掌握常用函数的图象和性质了吗?的双曲线。
应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程②求闭区间[m,n]上的最值。
③求区间定(动),对称轴动(定)的最值问题。
④一元二次方程根的分布问题。
由图象记性质!(注意底数的限定!)利用它的单调性求最值与利用均值不等式求最值的区别是什么?20. 你在基本运算上常出现错误吗?21. 如何解抽象函数问题?(赋值法、结构变换法)22. 掌握求函数值域的常用方法了吗?(二次函数法(配方法),反函数法,换元法,均值定理法,判别式法,利用函数单调性法,导数法等。
)如求下列函数的最值:23. 你记得弧度的定义吗?能写出圆心角为α,半径为R的弧长公式和扇形面积公式吗?24. 熟记三角函数的定义,单位圆中三角函数线的定义25. 你能迅速画出正弦、余弦、正切函数的图象吗?并由图象写出单调区间、对称点、对称轴吗?(x,y)作图象。
27. 在三角函数中求一个角时要注意两个方面——先求出某一个三角函数值,再判定角的范围。
28. 在解含有正、余弦函数的问题时,你注意(到)运用函数的有界性了吗?29. 熟练掌握三角函数图象变换了吗?(平移变换、伸缩变换)平移公式:图象?30. 熟练掌握同角三角函数关系和诱导公式了吗?“奇”、“偶”指k取奇、偶数。
A. 正值或负值B. 负值C. 非负值D. 正值31. 熟练掌握两角和、差、倍、降幂公式及其逆向应用了吗?理解公式之间的联系:应用以上公式对三角函数式化简。
(化简要求:项数最少、函数种类最少,分母中不含三角函数,能求值,尽可能求值。
)具体方法:(2)名的变换:化弦或化切(3)次数的变换:升、降幂公式(4)形的变换:统一函数形式,注意运用代数运算。
32. 正、余弦定理的各种表达形式你还记得吗?如何实现边、角转化,而解斜三角形?(应用:已知两边一夹角求第三边;已知三边求角。
)33. 用反三角函数表示角时要注意角的范围。
34. 不等式的性质有哪些?35. 利用均值不等式:值?(一正、二定、三相等)注意如下结论:36. 不等式证明的基本方法都掌握了吗?(比较法、分析法、综合法、数学归纳法等)并注意简单放缩法的应用。
(移项通分,分子分母因式分解,x的系数变为1,穿轴法解得结果。
)38. 用“穿轴法”解高次不等式——“奇穿,偶切”,从最大根的右上方开始39. 解含有参数的不等式要注意对字母参数的讨论40. 对含有两个绝对值的不等式如何去解?(找零点,分段讨论,去掉绝对值符号,最后取各段的并集。
)证明:|()()||()()| f x f a x x a a-=-+--+221313(按不等号方向放缩)42. 不等式恒成立问题,常用的处理方式是什么?(可转化为最值问题,或“△”问题)43. 等差数列的定义与性质0的二次函数)项,即:44. 等比数列的定义与性质46. 你熟悉求数列通项公式的常用方法吗?例如:(1)求差(商)法解:n a a==⨯+=1122151411时,,∴[练习](2)叠乘法解:aaaaaannaa nnnn213211122311·……·……,∴-=-=(3)等差型递推公式[练习](4)等比型递推公式(5)倒数法47. 你熟悉求数列前n项和的常用方法吗?例如:(1)裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。
解:()()由·111110 11a a a a d d a ad k k k k k k++=+=-⎛⎝⎫⎭⎪≠(2)错位相减法:(3)倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。
48. 你知道储蓄、贷款问题吗?△零存整取储蓄(单利)本利和计算模型:若每期存入本金p元,每期利率为r,n期后,本利和为:△若按复利,如贷款问题——按揭贷款的每期还款计算模型(按揭贷款——分期等额归还本息的借款种类)若贷款(向银行借款)p元,采用分期等额还款方式,从借款日算起,一期(如一年)后为第一次还款日,如此下去,第n次还清。
如果每期利率为r(按复利),那么每期应还x元,满足p——贷款数,r——利率,n——还款期数49. 解排列、组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。
(2)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列,所有排列的个数记为n m Anm.(3)组合:从n个不同元素中任取m(m≤n)个元素并组成一组,叫做从n个不同元素中取出个元素的一个组合,所有组合个数记为m Cnm.50. 解排列与组合问题的规律是:相邻问题捆绑法;相间隔问题插空法;定位问题优先法;多元问题分类法;至多至少问题间接法;相同元素分组可采用隔板法,数量不大时可以逐一排出结果。
如:学号为1,2,3,4的四名学生的考试成绩则这四位同学考试成绩的所有可能情况是()A. 24B. 15C. 12D. 10解析:可分成两类:(2)中间两个分数相等相同两数分别取90,91,92,对应的排列可以数出来,分别有3,4,3种,∴有10种。
∴共有5+10=15(种)情况51. 二项式定理性质:(3)最值:n为偶数时,n+1为奇数,中间一项的二项式系数最大且为第表示)52. 你对随机事件之间的关系熟悉吗?的和(并)。
(5)互斥事件(互不相容事件):“A与B不能同时发生”叫做A、B互斥。
(6)对立事件(互逆事件):(7)独立事件:A发生与否对B发生的概率没有影响,这样的两个事件叫做相互独立事件。
53. 对某一事件概率的求法:分清所求的是:(1)等可能事件的概率(常采用排列组合的方法,即(5)如果在一次试验中A发生的概率是p,那么在n次独立重复试验中A恰好发生如:设10件产品中有4件次品,6件正品,求下列事件的概率。
(1)从中任取2件都是次品;(2)从中任取5件恰有2件次品;(3)从中有放回地任取3件至少有2件次品;解析:有放回地抽取3次(每次抽1件),∴n=103而至少有2件次品为“恰有2次品”和“三件都是次品”(4)从中依次取5件恰有2件次品。
解析:∵一件一件抽取(有顺序)分清(1)、(2)是组合问题,(3)是可重复排列问题,(4)是无重复排列问题。
54. 抽样方法主要有:简单随机抽样(抽签法、随机数表法)常常用于总体个数较少时,它的特征是从总体中逐个抽取;系统抽样,常用于总体个数较多时,它的主要特征是均衡成若干部分,每部分只取一个;分层抽样,主要特征是分层按比例抽样,主要用于总体中有明显差异,它们的共同特征是每个个体被抽到的概率相等,体现了抽样的客观性和平等性。
55. 对总体分布的估计——用样本的频率作为总体的概率,用样本的期望(平均值)和方差去估计总体的期望和方差。
要熟悉样本频率直方图的作法:(2)决定组距和组数;(3)决定分点;(4)列频率分布表;(5)画频率直方图。
如:从10名女生与5名男生中选6名学生参加比赛,如果按性别分层随机抽样,则组成此参赛队的概率为____________。
56. 你对向量的有关概念清楚吗?(1)向量——既有大小又有方向的量。
在此规定下向量可以在平面(或空间)平行移动而不改变。
(6)并线向量(平行向量)——方向相同或相反的向量。
规定零向量与任意向量平行。
(7)向量的加、减法如图:(8)平面向量基本定理(向量的分解定理)的一组基底。
(9)向量的坐标表示表示。
57. 平面向量的数量积数量积的几何意义:(2)数量积的运算法则[练习]22答案:答案:213答案:58. 线段的定比分点※. 你能分清三角形的重心、垂心、外心、内心及其性质吗?59. 立体几何中平行、垂直关系证明的思路清楚吗?平行垂直的证明主要利用线面关系的转化:线面平行的判定:线面平行的性质:三垂线定理(及逆定理):线面垂直:面面垂直:60. 三类角的定义及求法(1)异面直线所成的角θ,0°<θ≤90°(2)直线与平面所成的角θ,0°≤θ≤90°(三垂线定理法:A∈α作或证AB⊥β于B,作BO⊥棱于O,连AO,则AO⊥棱l,∴∠AOB为所求。
)三类角的求法:①找出或作出有关的角。
②证明其符合定义,并指出所求作的角。
③计算大小(解直角三角形,或用余弦定理)。
[练习](1)如图,OA为α的斜线OB为其在α内射影,OC为α内过O点任一直线。
(2)如图,正四棱柱ABCD—A1B1C1D1中对角线BD1=8,BD1与侧面B1BCC1所成的为30°。
①求BD1和底面ABCD所成的角;②求异面直线BD1和AD所成的角;③求二面角C1—BD1—B1的大小。
(3)如图ABCD为菱形,∠DAB=60°,PD⊥面ABCD,且PD=AD,求面PAB与面PCD所成的锐二面角的大小。