bjtu概率论习题讲解

合集下载

北京交通大学 概率论与数理统计习题4答案

北京交通大学 概率论与数理统计习题4答案

1 , 4
P{Z1 1} P{max{ X , Y } 1} P{ X 0, Y 1} P{ X 1, Y 0} P{ X 1, Y 1} ,
1 1 1 1 1 1 3 P{ X 0} P{Y 1} P{ X 1} P{Y 0} P{ X 1} P{Y 1} , 2 2 2 2 2 2 4
3 1 x 1 0 1 0 0 1
3 5 1 5
E Y 2
y p x,
2
y dxdy 3 xdx y 2 dy x 4 dx y dxdy 3 x 2 dx ydy
0 0 0 1 0 0 x 1
x
E XY

V 0
dx
1 . n 1
9. 将 n 个球随机的放入 N 个盒子中,设每个球落入各个盒子是等可能的,求有球的盒子数 X 的数 学期望.
1 解:引入随机变量 X i 0
若第i个盒子中有球 若第i个盒子中无球
i 1 , 2 , , N ,
每个随机变量 X i 都服从两点分布, i 1, 2 ,, N ,
0 0
4 , 3 e 4 X ] E ( X 2 ) 2 E ( Xe2 X ) E (e4 X )
xe 2 x e x dx e 4 x e x dx
1 1 2 2 x 3e 3 x dx 5e 5 x dx 3 0 5 0 2 1 1 109 2 3 3 5 45 29 所以 D(Y ) E (Y 2 ) E 2 (Y ) , 45
解: E ( X )

xf ( x) dx x xdx x (2 x) dx

北邮研究生概率论第三讲解析

北邮研究生概率论第三讲解析

c、A,BA *,有:A∪BA *
若A,BA *,则对D ,有:
v* D v* AD v* AD
* *
v AD v ABD v ABD
*
v* A

AB D v* A B D



v* A BD v* A B D (1.2.5)
* * *
* v Ak D v Ak D k 1 k 1 *
(1.2.6)
则: Ak A * ,则A *是-代数。
k 1
2018/11/27 北京邮电大学电子工程学院 15

引理1.2.3 A *满足:
n 1 n 1


A A
*
综上所述(A)= *(A)
2018/11/27 北京邮电大学电子工程学院 5
() 2 A B
若B An,An A,n 1,2,
n 1
必有:A An,An A,n 1,2,
n 1

即覆盖B的集合序列一定覆盖A
(2)对任何大于的数,一定存在S中某个 数x0, 使得x0< . (即对>0, x0S,使得 x0<+) 则称为数集S的下确界,记作: =inf S
( 1)n 1 S , n 1, 2, , S , n 1, 2, 例: 1 2 n n
* * * *
2018/11/27
北京邮电大学电子工程学院
14
* * * 由前面结论,有: v D v A D v A D k k k 1 k 1 n

北邮研究生概率论第三讲解析

北邮研究生概率论第三讲解析

9/19/2019
北京邮电大学电子工程学院
(1.2.6)
15
引理1.2.3 A *满足:
(2)若An A*,n 1,2,,Ai Aj ,i j


A An,故对D ,有 *AD *AnD
n1
n1

证明:由 A *是 代数,则 A An A *
北京邮电大学电子工程学院
6
(3)若An ,n 1,2,

若 * An , 则结论显然成立。
n1

若 * An :
n1
由定义: *
An

inf



k1
Ank
:An

k 1
Ank
,
Ank

A


0和每个An,Ank A,k 1,2,,使得:
v* D v* A1D v* A1D
v* A1D v* A1A2D v* A1 A2D
v* A1D v* A1A2D v* A1 A2 An1AnD v* A1 A2 An1 AnD
n1
D ,有:
*
D

*


An

D



*


An D
n1
n1
9/19/2019
北京邮电大学电子工程学院
16
由前面的结论,有:

*

D


*


An D


14北京交通大学概率论总复习

14北京交通大学概率论总复习

I5 + US _
I5

I 5'

I
'' 5
3.25 0.35 3.6A
U6

U
' 6

U
'' 6来自 1.75 5.35 3.6V
返回
上一节
下一节
上一页
下一页
电源的等效变换法
实际电压源与实际电压源的等效变换法
I
+
E
+
– R0
U
RL

电压源
I U+ IS RS RS U RL

[解] 二电源共同作用时:
I1 R1
R2 I2
R1
+ U_’6
R2 I’2
R1
R2 I’’2
+ IS U’’6_
+ IS U6_
I3 R3
R4 I4
R3
R4 I’4
I’5 + US _
I’5=3.25 A U’6=-1.75 V
R3
R4 I’’4
I’’5
I’’5=0.35 A U’’6=5.35 V
功率
瞬时值
有效值 相量图 相量式 有功功率 无功功率
i
+
Ru
u iR R

i 2Isinωt

U IR
I
U
U IR
UI I 2R
0
-
u 2Usinωt
u、 i 同相
i

U
i 2Isinωt
UI
L
+ u
u L di jX L 则

北邮概率论讲议 第9讲

北邮概率论讲议 第9讲

2
tx
根据控制收敛定理,有:
G x lim Gx 2x Gx
x0
2x

1

lim
eit xx sintx
t dt
1

e itx t dt
2 x0
tx
2
同理:G x
2 x1 l l
it
2020/1/6
北京邮电大学电子工程学院
13
定理 4 .1 .2 设F1x,F2x是两个分布函数,1t, 2 t 是 其 相 应 的 特 征 函 数 ,则 :
F1x F2x 1t 2t
证明:“”设F1x F2 x,则有:
2020/1/6
北京邮电大学电子工程学院
15
推 论 若 t 是特征函数,则有唯一的分布函数F x 存在,使得 t 是F x的特征函数。
综上所述,我们知道分布函数Fx1 1t,因此对
分布函数的研究可以转化为对特征函数的研究。
2020/1/6
北京邮电大学电子工程学院
北京邮电大学电子工程学院
17
证明:令:Gx 1 F x F x 0
2
(1)首先证明G' x 存在,且G' x 1 e itx t dt
2
先证G x 存在,且G x 1 e itx t dt
1 t


e
itx
dF1
x



e
itx
dF2
x
2
t
“”设1t 2t ,则有:
F1x2 0 F1 x2 0 F1 x1 0 F1 x1 0

北京理工大学《概率论与数理统计》课件-第4章

北京理工大学《概率论与数理统计》课件-第4章

解:X 的分布函数为依题意,当x <0时,当0≤x ≤2时,当x >2时,F (x )=P (X ≤x )F (x )=P (X ≤x )=0F (x )=P (X ≤x )=P (X <0)+P (0≤X ≤x )=0+kx 2=kx 2F (x )=P (X ≤x )=1例1.一个靶子是半径为2米的圆盘,设击中靶上任一同心圆盘上的点的概率与该盘的面积成正比,并设射击都能中靶.以X 表示弹着点与圆心的距离,试求随机变量X 的分布函数.当0≤x ≤2时,F (x )=P (X ≤x )=kx 2另外依题意F (2)=P (X ≤2)=k.22=1所以k 14=x x F x x x 20,0(),0241,2<⎧⎪⎪=≤≤⎨⎪>⎪⎩10.80.60.40.2-0.2-2-101234解得说明,存在一个非负可积函数f (x ),使得下式成立易知x x F x x x 20,0(),0241,2<⎧⎪⎪=≤≤⎨⎪>⎪⎩x x F x f x ,02()()20⎧≤≤⎪'==⎨⎪⎩其他()()xF x f t dt-∞=⎰1.定义:设随机变量X 的分布函数为F (x ),如果存在一个非负可积函数f (x ),使对任意的实数x ,均有则称X 是连续型随机变量(Continuous Random Variable ),称f (x )是X 的概率密度函数,简称概率密度(Probability Density Function ).()()xF x f t dt-∞=⎰连续型随机变量X的分布函数F(x)和概率密度f(x)统称为X的概率分布,简称X的分布.易知此时分布函数F(x)是连续函数,即连续型随机变量的分布是连续函数.2.概率密度函数的性质(1)f (x ) ≥ 0(2)这两条性质是判定一个函数f (x )是否为某r.v.X 的概率密度函数的充要条件.f (x )xo 面积为1+()1f x dx ∞-∞=⎰(3)P (a <X ≤b )=F (b )-F (a )如 f (x )xo a b (4)()()GP X G f x dx∈=⎰()()b a f x dx f x dx -∞-∞=-⎰⎰()baf x dx =⎰()()a P X a f x dx+∞>=⎰(5)在f (x )的连续点x 处,有f (x )=F '(x )(6)设x 为f (x )的连续点,当∆x 较小,则有P (x< X ≤x+∆x )故X 的密度f (x )在x 这一点的值,恰好是X 落在区间(x ,x +∆x ]上的概率与区间长度∆x 之比.它反映了X 在x 附近单位长区间上取值的概率.x xx f t dt f x x()()+∆=≈⎰∆连续型随机变量密度函数的性质与离散型随机变量分布律的性质非常相似,但是,密度函数不是概率!(7)P (X =x 0)=F (x 0)-F (x 0-0)P (a <X ≤b )=P (a ≤X ≤b )=P (a <X <b )=P (a ≤X <b )密度函数f (x )在某点处a 的函数值f (a ),并不等于X 取值为a 的概率.但是,这个值f (a )越大,则X 在a 附近取值的概率f (a )∆x 就越大.也可以说,在某点密度曲线的函数值反映了概率集中在该点附近的程度,即X 在该点附近取值的密集程度.=0()ba f x dx=⎰=F (b )-F (a )若X 为连续型随机变量,概率密度f (x )唯一确定了分布函数F (x );若随机变量X 的分布函数F (x )满足:(1)F (x )连续;(2)存在x 1<x 2<…<x n (n ≥0),除这些点外,F (x )可导,且导函数F '(x )连续;令F x F x f x F x (),()()0,()''⎧=⎨'⎩当存在当不存在则f (x )必是X 的概率密度.例2.设随机变量X 的概率密度为求(1)常数k 的值;(2)X 的分布函数;(3)P (1<X <7/2).解:(1)由解得kx x f x x x ,03()2/2,340,≤<⎧⎪=-≤≤⎨⎪⎩其他+1()f x dx ∞-∞=⎰3403(2)2x kxdx dx =+-⎰⎰k 16=k 9124=+解:(2)当x <0时,当0≤x <3时,当3≤x <4时,020()()0612x x t x F x f t dt dt dt -∞-∞==+=⎰⎰⎰03203()()0(2)32624x xt t x F x f t dt dt dt dt x -∞-∞==++-=-+-⎰⎰⎰⎰()()0x F x f t dt -∞==⎰求(2)X 的分布函数;()()xF x f t dt-∞=⎰6,03()2/2,340,x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他当x ≥4时,所以()()1xF x f t dt -∞==⎰x x x F x x x x x 220,0/12,03()32/4,341,4<⎧⎪≤<⎪=⎨-+-≤<⎪⎪≥⎩求(2)X 的分布函数;6,03()2/2,340,x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他P X F F 7741(1)()(1)2248<<=-=72723113741(1)()(2)26248x x P X f x dx dx dx <<==+-=⎰⎰⎰求(3)P (1<X <7/2)解:(3)6,03()2/2,340,x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他在上例中,当x ∉[0,4]时,f (x )=0,所以P (X ∉[0,4])=0,为了方便,我们说X 只在[0,4]上取值.g x a x b f x ()0,()0,>≤≤⎧=⎨⎩其他我们就说X 只在[a , b ]上取值.一般地,若随机变量X 的概率密度f (x )是如下分段函数:6,03()2/2,340,x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他例3.设连续型随机变量X 的分布函数为求(1)常数C 值;(2)X 取值于(0.3,0.7)内的概率;(3)X 的密度函数.解:(1)应用连续型随机变量X 的分布函数的连续性,有所以C =1x F x Cx x x 20,0(),011,1<⎧⎪=≤<⎨⎪≥⎩x F F x C11(1)lim ()→-===x x f x F x 2,01()()0,<<⎧'==⎨⎩其他解:20,0(),011,1x F x x x x <⎧⎪=≤<⎨⎪≥⎩(2)P (0.3<X <0.7)=F (0.7)−F (0.3)=0.72−0.32=0.4求(2)P (0.3<X <0.7);(3)X 的密度函数.(3)随机变量的分类:离散型随机变量连续型随机变量.非离散型随机变量非连续非离散型随机变量.(1)若随机变量X 的概率密度为1.均匀分布(Uniform Distribution )则称X 在[a , b ]上服从均匀分布,记为X~U [a , b ]1,()0,a x b f x b a ⎧≤≤⎪=-⎨⎪⎩其他[,]1a b I b a =-[,][,]1,[,]()0,[,]a b a b x a b I I x x a b ∈⎧==⎨∉⎩区间[a ,b ]上的示性函数类似地,我们可以定义区间[a , b )、(a , b ]和(a , b )上的均匀分布一般地,设D 是数轴上一些不相交的区间之和,若X 的概率密度为x D f x D x D 1()0⎧∈⎪=⎨⎪∉⎩,的长度,则称X 在D 上服从均匀分布.若X ~U [a , b ],X 的分布函数为对于满足a ≤c <d ≤b 的任意的c 、d ,有0(),1,x a x a F x a x bb a<⎧⎪-⎪=≤≤⎨-⎪⎪⎩,其他()d c P c X d b a-<≤=-例1.设公共汽车站从上午7时起每隔15分钟来一班车,如果某乘客到达此站的时间是7:00到7:30之间的均匀随机变量.试求该乘客候车时间不超过5分钟的概率.解:设该乘客于7时X 到达此站,则X 服从[0, 30]上的均匀分布令B ={候车时间不超过5分钟}1530102511130303dx dx =+=⎰⎰()(1015)(2530)P B P X P X =≤≤+≤≤1030()300x f x ⎧≤≤⎪=⎨⎪⎩其它2.指数分布(Exponential Distribution )若随机变量X 的概率密度为其中常数λ>0,则称X 服从参数为λ的指数分布.,0()0,0x e x f x x λλ-⎧>=⎨≤⎩易求得X 的分布函数为1,0()0,0x e x F x x λ-⎧->=⎨≤⎩指数分布的另一种等价定义定义:设连续型随机变量X 的概率密度为1,0()0,0x e x f x x θθ-⎧>⎪=⎨⎪≤⎩其中θ>0为常数,则称X 服从参数为θ的指数分布.服从指数分布的随机变量X 具有以下性质:事实上无记忆性或无后效性(|)()P X s t X s P X t >+>=>(,)(|)()P X s t X s P X s t X s P X s >+>>+>=>()()P X s t P X s >+=>1()1()F s t F s -+=-()s t t s e e e λλλ-+--==1()()F t P X t =-=>1,0()0,0x e x F x x λ-⎧->=⎨≤⎩即对于任意s , t >0,有如果X 表示某仪器的工作寿命,无后效性的解释是:当仪器工作了s 小时后再能继续工作t 小时的概率等于该仪器刚开始就能工作t 小时的概率.说明该仪器的使用寿命不随使用时间的增加发生变化,或说仪器是“永葆青春”的.(|)()P X s t X s P X t >+>=>一般来说,电子元件等具备这种性质,它们本身的老化是可以忽略不计的,造成损坏的原因是意外的高电压等等.3.正态分布(Normal Distribution )若随机变量X 的概率密度为其中μ, σ均为常数,且σ>0,则称X 服从参数为μ和σ的正态分布.记作X ~N (μ, σ2)正态分布最初由高斯(Gauss )在研究偏差理论时发现,又叫高斯分布.22()21(),2x f x e x μσσπ--=-∞<<∞X 的分布函数为22()21()2t xF x e dtμσσπ---∞=⎰N (10, 32)0-50.10.20.30.40.50.60.70.80.910510152025正态分布N(μ,σ2)密度函数图形的特点f(x)μa.正态分布的密度曲线是一条关于μ对称的钟形曲线.f(μ+c)=f(μ−c )特点是“两头小,中间大,左右对称”.b .μ决定了图形的中心位置,称为位置参数;σ决定了图形中峰的陡峭程度,称为形状参数或者刻度参数μ2μ1μ3x f (x )f (x )0xc .在x =μ处达到最大值:1()2f μπσ=d .曲线f (x )向左右伸展时,越来越贴近x 轴,即f (x )以x 轴为渐近线.当x →±∞时,f (x )→0e .x=μ±σ为f (x )的两个拐点的横坐标.说明X 落在μ附件的概率最大,或者说X 的取值在μ附件最密集.22()21(),2x f x e x μσσπ--=-∞<<∞μf (x )年降雨量、同龄人身高、在正常条件下各种产品的质量指标——如零件的尺寸;纤维的强度和张力、农作物的产量,小麦的穗长、株高、测量误差、射击目标的水平或垂直偏差、信号噪声等等,都服从或近似服从正态分布.标准正态分布(Standard Normal Distribution )μ=0,σ=1的正态分布称为标准正态分布.其密度函数和分布函数常用φ(x )和Ф(x )表示:)(x Φ)(x ϕ221(),2x x e x ϕπ-=-∞<<∞221()2t x x e dt π--∞Φ=⎰注意:Φ(0)=0.5,Φ(-x )=1-Φ(x )若X ~N (0, 1),对任意的实数x 1,x 2(x 1< x 2),有人们已编制了Φ(x )的函数表,可供查用.P (X≤x 1)=Φ(x 1)P (X>x 1)=1-Φ(x 1)P (x 1≤X≤x 2)=Φ(x 2)-Φ(x 1)221()2x t x e dt π--∞Φ=⎰−x x Φ(x )x4-40.40.2正态分布的计算()x μσ-=Φ对任意的实数x 1,x 2(x 1< x 2),有211221()()()()()x x P x X x F x F x μμσσ--<≤=-=Φ-Φ222()()22()22x t xu F x e dt e du μσμσπσπ-----∞-∞==⎰⎰111()()()x P X x F x μσ-≤==Φ111()1()1()x P X x F x μσ->=-=-Φ例2.设X ~N (μ,σ2),求P (|X −μ|<k σ)的值,k =1, 2, 3.解:当k =1时当k =2时当k =3时(||)()P X k P k X k μσμσμσ-<=-<<+()()F k F k μσμσ=+--()()k k μσμμσμσσ+---=Φ-Φ()()k k =Φ-Φ-()[1()]2()1k k k =Φ--Φ=Φ-(||)2(1)10.6826P X μσ-<=Φ-=(||2)2(2)10.9544P X μσ-<=Φ-=(||3)2(3)10.9974P X μσ-<=Φ-=质量控制中的3σ原则设在正常生产的情况下,某零件的尺寸X服从正态分布N(μ,σ2),为了在生产过程中随时检查有无系统性误差出现,人们画了一个质量控制图.每隔一定时间,对产品尺寸进行检查,测量的产品的尺寸应落在上、下控制线之内.如果超出控制线,则很有可能是生产出现了异常情况,应该暂停生产进行检查.当然也可能虚报,但虚报的可能性比较小.214y x=π因此,需要求某些随机变量的函数的分布.在某些实际问题中,我们所关心的随机变量不能直接测量得到,而它却是某个能够直接测量的随机变量的函数.例如,考察一批圆轴的截面面积Y ,我们能够直接测量的是直径X ,且当直径X 取x 值时,截面面积Y 的取值为一般地,设X、Y是两个随机变量,y=g(x)是一个已知函数,如果当X取值x时,Y取值为g(x),则称Y是随机变量X的函数,记为Y=g(X).问题是:如何由已知的随机变量X的概率分布去求它的函数Y=g(X)的概率分布.解:求Y =(X –1)2的分布律.Y 所有可能的取值为0,1,4,而且(0)(1)0.1P Y P X ====(1)(0)(2)0.7P Y P X P X ===+==(4)(1)0.2P Y P X ===-=例1.设随机变量X 的分布律为X −10 1 2P0.20.3 0.1 0.4一、离散型随机变量X 的函数Y =g (X )的分布所以,Y 的分布律为Y0 1 4P0.10.7 0.2X−1 0 1 2 Y= (X–1)24101 P0.20.3 0.1 0.4所以,Y 的分布律为Y0 1 4P0.10.7 0.2一般地,若X 的分布律为则Y =g (X )的分布律为如果g (x k )中有一些值是相等的,则它们是Y 可能取的同一个值.此时,在Y 的分布律中,只需列出一个,然后把对应于这些相同值的概率相加,作为Y 取这个可能值的概率.X x 1 x 2 … x k …Pp 1 p 2 … p k…Y g (x 1) g (x 2)… g (x k ) …Pp 1 p 2 … p k…二、连续型随机变量X 的函数Y =g (X )的分布例2.设随机变量X 的概率密度为令求Y 的分布.解:2,01()0,x x f x <<⎧=⎨⎩其他1,1/20,1/2X Y X ≤⎧=⎨>⎩(1)P Y =(1/2)P X =≤1/2124xdx ==⎰所以Y 的分布为13(0)1(1)144P Y P Y ==-==-=Y0 1P 3/4 1/4例3.设连续型随机变量X 的概率密度函数为求Y =2X +8的概率密度.解:设X 和Y 的分布函数分别为F X (x )和F Y (y ).F Y (y )=P (Y≤y )=P (2X +8≤y )于是Y 的密度函数/8,04()0,X x x f x <<⎧=⎨⎩其它88()()22X y y P X F --=≤=()81()()22Y Y X dF y y f y f dy -==⋅故当8<y <16时,当y ≤8或y ≥16时,81()()22Y X y f y f -=⋅/8,04()0,X x x f x <<⎧=⎨⎩其它88()216X y y f --=8()02X y f -=8,816()320,Y y y f y -⎧<<⎪=⎨⎪⎩其它方法:1.先求Y=g(X)分布函数F(y);Y2.求分布函数F Y (y)的导数,即为密度函数f Y(y).关键步骤:F(y)=P(Y≤y)=P(g(X)≤y)=P(X∈D)Y。

北京理工大学概率论3讲

北京理工大学概率论3讲
=(4/5)(3/4)(1/3)=1/5 继续做下去就会发现, 每个人抽到“入 场券” 的概率都是1/5.
也就是说“抽签与顺序无关.”
例8. 波里亚罐子模型
b个白球, r个红球 一个罐子中包含 b 个白球和 r 个红球. 随机地抽取一个球,观看颜色后放回罐中,并 且再加进 c 个与所抽出的球具有相同颜色的球。 这种手续进行四次,试求第一、二次取到白球 且第三、四次取到红球的概率.
i 1
则称事件A1,…, An相互独立,简称A1,…, An独立
请注意多个事件两两独立与相互独立 的区别与联系
对n(n>2)个事件
相互独立
两两独立
?
例. 两线段将长方形四等分,得到E1, E2, E3, E4如 下图所示
E1
E2
E3
E4
设A=E1E2, B=E1E3, C=E1E4。向内均匀投点, 点落入A, B, C内的事件依然用A, B, C表示,则有
P(AB)=P(B)P(A|B)
(1)
如果 P(A)>0,则有
P(AB)=P(A)P(B|A)
(2)
公式(1)和(2)均称为概率的乘法公式或称为概 率的乘法定理。
乘法公式容易推广到多个事件的积事件的情况,如 设A, B, C为事件,且P(AB)>0,则有
P(ABC)=P(A)P(B|A)P(C|AB)
(3). 可列可加性:设 A1,…,An…互不相容,则
P( Ai | B) P( Ai | B)
i 1
i 1
条件概率P(.|B)也具有三条公理导出的一切性质 如
P(A | B) 1 P(A| B)
P( A C | B) P( A | B) P(C | B) P( AC | B)

东北大学概率论课后习题答案PPT2-2

东北大学概率论课后习题答案PPT2-2

(1) pk 0, k=1,2, …
一个函数是否是
概率分布
(2) pk 1
k
分布律也可以用表格的形式来表示:
X
x1 x2 … xn …
pk
p1 p2 … pn …
称为随机变量X的概率分布表。
也可用矩阵表示
X
~
x1 p1
x2 p2
xi pi
也可用散点图表示。
有了分布列,可以计算任意时间的概率
几何分布的无记忆性
在贝努利试验中,等待首次成功的时间服从几何分布。 现在假定已知在前m次试验中没有出现成功,那么为了达到 首次成功所再需要的等待时间′也还是服从几何分布,与 前面的失败次数m无关,形象化地说,就是把过去的经历完 全忘记了。因此无记忆性是几何分布所具有的一个有趣的 性质。但是更加有趣的是,在离散型分布中,也只有几何 分布才具有这样一种特殊的性质。
件,第i个零件为不合格品的概率为 pi 1/ i 1,i 1,2,3 ,若
以X表示三个零件中合格品的个数,问X是二项变量吗?写出 X的分布律。
例5:某人进行射击,设每次射击的命中率为0.02,独立射击 400次,试求至少击中两次的概率。
解:将一次射击看成是一次试验.设击中的次数为X,则X~ B(400,0.02)。X的分布律为 P{ X k} 4k00(0.02)k (0.98)400k , k 0,1,,400. 于是所求概率为 P{X 2} 1 P{X 0} P{X 1} 1 (0.98)400 400(0.02)(0.98)399 0.9972.
P{Y
4} 1
k
3 0
8k0(0.01)k
(0.99)80k
0.0087.
我们发现,在后一种情况尽管任务重了(每人平均

北邮概率论讲议-第6讲

北邮概率论讲议-第6讲

F| y | x
y f x, v dv
f
x,v dv
y f x,v f x dv

x条件下的条件分布函数。并称f| y | x
f x, y f x
为 x条件下的条件分布密度。
2024/9/22
11
例:设二维随机变量旳联合密度为:
f (x,
y)
e y 0
x x
x x x x
x x
y
f
f
u, v dvdu u, v dvdu
2024/9/22
10
利用中值定理,有:
y f x,v dv
F| y | x
f x, v dv
定 义 2. 4. 6 若f
x,
y是 , 的分布密度,且
f
x,
y dy
0,
f x, y在 x, y处连续,定义:
y
dx1 f x1 , z x1 dz
y
f
x1 ,
z
x1
dx1
dz
所以的分布密度是:
f y f x1 , y x1 dx1
2024/9/22
17
若1, 2相互独立,则=1+2旳分布密度为:
f y
f
x1 , y x1 dx1
j 1
2024/9/22
21
定理2.5.3 设n维随机变量 =(1, ,n )的分布密度为f ( x1,
n元函数g j ( x1, , xn )( j 1, , n)满足条件: (1)存在惟一的反函数,即方程组
, xn ),
y j g j ( x1, , xn )( j 1, , n) (2.5.5) 如果有解就存在惟一的实数解x j x j ( y1, , yn )( j 1, , n); (2)g j ( x1, , xn )和x j ( y1, , yn )都是连续函数;

北邮版概率论标准答案(7)

北邮版概率论标准答案(7)

习题七1.设总体X 服从二项分布b (n ,p ),n 已知,X 1,X 2,…,X n 为来自X 的样本,求参数p 的矩法估计.【解】1(),(),E X np E X A X ===因此np =X所以p 的矩估计量 ˆXpn= 2.设总体X 的密度函数f (x ,θ)=22(),0,0,.x x θθθ⎧-<<⎪⎨⎪⎩其他X 1,X 2,…,X n 为其样本,试求参数θ的矩法估计. 【解】23022022()()d ,233x x E X x x x θθθθθθθ⎛⎫=-=-= ⎪⎝⎭⎰令E (X )=A 1=X ,因此3θ=X 所以θ的矩估计量为 ^3.X θ=3.设总体X 的密度函数为f (x ,θ),X 1,X 2,…,X n 为其样本,求θ的极大似然估计.(1) f (x ,θ)=,0,0,0.e x x x θθ-⎧≥⎨<⎩(2) f (x ,θ)=1,01,0,.x x θθ-⎧<<⎨⎩其他【解】(1) 似然函数111(,)ee eniii n nx x nn ii i L f x θθθθθθ=---==∑===∏∏1ln ln ni i g L n x θθ===-∑由1d d ln 0d d ni i g L n x θθθ===-=∑知 1ˆnii nxθ==∑所以θ的极大似然估计量为1ˆXθ=.(2) 似然函数11,01nni i i L x x θθ-==<<∏g,i =1,2,…,n.1ln ln (1)ln ni i L n x θθ==+-∏由1d ln ln 0d ni i L nx θθ==+=∏知 11ˆln ln nniii i n nxx θ===-=-∑∏所以θ的极大似然估计量为 1ˆln nii nxθ==-∑求这批股民的收益率的平均收益率及标准差的矩估计值. 【解】 0.094x =- 0.101893s = 9n =¶0.094.EXx ==- 由222221()()[()],()ni i x E X D X E X E X A n==+==∑知222ˆˆ[()]E X A σ+=,即有 ˆσ=于是 ˆ0.101890.0966σ=== 所以这批股民的平均收益率的矩估计值及标准差的矩估计值分别为-0.94和0.966. 5.随机变量X 服从[0,θ]上的均匀分布,今得X 的样本观测值:0.9,0.8,0.2,0.8,0.4,0.4,0.7,0.6,求θ的矩法估计和极大似然估计,它们是否为θ的无偏估计. 【解】(1) ()2E X θ=,令()E X X =,则ˆ2X θ=且ˆ()2()2()E E X E X θθ===, 所以θ的矩估计值为ˆ220.6 1.2x θ==⨯=且ˆ2X θ=是一个无偏估计.(2) 似然函数8811(,)i i L f x θθ=⎛⎫== ⎪⎝⎭∏,i =1,2, (8)显然L =L (θ)↓(θ>0),那么18max{}i i x θ≤≤=时,L =L (θ)最大,所以θ的极大似然估计值ˆθ=0.9. 因为E(ˆθ)=E (18max{}i i x ≤≤)≠θ,所以ˆθ=18max{}ii x ≤≤不是θ的无偏计. 6.设X 1,X 2,…,X n 是取自总体X 的样本,E (X )=μ,D (X )=σ2,2ˆσ=k 1211()n i i i X X -+=-∑,问k 为何值时2ˆσ为σ2的无偏估计. 【解】令 1,i i i Y X X +=-i =1,2,…,n -1,则 21()()()0,()2,i i i i E Y E X E X D Y μμσ+=-=-==于是 1222211ˆ[()](1)2(1),n ii E E k Yk n EY n k σσ-===-=-∑那么当22ˆ()E σσ=,即222(1)n k σσ-=时, 有 1.2(1)k n =-7.设X 1,X 2是从正态总体N (μ,σ2)中抽取的样本112212312211311ˆˆˆ;;;334422X X X X X X μμμ=+=+=+ 试证123ˆˆˆ,,μμμ都是μ的无偏估计量,并求出每一估计量的方差. 【证明】(1)11212212121ˆ()()(),333333E E X X E X E X μμμμ⎛⎫=+=+=+= ⎪⎝⎭21213ˆ()()()44E E X E X μμ=+=, 31211ˆ()()(),22E E X E X μμ=+= 所以123ˆˆˆ,,μμμ均是μ的无偏估计量. (2) 22221122145ˆ()()(),3399D D X D X X σμσ⎛⎫⎛⎫=+== ⎪ ⎪⎝⎭⎝⎭222212135ˆ()()(),448D D X D X σμ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭()223121ˆ()()(),22D D X D X σμ⎛⎫=+= ⎪⎝⎭8.某车间生产的螺钉,其直径X ~N (μ,σ2),由过去的经验知道σ2=0.06,今随机抽取6枚,测得其长度(单位mm )如下:14.7 15.0 14.8 14.9 15.1 15.2 试求μ的置信概率为0.95的置信区间. 【解】n =6,σ2=0.06,α=1-0.95=0.05,0.25214.95, 1.96,a x u u ===,μ的置信度为0.95的置信区间为/2(14.950.1 1.96)(14.754,15.146)x u α⎛±=±⨯= ⎝.9.总体X ~N (μ,σ2),σ2已知,问需抽取容量n 多大的样本,才能使μ的置信概率为1-α,且置信区间的长度不大于L ?【解】由σ2已知可知μ的置信度为1-α的置信区间为/2x u α⎛± ⎝,/2u α,/2u α≤L ,得n ≥22/224()u L ασ 10.设某种砖头的抗压强度X ~N (μ,σ2),今随机抽取20块砖头,测得数据如下(kg ·cm -2):64 69 49 92 55 97 41 84 88 99 84 66 100 98 72 74 87 84 48 81 (1) 求μ的置信概率为0.95的置信区间. (2) 求σ2的置信概率为0.95的置信区间. 【解】76.6,18.14,10.950.05,20,x s n α===-==/20.025222/20.0250.975(1)(19) 2.093,(1)(19)32.852,(19)8.907t n t n ααχχχ-==-===(1) μ的置信度为0.95的置信区间/2(1)76.6 2.093(68.11,85.089)a x n ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭(2)2σ的置信度为0.95的置信区间222222/21/2(1)(1)1919,18.14,18.14(190.33,702.01)(1)(1)32.8528.907n s n s n n ααχχ-⎛⎫--⎛⎫=⨯⨯= ⎪⎪--⎝⎭⎝⎭ 11.设总体X ~f (x )=(1),01;10,.x x θθθ⎧+<<>-⎨⎩其中其他X 1,X 2,…,X n 是X 的一个样本,求θ的矩估计量及极大似然估计量.【解】(1)1101()()d (1)d ,2E X xf x x x x θθθθ+∞+-∞+==+=+⎰⎰ 又1(),2X E X θθ+==+ 故21ˆ1X Xθ-=-所以θ的矩估计量 21ˆ.1X Xθ-=- (2) 似然函数11(1) 01(1,2,,)()()0n n ni i i i i x x i n L L f x θθθ==⎧+<<=⎪===⎨⎪⎩∏∏L 其他. 取对数11ln ln(1)ln (01;1),d ln ln 0,d 1nii i ni i L n x x i n L n x θθθθ===++<<≤≤=+=+∑∑所以θ的极大似然估计量为1ˆ1.ln nii nXθ==--∑12.设总体X ~f (x )= 36(),0;0,.xx x θθθ⎧-<<⎪⎨⎪⎩其他X 1,X 2,…,X n 为总体X 的一个样本(1) 求θ的矩估计量ˆθ; (2) 求ˆ()D θ.【解】(1) 236()()d ()d ,2x E X xf x x x x θθθθ+∞-∞=-=⎰⎰令 ,2EX X θ==所以θ的矩估计量 ˆ2.X θ= (2)4ˆ()(2)4(),D D X D X DX nθ===, 又322236()63()d ,2010x x E X x θθθθθ-===⎰于是222223()()(),10420D XE X EX θθθ=-=-=,所以2ˆ().5D nθθ=13.设某种电子元件的使用寿命X 的概率密度函数为f (x ,θ)= 2()2,;0,.x x x θθθ--⎧>⎨≤⎩e其中θ(θ>0)为未知参数,又设x 1,x 2,…,x n 是总体X 的一组样本观察值,求θ的极大似然估计值.【解】似然函数12()12e 0;1,2,,;()0ln ln 22(),;1,2,,,ni i x n i n i i i x i n L L L n x x i n θθθθ=--=⎧∑⎪⋅≥===⎨⎪⎩=--≥=∑L L 其他.由d ln 20ln (),d Ln L θθ=>↑知 那么当01ˆˆmin{}ln ()max ln ()ii nx L L θθθθ>≤≤==时 所以θ的极大似然估计量1ˆmin{}ii nx θ≤≤=其中θ(0<θ<12)是未知参数,利用总体的如下样本值3,1,3,0,3,1,2,3,求θ的矩估计值和极大似然估计值. 【解】813ˆ(1)()34,()4 28ii x E X E X x x x θθ=-=-====∑令得又 所以θ的矩估计值31ˆ.44x θ-== (2) 似然函数86241(,)4(1)(12).ii L P x θθθθ===--∏2ln ln 46ln 2ln(1)4ln(1),d ln 628628240,d 112(1)(12)L L θθθθθθθθθθθθ=++-+--+=--==---- 解2628240θθ-+=得1,272θ=. 由于71,122> 所以θ的极大似然估计值为7ˆ2θ-=15.设总体X 的分布函数为F (x ,β)=1,,0,.x xx ββααα⎧->⎪⎨⎪≤⎩其中未知参数β>1,α>0,设X 1,X 2,…,X n 为来自总体X 的样本(1) 当α=1时,求β的矩估计量;(2) 当α=1时,求β的极大似然估计量; (3) 当β=2时,求α的极大似然估计量. 【解】当α=1时,11,1;(,)(,1,)0,1.x x f x F x x x ββββ+⎧≥⎪==⎨⎪<⎩当β=2时, 2132,;(,)(,,2)0,.x x f x F x x x ααααα⎧≥⎪==⎨⎪<⎩(1) 111()d 11E X x x x βββββββ+∞-+∞===--⎰令()E X X =,于是ˆ,1XX β=- 所以β的矩估计量ˆ.1XX β=- (2) 似然函数(1)1111,1,(1,2,,);()(,)0,.ln ln (1)ln ,d ln ln 0,d n n ni i i i i ni i ni i x x i n L L f x L n x L n x ββββββββ-+====⎧⎛⎫>=⎪ ⎪===⎨⎝⎭⎪⎩=-+=-=∏∏∑∑L 其他所以β的极大似然估计量1ˆ.ln nii nxβ==∑(3) 似然函数23112,,(1,2,,);(,)0,.n ni nn i i i i x i n L f x x ααα==⎧≥=⎪⎪⎛⎫==⎨ ⎪⎝⎭⎪⎪⎩∏∏L 其他 显然(),L L α=↑那么当1ˆmin{}i i nx α≤≤=时,0ˆ()max ()a L L L αα>== , 所以α的极大似然估计量1ˆmin{}i i nx α≤≤=. 16.从正态总体X ~N (3.4,62)中抽取容量为n 的样本,如果其样本均值位于区间(1.4,5.4)内的概率不小于0.95,问n 至少应取多大?2/2()d zt z t ϕ-=⎰【解】26~3.4,X N n ⎛⎫⎪⎝⎭,则~(0,1),X Z N = {1.4 5.4}33210.95333Z P X P PZ ΦΦΦ<<<<=⎧=-<<⎨⎩⎭⎛⎫⎛⎛⎫=-=-≥- ⎪ ⎪⎝⎭⎝⎭⎝⎭于是0.975Φ≥ 1.96≥, ∴ n ≥35.17. 设总体X 的概率密度为f (x ,θ)=,01,1,12,0,.x x θθ<<⎧⎪-≤<⎨⎪⎩其他 其中θ是未知参数(0<θ<1),X 1,X 2,…,X n 为来自总体X 的简单随机样本,记N 为样本值x 1,x 2,…,x n 中小于1的个数.求: (1) θ的矩估计;(2) θ的最大似然估计. 解 (1) 由于121(;)d d (1)d EX xf x x x x x x θθθ+∞-∞==+⎰⎰⎰-133(1)222θθθ=+-=-. 令32X θ-=,解得32X θ=-, 所以参数θ的矩估计为$32X θ=-. (2) 似然函数为1()(;)(1)nN n N i i L f x θθθθ-===-∏,取对数,得ln ()ln ()ln(1),L N n N θθθ=+--两边对θ求导,得d ln ().d 1L N n Nθθθθ-=-- 令 d ln ()0,d L θθ=得 Nnθ=,所以θ的最大似然估计为$Nnθ=. 18.设12,,,n X X X L 是总体2(,)N μσ的简单随机样本.记222211111,(),.1n n i ii i X X S X X T X S n n n====-=--∑∑ (1)证明T 是2μ的无偏估计量; (2)当0,1μσ==时,求D(T).分析 根据无偏估计的定义求E(T)即可证明(1).(2)可用方差的计算公式或统计量的分布的定义和性质求解. 证(1)因为222222222211()()1()E T E X S E X ES n nE X DX ES nnnσσμμ=-=-=+-=+-= 所以T 是2μ的无偏估计量.解(2) 解法1 当0,1μσ==时,有222222222222221()()1111[(1)](1)11121222(1)(1).(1)1(1)D T D X S n DX DS D D n S n n n n n n n n n n n n =-=+=+--=+-=+=---g g g g 解法2 22()()()D T E T E T =- 22()0()1E T E S σ===42224221()()()()()()D T E T E X E X E S E S n n==-+其中4222()()()E X D X E X =+222222222)[()()]1[()]1132()D X D X E X D D X n n n n=++=+=+=g 4222()()()E S D S E S =+ 222211[(1)](1)2(1)11(1)1D n S n n n n n =+---+=+=-- 22321112()11(1)n D T n n n n n n n +∴=-⨯⨯+⨯=--19.设总体X 的概率密度为1,0,21(,),1,2(1)0x f x x θθθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他.其中参数θ(0<θ<1)未知,12,,,n X X X L 是来自总体X 的简单随机样本,X 是样本均值.(1)求参数θ的矩估计量θ∧;(2)判断24X 是否为2θ的无偏估计量,并说明理由.分析 利用矩估计原理 11u A ∧=可求出θ的矩估计量,再求2(4)E X 判断24X 是否为2θ的无偏估计量.解 (1) ()(;)E X xf x dx θ+∞-∞=⎰ 101.22(1)42x x dx dx θθθθθ=+=+-⎰⎰ 令 2()X E X =,即142X θ=+,得θ的矩估计量为12.2X θ∧=- (2)因为 222(4)44[()]E X EX DX EX ==+221114[()()]4241()4D X n D X n θθθ=++=+++ 又 ()0,0,D X θ≥>所以 22(4)E X θ>,即 22(4),E X θ≠因此 24X 不是2θ的无偏估计量.。

概率论与数理统计的答案详解_北邮版_(第一章的)

概率论与数理统计的答案详解_北邮版_(第一章的)

概率论与数理统计习题及答案习题 一1.写出下列随机试验的样本空间及下列事件包含的样本点. (1) 掷一颗骰子,出现奇数点. (2) 掷二颗骰子,A =“出现点数之和为奇数,且恰好其中有一个1点.”B =“出现点数之和为偶数,但没有一颗骰子出现1点.” (3)将一枚硬币抛两次, A =“第一次出现正面.” B =“至少有一次出现正面.” C =“两次出现同一面.” 【解】{}{}1123456135A Ω==(),,,,,,,,;{}{}{}{}{}(2)(,)|,1,2,,6,(12),(14),(16),(2,1),(4,1),(6,1),(22),(24),(26),(3,3),(3,5),(4,2),(4,4),(4,6),(5,3),(5,5),(6,2),(6,4),(6,6);(3)(,),(,),(,),(,),(,),(,),(,),(,),(i j i j A B A B ΩΩ=======,,,,,,正反正正反正反反正正正反正正正反反{}{},),(,),(,),C =正正正反反2.设A ,B ,C 为三个事件,试用A ,B ,C(1) A 发生,B ,C 都不发生; (2) A 与B 发生,C (3) A ,B ,C 都发生; (4) A ,B ,C (5) A ,B ,C 都不发生; (6) A ,B ,C(7) A ,B ,C 至多有2个发生; (8) A ,B ,C 至少有2个发生. 【解】(1) A BC (2) AB C (3) ABC(4) A ∪B ∪C =AB C ∪A B C ∪A BC ∪A BC ∪A B C ∪AB C ∪ABC =ABC(5) ABC=A B C (6) ABC(7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC3.指出下列等式命题是否成立,并说明理由:(1) A∪B=(AB)∪B;(2) A B=A∪B;A∩C=AB C;(3) B(4) (AB)( AB)= ∅;(5) 若A⊂B,则A=AB;(6) 若AB=∅,且C⊂A,则BC=∅;(7) 若A⊂B,则B⊃A;(8) 若B⊂A,则A∪B=A.【解】(1)不成立.特例:若Α∩B=φ,则ΑB∪B=B.所以,事件Α发生,事件B必不发生,即Α∪B发生,ΑB∪B不发生.故不成立.(2)不成立.若事件Α发生,则A不发生,Α∪B发生,所以A B不发生,从而不成立.A,AB画文氏图如下:(3)不成立.B所以,若Α-B发生,则AB发生, A B不发生,故不成立.(4)成立.因为ΑB与AB为互斥事件.(5)成立.若事件Α发生,则事件B发生,所以ΑB发生.若事件ΑB发生,则事件Α发生,事件B发生.故成立.(6)成立.若事件C发生,则事件Α发生,所以事件B不发生,故BC=φ.⊂.(7)不成立.画文氏图,可知B A(8)成立.若事件Α发生,由()A AB ⊂,则事件Α∪B 发生.若事件Α∪B 发生,则事件Α,事件B 发生. 若事件Α发生,则成立.若事件B 发生,由B A ⊂,则事件Α发生.4.设A ,B 为随机事件,且P (A )=0.7,P (A B )=0.3,求P (AB ). 【解】 P (AB )=1P (AB )=1[P (A )P (AB )]=1[0.70.3]=0.65.设A ,B 是两事件,且P (A )=0.6,P (B )=0.7, (1) 在什么条件下P (AB(2) 在什么条件下P (AB【解】(1) 当AB =A 时,P (AB )取到最大值为0.6.(2) 当A ∪B =Ω时,P (AB )取到最小值为0.3.6.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0P(AC )=1/12,求A ,B ,C 至少有一事件发生的概率.【解】 P (A ∪B ∪C )=P (A )+P (B )+P (C )P (AB )P (BC )P (AC )+P (ABC )=14+14+13112=347.52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】 p =5332131313131352C C C C /C8. (1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率.【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5(亦可用独立性求解,下同) (2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5(3) 设A 3={五个人的生日不都在星期日}P (A 3)=1P (A 1)=1(17)59. 从一批由45件正品,5件次品组成的产品中任取3件,求其中恰有一件次品的概率.【解】与次序无关,是组合问题.从50个产品中取3个,有350C 种取法.因只有一件次品,所以从45个正品中取2个,共245C 种取法;从5个次品中取1个,共15C 种取法,由乘法原理,恰有一件次品的取法为245C 15C种,所以所求概率为21455350C C P C =.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率. (1) n 件是同时取出的; (2)n (3) n 件是有放回逐件取出的.【解】(1) P (A )=C C /C m n m nM N M N --(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P nN 种,n 次抽取中有m次为正品的组合数为C m n 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有P mM 种,从NM 件次品中取nm 件的排列数为P n mN M --种,故P (A )=C P P P m m n mn M N MnN-- 由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P (A )=C C C m n mM N Mn N--可以看出,用第二种方法简便得多.(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n种,n 次抽取中有m 次为正品的组合数为C m n 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m 种取法,n m 次取得次品,每次都有N M 种取法,共有(N M )n m 种取法,故()C ()/m m n m nnP A M N M N -=- 此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为MN,则取得m 件正品的概率为()C 1m n mm n M M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11. 在电话号码簿中任取一电话号码,求后面4个数全不相同的概率(设后面4个数中的每一个数都是等可能地取自0,1,…,9).【解】这是又重复排列问题.个数有10种选择,4个数共有104种选择.4个数全不相同,是排列问题.用10个数去排4个位置,有410P 种排法,故所求概率为4410/10P P =.12. 50只铆钉随机地取来用在10个部件上,每个部件用3只铆钉.其中有3个铆钉强度太弱.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少? 【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A ==13.7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率. 【解】 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故 232322()()()35P A A P A P A =+=14.有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求:(1) 两粒都发芽的概率; (2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率.【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)(1) 1212()()()0.70.80.56P A A P A P A ==⨯= (2) 12()0.70.80.70.80.94P A A =+-⨯=(3) 2112()0.80.30.20.70.38P A A A A =⨯+⨯=15.3次正面才停止.(1) 问正好在第6次停止的概率;(2) 问正好在第6次停止的情况下,第5次也是出现正面的概率.【解】(1) 223151115()()22232p C == (2) 1342111C ()()22245/325p == *16.0.7及0.6,每人各投了3次,求二人进球数相等的概率.【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则3331212330()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.32076*17.从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率.【解】 4111152222410C C C C C 131C 21p =-= 18.0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1)在下雨条件下下雪的概率;(2)这天下雨或下雪的概率. 【解】 设A ={下雨},B ={下雪}.(1) ()0.1()0.2()0.5P AB p B A P A === (2) ()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=?19.已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故()6/86()()7/87P AB P B A P A ===或在缩减样本空间中求,此时样本点总数为7.6()7P B A =20.5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.50.05200.50.050.50.002521⨯==⨯+⨯21.两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图【解】设两人到达时刻为x,y ,则0≤x ,y ≤60.事件“一人要等另一人半小时以上”等价于|xy |>30.如图阴影部分所示.22301604P ==22.0,1)中随机地取两个数,求:(1) 两个数之和小于65的概率; (2) 两个数之积小于14的概率.【解】 设两数为x ,y ,则0<x ,y <1.(1) x +y <65. 11441725510.68125p =-==(2) xy =<14.1111244111d d ln 242x p x y ⎛⎫=-=+⎪⎝⎭⎰⎰ 题22图23.P (A )=0.3,P (B )=0.4,P (A B )=0.5,求P (B |A ∪B )【解】 ()()()()()()()()P AB P A P AB P B A B P A B P A P B P AB -==+- 0.70.510.70.60.54-==+-24.15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球}由全概率公式,有3()()()i i i P B P B A P A ==∑33123213336996896796333333331515151515151515C C C C C C C C C C C C C C C C C C =∙+∙+∙+∙0.089=25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问: (1)考试及格的学生有多大可能是不努力学习的人? (2)考试不及格的学生有多大可能是努力学习的人? 【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P(A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知(1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.20.110.027020.80.90.20.137⨯===⨯+⨯即考试及格的学生中不努力学习的学生仅占2.702% (2) ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.80.140.30770.80.10.20.913⨯===⨯+⨯即考试不及格的学生中努力学习的学生占30.77%.26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少?【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B } 由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+2/30.980.994922/30.981/30.01⨯==⨯+⨯27.在已有两个球的箱子中再放一白球,然后任意取出一球,若发现这球为白球,试求箱子【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知11112()()()()()()()i i i P B A P A P A B P A B P B P B A P A ===∑ 2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯28.96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.960.980.9980.960.980.040.05⨯==⨯+⨯29.某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”.统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故} 则由贝叶斯公式得()()(|)(|)()()(|)()(|)()(|)P AD P A P D A P A D P D P A P D A P B P D B P C P D C ==++0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯30.次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率. 【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==-12341()()()()P A P A P A P A =-10.980.970.950.970.124=-⨯⨯⨯=31.设每次射击的命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9? 【解】设必须进行n 次独立射击.则1(0.8)0.9n-≥即为 (0.8)0.1n ≤ 故n ≥1lg8=11.07,至少必须进行11次独立射击. 32.证明:若P (A |B )=P (A |B ),则A ,B 相互独立.【证】 (|)(|)P A B P A B =即()()()()P AB P AB P B P B =亦()()()()P AB P B P AB P B =,即()[1()][()()]()P AB P B P A P AB P B -=- 因此 ()()()P AB P A P B =,故A 与B 相互独立. 33.三人独立地破译一个密码,他们能破译的概率分别为151314,求将此密码破译出的概率. 【解】 设A i ={第i 人能破译}(i =1,2,3),则31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯=34.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率. 【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3由全概率公式,得3()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)×0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)×0.6+0.4×0.5×0.7×1=0.458。

2021年北京交通大学《概率论与数理统计(C)》课程习题及答案解析

2021年北京交通大学《概率论与数理统计(C)》课程习题及答案解析

1.已知ξ,η的概率分布分别为:P{ξ=k }= a / k ,P{η=-k }=b / k 2 (k =1、2、3),ξ与η相互独立,则a =( ),b =( );ξ,η的联合概率分布为( ),Z =ξ+η的概率分布为( )。

2.设随机变量(X ,Y )的联合密度为:⎪⎩⎪⎨⎧≥+<++-=Ry x Ry x y x R c y x p 2222220)(),(,求:(1)常数c ; (2)P{X 2+Y 2≤ r 2} (r < R )。

3. 设随机变量X 的密度函数为:⎪⎩⎪⎨⎧≤<+≤<=其它02110)(x b ax x xx p 且;87)230(=<<ξP求:(1)常数a , b ; (2));2321(<<ξP (3)X 的分布函数F(x )。

4. 设X 、Y 都服从正态分布N (0, σ2),且P {X ≤1,Y ≤-1}=0.25,则P {X > 1, Y > -1}=( )。

5. 设随机变量X 服从(0,2)上的均匀分布,则随机变量Y =X 2在(0,4)内的概率分布密度f y (y )=( )。

6.设随机变量ξ服从]2,2[ππ-上的均匀分布.求随机变量η = cos ξ 的概率密度函数。

7. 若(ξ,η)的联合概率分布如左表所示:求:α,β取什么值时,ξ与η相互独立。

8. 设随机变量X ,Y 相互独立,其概率密度分别为:⎩⎨⎧≤≤=其它101)(x x f X ; 0()0yY e y f y -⎧>=⎨⎩其它求随机变量Z =2X +Y 的密度。

9. 已知随机变量X 的分布函数为:(1)2021()01211xx e x F x x e x --⎧<⎪⎪⎪=≤<⎨⎪⎪-≥⎪⎩, 求D(X );X 2的密度。

10.设在线段[0, a ]上任意掷两点,(各自独立地服从均匀分布), 以Z 表示两点之间的距离。

北京交通大学-概率论与数理统计课件

北京交通大学-概率论与数理统计课件

n

lnim npn



lim
n
k n


k
lim 1 n
n
n
nk

lim 1 n
n
n
n
n

n
k n

n


eห้องสมุดไป่ตู้


第二章 随机变量及其分布 §2离散型随机变量
Poisson定理的证明(续) 所以
lnim Cnk pnk 1 pn nk
Cnk
pk n
1
pn
nk
k

0,1,n
lnim npn 0

lim P
n
Xn
k

lim
n
Cnk
pnk
1
pn
nk

k!k e
证明: 令npn n

C
k n
pnk
1
pn
nk

nn
1n

2n
k!

k

1

n
n
k
1
n
n
nk
第二章 随机变量及其分布 §2离散型随机变量
Poisson定理的证明(续)


k n
1
1
1
2
1
k
1 1

n
nk

k! n n n n
对于固定的 k
由lim n
0.9745.
第二章 随机变量及其分布 §2离散型随机变量

北京交通大学概率论与数理统计习题答案

北京交通大学概率论与数理统计习题答案

习题4 答案1. 略.2. 设随机变量X 服从几何分布,其分布律为()1()1,1,2,,k P X k p p k -==-=其中01p << 为常数,求)(X E 和)(X D .解:设1q p =-,则1{},(1,2,)k P X k pq k -=== ,由121111()()1(1)k k kk k k x S x kx x x x x ∞∞∞-===''⎛⎫⎛⎫'===== ⎪ ⎪--⎝⎭⎝⎭∑∑∑ 1121111(){}(1)k k k k k p E X kP X k kpqp kq q p ∞∞∞--=========-∑∑∑ 21112311111()()(1)(1)k k k k k k k k x x S x k x kx kx x kx x x ∞∞∞∞--===='''⎛⎫+⎛⎫⎛⎫'====== ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭∑∑∑∑由 , 232(1)2()(1)p q pE X q p +-==- , 所以22222211()()()p pD XE X E X p p p ⎛⎫--=-=+= ⎪⎝⎭.3. 设连续型随机变量X 的概率密度,01,()2,12,0,x x f x x x ≤≤⎧⎪=-<<⎨⎪⎩其它试求)(X E 和)(X D .解: 1201()()(2)E X xf x dx x xdx x x dx +∞-∞==⋅+⋅-⎰⎰⎰ 131312132103=⎪⎭⎫ ⎝⎛-+=x x x ⎰⎰⎰-⋅+==+∞∞-21210222)2()()(dx x x xdx x dx x f x X E 674132412143104=⎪⎭⎫ ⎝⎛-+=x x x 所以22271()()()166D XE X E X =-=-=.4. 设随机变量X 的概率密度为||1()()2x f x e x -=-∞<<+∞,求)(X E ,)(X D .解: 1() e d 02xE X x x +∞--∞==⎰, 2e 2 e d 2d e 2e e d d e d e 21 )(02020222=-=-=+-=-===∞+--∞+-∞+∞+--+∞-+∞-+∞∞-⎰⎰⎰⎰⎰xxx xxxx x x x x x x x x x X E故22()()(())2D X E X E X =-=5. 已知随机变量X 服从参数为1的指数分布,X e X Y 2-+=,试求)(Y E ,)(Y D ,),(Y X Cov 及XY ρ.解:22()()()()X X E Y E X e E X E e --=+=+34102=⋅+=⎰+∞--dx e e x x ,22222422422403500()()[2]()2()()()()211223535211109233545X X X X X x xx x xx E Y E X e E X Xe e E X E Xe E e D X E X xee dx e e dxx e dx e dx-----+∞+∞----+∞+∞--=+=++=++=+++=+⨯⋅+=+⨯+=⎰⎰⎰⎰所以2229()()()45D YE Y E Y =-=,又因)]([)(2X e X X E Y X E -+=⋅22119()()299X E X E Xe -=+=+=, 所以7(,)()()()9Cov X Y E XY E X E Y =-=,29537)()(),(==Y D X D Y X Cov XY ρ. 6. 略.7. 设随机变量),(Y X 的概率密度函数为301,0(,)0xx y xf x y <<<<⎧=⎨⎩其它, 求)(X E ,)(Y E ,)(X D ,)(Y D ,XY ρ .解:()()112303,334x E X xf x y dxdy dx x dy x dx +∞+∞-∞-∞====⎰⎰⎰⎰⎰ ()()11300033,328xE Y yf x y dxdy xdx ydy x dx +∞+∞-∞-∞====⎰⎰⎰⎰⎰()()1122340003,335xE X x p x y dxdy dx x dy x dx +∞+∞-∞-∞====⎰⎰⎰⎰⎰()()1122240001,35xE Y y p x y dxdy xdx y dy x dx +∞+∞-∞-∞====⎰⎰⎰⎰⎰()()112400033,3210xE XY xyp x y dxdy x dx ydy x dx +∞+∞-∞-∞====⎰⎰⎰⎰⎰所以有()()()()3333cov ,1048160X Y E XY E X E Y =-=-⨯= ()()()()2223335480D X E X E X ⎛⎫=-=-=⎪⎝⎭, ()()()()222131958320D YE Y E Y ⎛⎫=-=-= ⎪⎝⎭, 因此,有,3cov ,X Y X Y ρ===.8. (1) 设相互独立的两个随机变量X 和Y 具有同一分布且1(1,2X b ,求[max{,}]E X Y 与[min{,}]E X Y .(2) 设随机变量12,,...n X X X 相互独立且都服从区间[0,1]上的均匀分布,求12max{,,...}n U X X X =和12min{,,...}n V X X X =的数学期望.解:(1) 随机变量X 和Y 均服从两点分布(离散),设1max{,}Z X Y =,则1Z 可能取值为0,1, 且11{0}{max{,}0}{0,0}{0}{0}4P Z P X Y P X Y P X P Y ========⋅==, 1{1}{max{,}1}{0,1}{1,0}{1,1}P Z P X Y P X Y P X Y P X Y ======+==+==, 1111113{0}{1}{1}{0}{1}{1}2222224P X P Y P X P Y P X P Y ==⋅=+=⋅=+=⋅==⨯+⨯+⨯=,因此1Z 的分布律为因此1133[max{,}]()01444E X Y E Z ==⨯+⨯=,同理设2min{,}Z X Y =,2Z 的分布律为因此2311[min{,}]()01444E X Y E Z ==⨯+⨯=. (2)由题意(1,2,,)i X i n = 的密度函数为()1010X x f x <<⎧=⎨⎩其它,分布函数为00()0111i X x F x x x x <⎧⎪=≤≤⎨⎪>⎩(){}{}()i n12n X i 100F P U P X ,X ,X F 0111n U x x x x x x x x x x =<⎧⎪=≤=≤≤≤==≤≤⎨⎪>⎩∏ ,因此随机变量12max{,,...}n U X X X =的概率密度函数为()()()()1101n n U X X nx x f x n F x f x --⎧<<==⎨⎩其它, 得()()1101n U nE U xf x dx x nx dx n +∞--∞==⋅=+⎰⎰, (){}{}()()i n12n X i 100F P 1P X ,X ,X 11-F 1(1)0111n V x x V x x x x x x x x =<⎧⎪=≤=->>>=-=--≤≤⎨⎪>⎩∏ , 因此随机变量12min{,,...}n V X X X =的概率密度函数为()()()()11(1)0110n n V X X n x x f x n F x f x --⎧-<<=-=⎨⎩其它, 得()()1101(1)1n V E V xf x dx x n x dx n +∞--∞==⋅-=+⎰⎰.9. 将n 个球随机的放入N 个盒子中,设每个球落入各个盒子是等可能的,求有球的盒子数X 的数学期望. 解:引入随机变量11,2,,0i i X i N i ⎧==⎨⎩ 若第个盒子中有球若第个盒子中无球,每个随机变量i X 都服从两点分布,1,2,,i N = ,1Ni i X X ==∑,因此1Ni i EX EX ==∑,因为每个球落入每个盒子是等可能的均为1N,所以对第i 个盒子,没有一个球落入这个盒子内的概率为11N -,故,n 个球都不落入这个盒子内的概率为11nN ⎛⎫- ⎪⎝⎭,因此11{0}(1,{1}1(1,1,2,,.n n i i P X P X i N N N==-==--= 11(1),1,2,,n i EX i N N =--= ,1211()()()1(1).N n i N i EX EX E X E X E X N N =⎡⎤==+++=--⎢⎥⎣⎦∑10.请看PPT.11.解:由[10,30],[10,20]X U Y U ,得随机变量X 和Y 的概率密度函数分别为()11030200X x f x ⎧<<⎪=⎨⎪⎩其它,()11020100Y y f y ⎧<<⎪=⎨⎪⎩其它, 又X 和Y 相互独立,11030,1020(,)200x y f x y ⎧<<<<⎪=⎨⎪⎩其它,则()32001200(),44001200,(,)32002000,52002000,y x y x y y x x yZ g x y x y x x y x y x y --≥-≥⎧⎧===⎨⎨--<-<⎩⎩()()[(,)](,),3.67.EZ E g x y E X g x y f x y dxdy +∞+∞-∞-∞====⎰⎰万元12.设~(0,4),~(0,4)X N Y U ,且X ,Y 相互独立,求:(),(23),(23)E XY D X Y D X Y +-.解:()0,()4E X D X ==, 40()22E Y +==,244()123D Y ==,0xy ρ=, ()0E XY =, 416(23)(23)4()9()44933D X Y D X Y D X D Y +=-=+=⨯+⨯=.13.设X 与Y 相互独立,()()0,()()1E X E Y D X D Y ====,求2[(2)]E X Y +. 解:22222[(2)](44)()4()4()E X Y E X XY Y E X E XY E Y +=++=++ [][]{}22()()4()()4()()D X E X E X E Y D Y E Y =++++1004(10) 5.=++++=14.请看PPT.15.解:因X 服从均匀分布,因此21()()=3=,()2312a bb a E X D X +-==, 解得2, 4.a b == 因此(2,4)X U ,其概率密度函数为()12420X x f x ⎧<<⎪=⎨⎪⎩其它,因此()331211{13}22X P X f x dx dx <<===⎰⎰.16.设随机变量X的概率密度为221()xx f x -+-=,则EX = ,DX = .解:若随机变量服从2()N μσ,分布,则其概率密度应为221)2()xf xμσ--=因此把所给密度函数变形为2211)121()1xf x e--⋅=即1(1,)2X N,因此1()1,()2E X D X==.17.18. 19. 20. 略.21.331(1),1,1,(,)40,,x y xy x yf x y⎧-+<<⎪=⎨⎪⎩其他,证X,Y不相关,但不相互独立.解: 1133111()(,)(1)04E X xf x y dxdy dx x x y xy dy+∞+∞-∞-∞--==-+=⎰⎰⎰⎰()0E Y=,()(,)0E XY xyf x y dxdy==⎰⎰()()()E XY E X E Y X Y∴=即,,不相关.但1,11()(,)20,Xxf x f x y dy+∞-∞⎧-≤≤⎪==⎨⎪⎩⎰其他1,11()(,)20,Yyf y f x y dx+∞-∞⎧-≤≤⎪==⎨⎪⎩⎰其他()()(,)X Yf x f y f x y∴≠(1,1)x y<<,X Y即,不相互独立.22. 设随机变量(,)X Y的分布律为求证YX,不相关,但,X Y不相互独立.解:3333()(1)010,()(1)0108888E X E Y=-⨯++⨯==-⨯++⨯=,811181)1(1811)1(81)1()1()(=⨯⨯++⨯-⨯++⨯⨯-++⨯-⨯-=XYE所以 cov(,)()()()0X Y E XY E X E Y=-=故,X Y 不相关.又 1133, 88p p ∙∙==, 8111=p所以 1111p p p ≠∙∙, 故Y X ,不相互独立.23. 略。

概率论课后习题答案北京邮电大学版

概率论课后习题答案北京邮电大学版
第二次取出的球都是新球的概率。
解: 设Bi= “第一次取出的3个球中有i个新球” (i 0,1,2,3)
P(Bi
)
C
9i C
3i 3
C132
3
PA
PBi PA Bi
i0
P(A
Bi
)
C
3 9i
C132
C
3 3
C
3 9
C
91C
2 3
C
3 8
C 92 C
1 3
C
3 7
C
3 9
C
3 6
C132 C132
概率作业答案:第一章1—5节
概率作业答案:第一章1—5节
概率作业答案:第一章1—5节
五、电话号码由7个数字组成,每个数字可以是0、1、2、…、9中 的任一个(但第一个数字不能为0),求电话号码是由完全不 同的数字组成的概率。
解: 基本事件的总数: 设事件A 表示电话号码是由完全不同的数字组成, 则A所包含的基本事件的数:
P (A) 、P (AB) 、P (A∪B) 、P (A) + P (B) 用“≤”连接它们,并指出在什么情况下等号成立.
概率作业答案2:第一章6—10节
解 PA B P( A) P(B) P( AB) PA B P( A) P(B)
AB A ( A B) P( AB) P( A) P( A B)
___________
答案与提示: P( AB ) P( A B ) 1 P( A B) 1 P( A) P(B) P( AB) 由P( AB) P( AB ), 得P( A) P(B) 1, P(B) 1 P( A) 1 p 二、 设P (A) > 0, P (B) > 0 ,将下列四个数:

北京交通大学远程与继续教育概率论与数理统计课后习题答案

北京交通大学远程与继续教育概率论与数理统计课后习题答案

北京交通⼤学远程与继续教育概率论与数理统计课后习题答案百度⽂库?让每个⼈平等地捉升⼝我北京交通⼤学远程与继续教育学院概率论与数理统计课后习题答案第⼀章1.(1)、样本空间:50粒种⼦,样本点:发芽粒数⼤于40粒;⼩于40粒;等于40粒。

(2)、样本空间:4个⼈中选出正、副组长的所有可能情况,样本点: 4个⼈分别当选正组长。

(3)、样本空间:棋赛可能出现的所有可能情况,样本点:平局、1 ⼈不败(4)、样本空间:2棵骰⼦出现点数搭配可能出现的情况,样本点:点数之和等于5;不等于5(5)、样⽊空间:点数之和可能岀现的状况,样本点:点数之和⼤于3且⼩于8;点数之和⼩于3;点数之和⼤于8(6)、样本空间:10见产品,样本点:将次品查出所抽取的次数(7)、射击次数(8)、通过指定点的速度(9)、各段可能出现的长度2.(1) BuA (2) BuA (3)CuBuA3.(1)不喜欢唱歌且不是运动员的男⽣(2)喜欢唱歌不是运动员的男⽣(3)喜欢唱歌的都是运动员(4)不是运动员的男⽣都喜欢产唱歌4.(1)1-100中随机取出的数是⼩于50且是5的倍数的数(2) 1-100 中随机取出的数是⼤于30⼩于50的数(3) 1-100中随机取出的数是⼤于30⼩于50且是5的倍数的数(4) 1-100中随机取出的数是5 的倍数或⼩于50的数(5) 1-100中随机取出的数是⼩于50且是5的倍数的数或⼤于30⼩于50的数5.(1) A(2) A B C (3) AB (4) ABCB C (6)S-X BC-\BC6.{ffft}=ABD u ACD u ABCD {^T不壳}=A p D 9 B C7.P (A) +P (B)⼆P (R B)〉P (A) >P (AB)8.(1) 1-0. 2*0. 15=0. 97 (2)0. 039. 1 ⼀丄*3+1 = -4 8 810.(1)、2-X-Y (2)、1-X-Y+Z(3)Y-Z(4)1-X+Y-ZH.(DC:4-C;0=I(2)m冷o 1212.55H-A2 =—26 130814.(C;0*CJ*Ci*C*)4-(C;0* C;o* C]o* C;。

北京交通大学概率论与数理统计月考一考前辅导

北京交通大学概率论与数理统计月考一考前辅导
则 Y =g(X ) 是一个连续型随机变量 Y,其概率密度为
fY
(
y
)


f
X
[h(
y)]
|
h(
y)
|,
y ,

0,
其它.
其中 h(y) 是 g(x) 的反函数, min{ g(), g()},
即 x g 1( y) h( y)
max{ g(), g()}.
二项分布、泊松分布及其概率背景。
返回主目录
第二章 习题课
3 给出了连续型随机变量及概率密度的定义、性质, 要求:
(1)掌握概率密度与分布函数之间的关系及其运算;
(2)已知概率密度,会求事件的概率; (3)会确定概率密度中的常数; (4)掌握常用的连续型随机变量分布:均匀
分布、指数分布和正态分布。
4 会求随机变量的简单函数的分布。
则有
PA1 A2 An PA1P A2 A1 P A3 A1A2 P An A1A2 An1
这就是n个事件的乘法公式.
返回主目录
全 概 率 公 式:
设随机事件 A1,
满足:
A2 , ,
An 以及 B
1.A1,
A2 , ,
An
两两互不相容;
(4) 超几何分布
P(X

k)


M k

N n
M k


N n

k 0,1,,min{M , N }
这里M N , n N , n, M , N均为正整数
(5) 几何分布 P( X k ) (1 p)k1 p k 1,2,

北交大概率论第3章总复习

北交大概率论第3章总复习
pij P X xi , Y y j pi p j , i , j 1,2,
P X xi , Y y j P{ X xi }P{Y y j }




4、已知离散型随机变量X、Y的相互独立以及各 自的(边缘)分布,会求联合分布;
返回主目录
第三章 小
F (,) 1.
FX x F ( x , ) FY y F ( , y ) 4、会判断连续型随机变量的独立性
3 已知联合分布函数求边缘分布函数
F x, y FX x FY y 返回主目录第Fra bibliotek章 小结
二维分布函数的几何意义
二维分布函数的几何 意 义 是 : x, y F 表示平面上的随机 点 X , Y 落 在 以
第三章 小

如果随机变量 1, X 2, , X n 相互独立, X
Xi
n
~ N ,
i 2 i
又 C1, C2, , Cn 为n 个实常数,
令: Z C i X i C1 X 1 C 2 X 2 C n X n
n n 2 2 则 Z ~ N C i i, C i i i 1 i 1
f Z z 0 ;
第三章
方法二小结:
当 f ( x, y )
求F(z) Z
x y z
是分段函数时,
的 f x, y dxdy 步 骤 如 下 :
1
0
在xoy面上画出 ( x, y ) 0的区域 f D {( x, y ) : f ( x, y ) 0}。
且它们相互独立, min X1, X 2, , X n Z

北交大概率论第2章总复习

北交大概率论第2章总复习

所以 X ~ B(n, p)
参数 n,p 的意义: n 是试验次数,p 是一次试验中A 发生的概率。
返回主目录
第二章
总复习
泊松分布要掌握的四个要点: (1)随机变量 X 的取值;0,1,… ,可列个。
(2)随机变量 X 的分布律:
P{X k}

k
k!
e
( k 0, 1, 2, )
s 0 , t 0,
P { X s t X s } P{ X t }
若把X解释为寿命,则上式表明:如果已知某人
活了 s 年,则他至少再活 t 年的概率与年龄s 无关,
所以人们风趣地称指 数分布的这一性质为“永远年轻”,
又称“无记忆性”----即把过去的年龄忘记了。
P{ X 5 10 X 5} P{ X 50 10 X 50}
二、 离散型随机变量: 常见问题 (1) 会求离散型随机变量的分布率;
P{ X xk } pk
( k 1,
2, )
(2)已知分布率,会求分布函数以及事件的概率;
F ( x ) P{ X x }
(3)已知分布函数,会求分布率; 离散分布函数为阶梯函数,且在 X x k (k =1, 2 ,…) 处有跳跃,其跳跃值为 P{ X xk } pk

3)会用分布函数计算某些事件的概率
P{X a} F (a ), P{X < a} F (a 0 )
P{ X a} F (a ) F (a 0) ,
P{a X b} P{X b} P{X < a}
F (b ) F (a 0)
返回主目录
第二章
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计习题解答
第一章 概率论的基本概念
第二章 随机变量及其分布
第三章 多维随机变量及其分布
第四章 随机变量的数字特征
第五章 大数定律及中心极限定理
第六章 参数估计
第一章 概率论的基本概念
38 将A、B、C三个字母之一输入信道,输出为 原字母的概率为 , 而输出为其它字母的概率 都是 (1 ) 2 . 今将字母串AAAA,BBBB, CCCC之一输入信道,输入AAAA,BBBB,CCCC 的概率分别为p1, p2 , p3 ( p1 p2 p3 1). 已知输出为 ABCA, 问输入的是AAAA的概率是多少? (设 信道传输的各个字母的工作是相互独立的.)

e
14
(7.14) (6.86) m!(n m)!
m
nm
e 14 m 7.14 6.86 Cn n! 14 14
n
14
m
nm
m Cn 0.51m 0.49n m , m 0,1,2,, n
e 14 (7.14) m (6.86) nm P{ X n, Y m} , m!(n m)! m 0,1,2,, n; n 0,1,2,.
返回主目录
第二章 随机变量及其分布
则 P( A) P({X k} {Yk l})
k l
( P{X k}P{Yk l | X k})
k l
(
k l

k
k!
e C p (1 p)
l k l

k l
)
pl e l!
(k l )!(1 p)
返回主目录
第三章 多维随机变量及其分布
(2)当m 0,1,2,时 P{ X n, Y m} P{ X n | Y m} P{Y m}
e 14 (7.14) m (6.86) nm e 7.14 (7.14) m m!(n m)! m! (6.86) nm e 6.86 , n m, m 1, (n m)!
返回主目录
第二章 随机变量及其分布
2.将一颗骰子抛掷n次,将所得的n个点
数的最小值记为X,最大值记为Y.分别求 出X与Y的分布律. 解 : 以Yi 记第 i次投掷时骰子出现的点 数,
i 1,2,, n.则X minYi , Y maxYi .
1i n 1i n
X与Y的所有可能值均为 1,2,3,4,5, 6.
打开的.有一只鸟自开着的窗子飞入了房间.假定鸟 是没有记忆的,它飞向各扇窗子是随机的. (1)以X表示鸟为了飞出房间试飞的次数,求X的分布律. (2)户主声称,他养的一只鸟是有记忆的,它飞向任一 窗子的尝试不多于一次.以Y表示这只聪明的鸟为了 飞出房间试飞的次数,如户主说的是确实的,试求Y的 分布律.
第二章 随机变量及其分布
1 1 1 故 P{Y 3} 1 - - . 3 3 3 Y的分布律为 1 P{ X k} , k 1,2,3. 3 (3) {X Y }可分解为下列 3个两两互不相容事件之 和 :
{ X Y } ({X 1} {Y 2}) ({X 1} {Y 3}) ({X 2} {Y 3}) 故 P{ X Y } P({X 1} {Y 2}) P({X 1} {Y 3}) P({X 2} {Y 3}) 返回主目录
{ X k} {Yi k , k 1,,6 | i 1,2,, n} {Yi k 1,,6 | i 1,2,, n}, k 1,2,,6.
返回主目录
第二章 随机变量及其分布
由于 Yn相互独立 , 因此 (6 k 1) (6 k ) P{ X k} n n 6 6 k 1,2,,6.
n 14
n
e 14 (7.14) m (6.86) nm P{ X n, Y m} , m!(n m)! m 0,1,2,, n; n 0,1 6.86) n! n!
14
, n 0,1,2,
返回主目录
第三章 多维随机变量及其分布
第一章 概率论的基本概念
解:
令事件 Ai分别表示输入 AAAA,输入 BBBB, 输入 CCCC, i 1, 2, 3. 令事件 A 表示输出 ABCA.
由已知条件及独立性知
1 P( A | A2 ) P( A | A3 ) . 2
返回主目录
1 P( A | A1 ) , 2
11.设随机变量(X,Y)的联合概率密度为
cxe y ,0 x y , f ( x, y) 其他. 0,
(1)求常数c (5)求(X,Y)的联合分布函数.
(1)由


f ( x, y)dxdy 1可解得 c 1.
返回主目录
第三章 多维随机变量及其分布
k l
k
k l
返回主目录
第二章 随机变量及其分布
( p ) e l!
l
l

i! (1 p)
i 0

i
i
( p ) e l!

e
(1 p )
( p ) l e p l!
返回主目录
第二章 随机变量及其分布
6 一个房间有3扇同样大小的窗子,其中只有一扇是
u

y

1 2 y du 1 ( x 1)e x e . 2
x
xe y ,0 x y , f ( x, y) 其他. 0,
3 8 1 P({X k} {Y k}) 27 k 1 3 8 1 P{ X k}P{Y k} 27 k 1 38 . 81
返回主目录
第二章 随机变量及其分布
25 设X ~ U (1,2),求Y | X | 的概率密度 .
解:设随机变量 X 的分布函数为 FX x ,随机变量
(3)求试飞次数X小于Y的概率和试飞次数Y小于X的
概率.
返回主目录
第二章 随机变量及其分布 解:
1 2 (1) P{X k} , k 1,2,. 3 3
k 1
(2) Y的可能值为 1,2,3. {Y 1}表示鸟从三扇窗子中选 对了一扇 , 则 1 P{Y 1} . 3 2 {Y 2}表示鸟第一次试飞失败 (概率为 ), 3 第二次从两扇窗子中选 对了一扇 , 则 2 1 1 P{Y 2} . 3 2 3 返回主目录
返回主目录
第二章 随机变量及其分布
1 2 (3)当0 y 1时, FY ( y ) dx y; y 3 3 1 y 1 1 (4)当1 y 2时, FY ( y ) 0dx dx ( y 1). y 1 3 3
y
将FY ( y )关于 y求导得 2 3 , 0 y 1, 1 fY ( y ) , 1 y 2, 3 其它. 0,
n n
第二章 随机变量及其分布
9.设昆虫生产k个卵的概率为
pk
k
k!
e (k 0,1,2,),

又设一个虫卵能孵化为昆虫的概率等于p. 若卵的孵化是相互独立的,问此昆虫的下 一代有l条的概率是多少?
解 : 令X为昆虫生产的卵的个数 , Yk 为 k个卵中孵化为昆虫的个 数.事件 A表示 昆虫的下一代有 l条.
m 7.14 e 14 ( 7 . 14 ) e m 6.86 (7.14) e , m 0,1,2, m! m!
nm
14

k
e 14 (7.14) m (6.86) nm P{ X n, Y m} , m!(n m)! m 0,1,2,, n; n 0,1,2,.
P{Y m} P{ X n, Y m}



e
14
nm 14
(7.14) (6.86) m!(n m)!

nm m
nm
e (6.86) e (6.86) m m (7.14) (7.14) m! m! k! n m ( n m)! k 0
第二章 随机变量及其分布
因为两只鸟的行动是相互独立的,因此
P{ X Y } P{ X 1}P{Y 2} P{ X 1}P{Y 3} P{ X 2}P{Y 3} 1 1 1 1 2 1 8 . 3 3 3 3 9 3 27 P{Y X } 1 P{X Y } P{Y X }
e 14 (7.14) m (6.86) nm P{ X n, Y m} , m!(n m)! m 0,1,2,, n; n 0,1,2,.
返回主目录
第三章 多维随机变量及其分布
当n 0,1,2,时 P{ X n, Y m} P{Y m | X n} P{Y n}
返回主目录
第三章 多维随机变量及其分布
解: (1) P{ X n} P{ X n, Y m}
e 14 (7.14) (6.86) n m m!(n m)! m 0
n
m 0 m
n
e n!
14
n! m nm (7.14) (6.86) m 0 m!( n m)!
Y 的分布函数为 FY y . 由题意知X的概率密度为 1 , 1 x 2, f X x 3 其它. 0,
(1)当y 0时, FY ( y) P 0; (2)当y 2时, FY ( y) 1;
FY ( y) P Y y P| X | y
返回主目录
相关文档
最新文档