第3章基本几何体的投影——答案
第3章 基本几何体的投影——答案

4.求作斜二测图
班级:姓名:学号:Fra bibliotek3-12作业截交线、相贯线作业
作业指导
一、目的
初步掌握切口平面体、回转体和相贯体的三视图画法。
二、内容和要求
1.根据3-13中的切口平面体、回转体和相贯体轴测图画三视图。
2.用A3图纸,比例自定,横放,按老师选定的题目作图。
三、作图步骤
1.形体分析:分析未切割前完整立体形状,截切平面位置,截交线与截断面的形状、空间位置、投影特点;参与相贯两形体的形状,相
1.
2.用近似画法求作相贯线的投影
3.用近似画法求作相贯线的投影
4.补画主视图
班级:姓名:学号:
3-8利用辅助平面法求相贯线的投影。
1.补画主、俯视图上的投影
2.补全俯视图上的投影
3.
班级:姓名:学号:
3-9求作特殊情况相贯线及综合相交立体的相贯线的投影。
1.
2.
3.补全主视图中的缺线
4.补全主、俯视图中的缺线
班级:姓名:学号:
四、轴测投影3-10求作平面体的正等测图。
1.已知柱体特征面的轴测投影与柱体厚度,完成柱体正等测图
(1)
(2)
(3)
2.用上图的方法,根据平面体的两面视图,画出其轴测图(尺寸数字按1∶1由图中量取)
(1)
(2)
(3)
班级:姓名:学号:
3-11求作回转体的正等测图及斜二测图。
1.
2.
对位置及相贯线形状、投影特点。
2.选择主视图的投影方向后,确定完整体的特征形方向和切口、切槽的特征方向,相贯体上相贯线哪个投影与圆柱面投影相重合,需要
求作的投影及求作的方法。
3.画完整体三视图(先画特征视图)。
第三章投影法的概念

第二节 三视图的形成及投影规律
二、三视图的关系及投影规律
1、位置关系 物体的三个视图按规定展开,摊平在同一平面上以后,具有明确的位置 关系,主视图在上方,俯视图在主视图的正下方,左视图在主视图的正右 方。 2、投影关系 三视图之间的投影对应关系可以归纳为: 主视、俯视长对正(等长)。 主视、左视高平齐(等高)。 俯视、左视宽相等(等宽)。 这就是“三等”关系,简单地说就是“长对正,高平齐,宽相等”。对 于任何一个物体,不论是整体,还是局部,这个投影对应关系都保持不变 (图3-7)。 “三等”关系反映了三个视图之间的投影规律,是我们看图、画图和检 查图样的依据。
Y
ay
a●
Y ay
四、点的投影规律:
V a
●
X ax
Z
az
A
●
O
●a W
a● H
ay Y
① aa⊥OX轴 aa⊥OZ轴
② aax= aaz=y =Aa(A到V面的距离) aay= aaz =x =Aa(A到W面的距离) aax= aay =z =Aa (A到H面的距离)
五、 点的坐标
如图3-11所示,点的坐标值的意义如下: A点到W面的距离Aa″=aaY=a′aZ=OaX,以坐标x标记。 A点到V面的距离Aa′=aaX=a″aZ=OaY,以坐标y标记。 A点到H面的距离Aa=a′aX=a″aY=OaZ,以坐标z标记。 由于x坐标确定空间点在投影面体系中的左右位置,y坐标确定空间点在投影面体系 中的前后位置。z坐标确定点在投影面体系中的高低位置,因此,点在空间的位置 可以用坐标x、y、z确定。
一、平面的投影特性
⒈ 平面对一个投影面的投影特性
平行
垂直
第3章-基本立体的投影

第3章 基本立体的投影
3.2.2 圆锥
1. 圆锥面的形成 圆锥面是由一条直母线绕与它相交的轴线旋转而 成的。圆锥体由圆锥面和底面组成。 2. 圆锥的投影 图3-4表示一直立圆锥,它的正面投影和侧面投影 为同样大小的等腰三角形。正面投影s′a′和s′b′是圆锥面 的最左和最右素线的投影,它们把圆锥面分为前、后 两半;侧面投影s″c″和s″d″是圆锥面最前和最后素线的 投影,它们把圆锥面分为左、右两半。
第3章 基本立体的投影
图3-4(b)中,已知K点的正面投影k′,求点 K的其他两个投影。可用辅助圆法作图,即过 点K在锥面上作一水平辅助纬圆,该圆与圆锥 的轴线垂直,点K的投影必在纬圆的同面投影 上。作图时,先过k′作平行于X轴的直线,它 是纬圆的正面投影,再作出纬圆的水平投影。 由k′向下作垂线与纬圆交于点k,再由k′及k求 出k″。因点K在锥面的右半部,所以k″不可见。第3章 基ຫໍສະໝຸດ 立体的投影2. 棱柱表面上的点
在平面立体表面上的点,实质上就是平面上的点。 正六棱柱的各个表面都处于特殊位置,因此在表面上的 点可利用平面投影的积聚性来作图。
如已知棱柱表面上M点的正面投影m′,求水平、侧 面投影m、m″。由于正面投影m′是可见的,因此M点必 定在棱柱的前半部平面ABCD上,而平面ABCD为铅垂 面,水平投影abcd具有积聚性,因此m必在abcd上。根 据m′和m,由点的投影规律可求出m″,如图3-1(b)所示。
第3章 基本立体的投影
3.2 曲面立体
由一母线绕轴线回转而形成的曲面称为回转面, 由回转面或回转面与平面所围成的立体称为曲面立体。 母线在回转面上的任一位置称为素线。常见的曲面立 体有圆柱、圆锥和圆球等。
第3章 基本立体的投影
3.2.1 圆柱 1. 圆柱面的形成 圆柱面是由一条直母线绕与它平行的轴线旋转而
机械制图基本几何体投影

X
A ⅠB c
b"
线法)。
a
s
1m b
Y
棱锥表面点的投影确定
s'
Z s"
长
沙
职
m"
院
m'
a'
(n') a" n"
b"
机 械 系
1'
X
b' c' O (c")
YW
a
n
c
s
1m
b
YH
六棱柱的投影
长A
沙 职 院
F
E
(f') (e')
a' b'
c' d'
D
BC
(e" )(d" )(c" ) f" a" b"
正三棱锥的表面有特殊位置平面, 也有一般位置平面。
属于特殊位置平面的点的投影, 可利用该平面的积聚性作图。
长 沙 职
属于一般位置平面的点投影, 可通过在平面上作辅助线的方
法求得。
Z
院
V s'
机 械 系
S
s"
m'
b'
a' 1'
m"
M C a"
如图: 己知属 于棱面ΔSAB上的 点M,试求点M、 的投影(利用辅助
已知圆锥表面点M的正面投影m′, 求m和m″。
方法: (1)辅助素线法
长 沙
s'
Z
s"
职
院
s
m'
建筑制图与识图-第三章

三、平面立体表面上点和线的投影
(一)利用“从属性法”和“积聚性法”作图
从属性法 当点位于立体表面的某条棱边上时,该点的投影必定在棱线的
投影上。此时,可利用线上点的“从属性”求出该点的投影。
积聚性法
(梯梯为台)。由于正面投影中的m′n′可见,因此 可判定该直线位于四棱台的前棱面上。由于M点在 棱边上,故可利用“从属性法”求出其他两面投影 ;N点所在的表面为侧垂面,其侧面投影具有积聚 性,因此可先利用表面的积聚性求出n''点,然后再 利用n''点和n′点求出n点。
图3-7 利用“从属性法”和 “积聚性法”求立体表面上点
(c)
图3-11 圆柱投影图的作图步骤
二、圆锥
圆锥是由圆锥面和圆底面所围成的回转体。其中,圆锥面是由母线绕与其相交并且 成一定角度的轴线回转而成的。母线与轴线的交点称为锥顶。圆锥面的所有素线都交于 锥顶,并且对底面的倾角相等。母线上任意一点的运动轨迹形成的圆称为纬圆。
(一)投影分析 将圆锥的轴线垂直于H面放置在三投
影面体系中,如图3-12所示,其三面投影 特性如下。
图3-12 圆锥的三面投影
二、圆锥
H面投影 为一水平圆,反映圆锥底面的实形,同时也是圆锥面的投影。
V面和W 面投影
均为等腰三角形,且三角形的底边为圆锥底面的积聚投影。V面投影中, 三角形的左、右两边分别是圆锥面最左、最右素线(素线也是转向轮廓线 )的投影;W面投影中,三角形的左、右两边分别是圆锥面最前、最后素 线的投影。
一、棱柱
(四)正六棱柱的作图步骤
(1)画出正六棱柱的对称中心线、底面基线及45°辅助线,以确定各投影图的位置, 如图3-3(a)所示。 (2)先画出反映主要形状特征的投影图,即画H面投影图中的正六边形,然后按照 “长对正”的投影规律及正六棱柱的高度画出V面投影。正六边形可采用等分圆周的方 法绘制,结果如图3-3(b)所示。 (3)根据“高平齐、宽相等”的投影规律画出W面投影,最后擦去多余的图线并加深, 结果如图3-3(c)所示。
完整版浙教版九年级下册数学第三章 投影与三视图含答案

浙教版九年级下册数学第三章投影与三视图含答案一、单选题(共15题,共计45分)1、如图,是由若干个相同的小立方体搭成的几何体体俯视图和左视图.则小立方体的个数可能是()A.5或6B.5或7C.4或5或6D.5或6或72、如图是由8个大小相同的正方体组成的几何体的主视图和俯视图,则这个几何体的左视图是( )A. B. C. D.3、已知一个圆锥的底面半径为3cm,母线长为10cm,则这个圆锥的侧面积为()A.15πcm 2B.3 cm 2C.60πcmD.30πcm 24、若一个圆锥的侧面展开图是半径为18cm,圆心角为240°的扇形,则这个圆锥的底面半径长是()A.6cmB.9cmC.12cmD.18cm5、下图是由5个相同大小的正方体搭成的几何体,则它的俯视图在A,B,C,D中的选项是()A. B. C. D.6、如图已知扇形AOB的半径为6cm,圆心角的度数为120°,若将此扇形围成一个圆锥,则围成的圆锥的底面半径为()A.2㎝B.4㎝C.1㎝D.8㎝7、由木炭,铅笔,钢笔等,以线条来画出物象明暗的单色面,称作素描.如图是素描初学者常用的一种石膏几何体,该几何体的形状可以看成是用一个平面截圆柱体得到的,它的俯视图是()A. B. C. D.8、如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()A. B. C. D.9、如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是()A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同 C.左、右两个几何体的俯视图不相同 D.左、右两个几何体的三视图不相同10、如图所示的几何体,它的俯视图是()A. B. C. D.11、如图是一个正方体被截去一角后得到的几何体,它的俯视图是()A. B. C. D.12、下列四个几何体,从正面和上面看所得到的视图都为长方形的是()A. B. C. D.13、下列水平放置的几何体中,俯视图是矩形的是()A.圆柱B.长方体C.三棱柱D.圆锥14、如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点出发,沿表面爬到的中点处,则最短路线长为()A. B. C. D.15、下列图形中,哪一个是正方体的展开图()A. B. C. D.二、填空题(共10题,共计30分)16、如图是正方体的展开图,则原正方体数字“-3”面的对面数字是________.17、主视图反映物体的________和________,俯视图反映物体的________和________,左视图反映物体的________和________.因此,必须注意主视图与俯视图的长对正,主视图与________的高平齐,左视图与________的宽相等.18、将一个边长为10cm正方形,沿粗黑实线剪下4个边长为________ cm的小正方形,拼成一个大正方形作为直四棱柱的一个底面;余下部分按虚线折叠成一个无盖直四棱柱;最后把两部分拼在一起,组成一个完整的直四棱柱,它的表面积等于原正方形的面积.19、如图是正方体的表面展开图,把它折成正方体后“细”字对面的字是________.20、下图是由四个相同的小立方体组成的立体图形的主视图和左视图,那么原立体图形可能是________.(把下图中正确的立体图形的序号都填在横线上).21、如图,是一个长方体的三视图(单位:cm),这个长方形的体积是________cm3.22、长方体的主视图、俯视图如图,则其左视图面积为________ .23、数学课上,小林同学用n个小立方块搭成一个几何体,从三个方向看到的图形如图所示,则n的值是________ .24、某同学利用半径为40cm的扇形纸片制作成一个圆锥形纸帽(接缝忽略不计),若圆锥底面半径为10cm,那么这个圆锥的侧面积是________.25、如图,小明从路灯下A处,向前走了5米到达D处,行走过程中,他的影子将会(只填序号)________ .①越来越长,②越来越短,③长度不变.在D处发现自己在地面上的影子长DE是2米,如果小明的身高为1.7米,那么路灯离地面的高度AB是________ 米.三、解答题(共5题,共计25分)26、一个几何体的三视图如图,求这个几何体的侧面积?27、如图,一个圆柱体的侧面展开图为长方形ABCD,若AB=6.28cm,BC=18.84cm,则该圆柱体的体积是多少?(π取3.14,结果精确到十分位).28、如图,小赵和路人在路灯下行走,试确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.29、若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和为5,求x+y+z的值.30、如图是一个正方体盒子的侧面展开图,该正方体六个面上分别标有不同的数字,且相对两个面上的数字是一对相反数.(1)请把﹣10,8,10,﹣3,﹣8,3分别填入六个小正方形中.(2)若某相对两个面上的数字分别满足关系式和﹣5,求x的值.参考答案一、单选题(共15题,共计45分)1、D2、B3、D4、C5、C6、A7、D8、D9、B10、C11、A12、B13、B14、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
浙教版九年级下册数学第三章 投影与三视图含答案

浙教版九年级下册数学第三章投影与三视图含答案一、单选题(共15题,共计45分)1、一个立体图形的三视图如图所示.根据图中数据求得这个立体图形的表面积为()A.2πB.6πC.7πD.8π2、下列几何体中,主、俯视图都为矩形的是( )A. B. C. D.3、如图所示,该几何体的左视图是()A. B. C. D.4、如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A. B. C. D.5、如果某物体的三视图是如图所示的三个图形,那么该物体的形状是()A.正方体B.长方体C.圆锥D.三棱柱6、如图所示,该几何体的俯视图是()A. B. C. D.7、下列几何体中,主视图是长方形的是()A. B. C. D.8、如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面图是由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是【】A. B. C. D.9、如图,Rt△ABC中,∠ACB=90°,AC=BC=2 ,若把Rt△ABC绕边AB所在直线旋转一周,则所得几何体的表面积为()A.4πB.4 πC.8πD.8 π10、分别从正面、左面和上面这三个方向看下面的四个几何体中的一个,得到如图所示的平面图形,那么这个几何体是()A. B. C. D.11、已知圆锥底面圆的半径为6cm,高为8cm,则圆锥的侧面积为()A.48cm 2B.48πcm 2C.60πcm 2D.120πcm 212、一个几何体的三视图如图所示,则这个几何体是( )A.四棱锥B.四棱柱C.三棱锥D.三棱柱13、如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A. B. C. D.14、小敏打算制作一个正方体礼盒送给外国朋友,每个面上分别书写一种中华传统美德,一共有“仁义礼智信孝”六个字.如图是她设计的礼盒平面展开图,那么“礼”字对面的字是()A.仁B.义C.智D.信15、如图为正方体的一种平面展开图,各面都标有数字,则数字为的面与其对面上的数字之积是()A. B.0 C. D.二、填空题(共10题,共计30分)16、一个几何体由若干个大小相同的小正方体组成,从正面和从上面看到的形状图如图所示,则这个几何体中小正方体的个数最多是________.17、扇形的圆心角为,半径为.若将此扇形围成一个圆锥的侧面(不计接缝),则圆锥的底面积为________ .18、由若干个相同的小正方体搭成的一个几何体从正面和从左面看到的形状图如图所示,则所需的小正方体的个数最多是________个.19、如图,已知圆锥的母线长为2,高所在直线与母线的夹角为,则圆锥的全面积________.20、如果按图中虚线对折可以做成一个上底面为无盖的盒子,那么该盒子的下底面的字母是________21、将一个矩形纸片(厚度不计)置于太阳光下,改变纸片的摆放位置和方向,则其留在地面上的影子的形状可能是________.(只需写一个条件)22、如图,一个长方体的表面展开图中四边形ABCD是正方形,则根据图中数据可得原长方体的体积是________ cm3.23、如图,从直径是2米的圆形铁皮上剪出一个圆心角是90°的扇形ABC(A、B、C三点在⊙O上),将剪下来的扇形围成一个圆锥的侧面,则该圆锥的底面圆的半径是________米.24、如图,把一个半径为12cm的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径是________ cm.25、用半径为8的半圆围成一个圆锥的侧面,则圆锥的底面半径等于________.三、解答题(共5题,共计25分)26、由大小相同的5个小立方块搭成的几何体如图所示,请在方格中画出该几何体从上面和左面看到的形状图(用黑色笔将虚线画为实线).27、操场上有三根测杆AB,MN和XY,MN=XY,其中测杆AB在太阳光下某一时刻的影子为BC(如图中粗线).(1)画出测杆MN在同一时刻的影子NP(用粗线表示),并简述画法;(2)若在同一时刻测杆XY的影子的顶端恰好落在点B处,画出测杆XY所在的位置(用实线表示),并简述画法.28、小明准备测量学校旗杆的高度,他发现斜坡正对着太阳时,旗杆影子恰好落在水平地面和斜坡坡面上,测得旗杆在水平地面上的影长,在斜坡坡面上的影长,太阳光线与水平地面成角,且太阳光线与斜坡坡面互相垂直,请你帮小明求出旗杆的高度(结果保留根号).29、一个几何体由几个大小相同的小立方块搭成,从上面看这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面,左侧面看到的几何体的形状图.30、如图,AB和DE是直立在地面上的两根立柱,已知AB=5m,某一时刻AB在太阳光下的影子长BC=3m.(1)在图中画出此时DE在太阳光下的影子EF;(2)在测量AB的影子长时,同时测量出EF=6m,计算DE的长.参考答案一、单选题(共15题,共计45分)1、D2、D3、D4、A5、D6、B7、A8、B9、D10、B11、C12、D13、D14、B15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、28、30、。
浙教版九年级下册数学第三章 投影与三视图含答案解析

浙教版九年级下册数学第三章投影与三视图含答案一、单选题(共15题,共计45分)1、如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是()A. B. C. D.2、用半圆围成一个几何体的侧面,则这个几何体的左视图是()A.钝角三角形B.等腰直角三角形C.等边三角形D.圆3、小明看到了“实验楼”三个字,而且能看到该楼所有的门窗,则小明看到的图是()A.俯视图B.左视图C.主视图D.都有可能4、如图,下面几何体的俯视图不是圆的是()A. B. C.D.5、如图所示,该几何体的俯视图为()A. B. C. D.6、一扇形的半径为24cm,若此扇形围成的圆锥的底面半径为10cm,那么这个扇形的面积是()A.120πcm 2B.240πcm 2C.260πcm 2D.480πcm 27、若干桶方便面放在桌面上,如图是从正面、左面、上面看到的结果,则这一堆方便面共有()A.7桶B.8桶C.9桶D.10桶8、圆锥的底面半径为8,母线长为9,则该圆锥的侧面积为().A.36πB.48πC.72πD.144π9、如图,是一个由5个相同的正方体组成的立体图形,它的左视图是()A. B. C. D.10、如图1所示,一只封闭的圆柱形容器内盛了一半水(容器的厚度忽略不计),圆柱形容器底面直径为高的2倍,现将该容器竖起后如图2所示,设图1、图2中水所形成的几何体的表面积分别为S1、S2,则S1与S2的大小关系是()A.S1≤S2B.S1<S2C.S1>S2D.S1=S211、下列图形中,能围成一个正方体的是()A. B. C. D.12、一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是().A.1B.C.D.13、如图,从左面看该几何体得到的形状是()A. B. C. D.14、下面四个图形中,经过折叠能围成如图只有三个面上印有图案的正方体纸盒的是()A. B. C.D.15、如图所示是一天中不同时刻直立的灯杆在阳光下形成的影长,规定各图向右为正东方向,将各图按时间顺序排列正确的是()A.②④①③B.①④③②C.②④③①D.①③②④二、填空题(共10题,共计30分)16、某班数学活动小组的同学用纸板制作长方体包装盒,其平面展开图和相关尺寸如下,其中阴影部分为内部粘贴角料,(单位:).则此长方体包装盒的体积是________.17、如图所示,甲乙两建筑物在太阳光的照射下的影子的端点重合在C处,若BC=20m,CD=40m,乙的楼高BE=15m,则甲的楼高AD=________m.18、如图,长方体的长为15,宽为10,高为20,点离点的距离为5,一只蚂蚁如果要沿着长方体的表面从点爬到点,需要爬行的最短距离是________.19、一张桌子上重叠摆放了若干枚面值一元的硬币,从三个不同方向看它得到的平面图形如下:那么桌上共有________枚硬币.20、已知扇形的圆心角为120°,半径等于6,则用该扇形围成的圆锥的底面半径为________.21、有底面为正方形的直四棱柱容器A和圆柱形容器B,容器材质相同,厚度忽略不计.如果它们的主视图是完全相同的矩形,那么将B容器盛满水,再将水全部倒入A容器,结果为________.(填“溢出”“刚好”或“未装满”)22、一个圆锥的底面半径为3cm,母线长为5cm,则圆锥的侧面积为________cm2 .23、如图是由若干个棱长为1的小正方体组合而成的一个几何体的三视图,则这个几何体的表面积是________.24、已知扇形AOB的半径为6cm,圆心角的度数为1200,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为________cm2 .25、几个完全相同的小正方体搭成如图的几何体,从上面拿掉一个或者几个小正方体(不能直接拿掉被压在下面的小正方体)而不改变几何体的三视图的方法有________种.三、解答题(共5题,共计25分)26、小名准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,你能在图中的拼接图形上再接一个正方形画出阴影,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子吗?请在下面的图①和图②中画出两种不同的补充方法.27、如图所示,分别是两棵树及其影子的情形(1)哪个图反映了阳光下的情形?哪个图反映了路灯下的情形.(2)请画出图中表示小丽影长的线段.(3)阳光下小丽影子长为1.20m树的影子长为2.40m,小丽身高1.88m,求树高.28、如图,路灯(P点)距地面8米,身高1.6米的小明从距离路灯的底部(O 点)20米的A点,沿OA所在的直线行走14米到B点(B点在A点的左边)时,身影的长度是变长了还是变短了?变长或变短了多少米?29、学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时间,身高为1.6m的小明(AB)的影子BC长是3m,而小颖(EH)刚好在路灯灯泡的正下方H点,并测得HB=6m.(1)请在图中画出形成影子的光线,并确定路灯灯泡所在的位置G;(2)求路灯灯泡的垂直高度GH.30、一个几何体由几个大小相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面、左面看到的这个几何体的形状图.参考答案一、单选题(共15题,共计45分)1、C2、C3、C5、C6、B7、C8、C9、B10、C11、C12、C13、B14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、29、30、。
第3、4章 立体的投影(2基本曲面立体截交线)

(a)题图
(b)作截交线的正面投影
图4-19 圆弧回转体被铅垂面截切后的投影
5、组合体的截交线
组合体可分解为若干基本几何体,因此,求平面与组合 体的截交线,就是分别求出平面与各个几何体的截交线。
[例4-15] 如图4-20(a),求作平面截切组合回转体 的截交线。
(a)题图
(b)立体图
图4-20 求平面截切组合回转体的截交线
转向线的投影特点?
e
e f k" d
A
k' (f )
d
C
f
e
d
F点在C转向线上。
4.2.2 回转体的截交线
P101
回转体被平面截切,在回转体表面上产生截交线,截 切的位置不同,其截交线的形状也不同。回转体的截交线 一般为封闭的平面曲线或平面曲线与直线的组合,在特殊 情况下是直线组成的平面多边形。截交线上的每一点都是 截平面与回转体表面的共有点,所以求截交线的问题可归 结为求截平面与回转体表面的共有点问题。
1
2 1 (2 ) 3 (4 ) 4 3
( )
4
1
2
3
一般点:K点,不在转向线上;
一般点利用素线法或纬圆法求出第2面投影,则很容易求出第3 面投影。
别忘了可见 性判断!
圆锥表面上的点
辅助素线
1) 作一般点E(素线法) 2) 作一般点E (辅助平面法)
辅助平面
辅助纬圆
素线法求一般点
纬圆法求一般点(好!)
图4-12 求作圆柱体切口的投影
2、 平面与圆锥体相交
P106
当平面与圆锥相交时,由于截平面对圆锥轴线的相对位置 不同,其截交线可能是圆、椭圆、抛物线、双曲线及两条相交 直线,如表4-2的五种情况。 记住! 记住!
工程制图第三章习题答案

3-3线。
21
第三章 平面体与平面体相交 班级学号55 姓名面的倾角α=30º及檐口线的 H 投影,求屋面交线的 H 投影和屋面的 V、W 投影。 3-35、已知四坡屋面的倾角α=30º及檐口线的 H 投影,求屋面交线的 H 投影和屋面的 V、W 投影。
c" b"
(c) a (b)
b c
a
b" (c"影,并补全球面上的曲线 ABC 和 CD 的 H 面投影和 W 3-43、求圆柱被截后的 W 面投影。 面投影。(原图中未标字母)
c' d'
b' 1' a'
(d") c"
b" 1" a"
(a) d
(1) b c
a&并补全圆锥表面上的直线和曲线的三面投影。
第三章 曲面体上的点和直线
班级
学的其余二投影。(原图中点(c)的位置不合适,改了) 3-41、求作圆环表面上的点的其余二投影。
a' a"
b'
c'
a'
b' c'
15
影。
第三章 平面体的截交线
16
51
班级
学号
姓名
3-26、作两三棱柱的相贯,并补全和画出相贯体的 H 面投影、V 面投影。
17
3-28、补画形体的 H 投影。(应给出 V、W 投影,求 H 投影)
第三章 曲面体截交线
58
班级
学号
姓名
27
3-44 H 面投影和 V 面投影。
28
3-面投影。
第三章 曲面体截交线
29
59
第三章基本几何体的投影

第三章 基本几何体的投影通常所说的基本几何体,包括棱柱体、棱锥体、圆柱体、圆锥体、球体和环等。
前两种立体的表面都是平面,称为平面立体;其余四种的表面是回转面或回转面与平面,称为回转体。
本章主要研究这些基本几何体的投影特性及其作图方法。
§3-1 平面立体的投影一、棱柱体的投影图3-1是五棱柱体和它的投影图。
该五棱柱体的顶面和底面均处于水平位置,其水平投影反映实形,正面和侧面投影均积聚成水平直线。
棱柱的五个侧棱面中最后的棱面DEE1D1处于正平面的位置,其正面投影反映实形,是不可见的面,故DD1、EE1两条棱线的正面投影d′d′1、e′e′1画成虚线,该棱面的水平投影和侧面投影积聚成直线。
其余四个侧棱面均为铅垂面,它们的水平投影都积聚成直线,正面投影和侧面投影为比实形小的矩形(类似形)。
图3-1 五棱柱体的投影画图时,一般先画反映底面实形的那个投影(即水平投影),然后再画正面和侧面投影,如图3-1b所示。
在实际生产中所用的图纸都不必画出投影轴,如图3-1c所示,但三个投影必须保持左右、上下、前后的对应关系,即V 、H 两面投影左右对正,V 、W 两面投影上下平齐,H 、W 两面投影前后相等。
二、棱锥体的投影图3-2是正三棱锥体和它的投影图。
该三棱锥体的底面处于水平位置,其水平面投影反映实形,正面和侧面投影积聚成水平直线。
三棱锥的右侧棱面SBC 为正垂面,其正面投影s ′b ′c ′积聚成直线,水平面投影sbc 和侧面投影s ″b ″c ″为类似形。
前棱面SAB 和后棱面SAC 均为一般位置平面,因而,它们的三面投影均为类似形(正面投影两个三角形重合)。
图3-2 正三棱锥体的投影画图时,先画出底面三角形ABC 和锥顶S 的投影,然后顺次连接各棱线SA 、SB 、SC 的同面投影,如图3-2b所示。
通过棱柱和棱锥体的投影分析,可归纳如下几点:1)由于平面立体的棱线是直线,所以画平面立体的投影图就是先画出各棱线交点的投影,然后顺次连线,并注意区分可见性。
浙教版九年级下《第3章投影与三视图》单元测试含答案解析

《第3章投影与三视图》1.如图是一个正六棱柱,它的俯视图是()A.B.C.D.2.如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A.B.C.D.3.如图所示的几何体的主视图是()A.B.C.D.4.如图所示的物体是由四个相同的小长方体堆砌而成的,那么这个物体的左视图是()A.B.C.D.5.如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方形的个数,则这个几何体的主视图是()A. B. C. D.6.长方体的主视图和左视图如图所示(单位:cm),则其俯视图的面积是cm2.7.由几个相同小正方体搭成的几何体的主视图与左视图如图所示,则该几何体最少由个小正方体搭成.8.如图是一个粮仓(圆锥与圆柱组合体)的示意图,请画出它的三视图.9.如图是由小立方体组成的几何体的俯视图,小正方形中的数字表示该位置小立方体的个数,请画出相应的主视图和左视图.10.画出下图中几何体的三种视图.11.下图是由一些相同的小正方形构成的几何体的三视图,这些相同的小正方体的个数是()A.4个 B.5个 C.6个 D.7个12.一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为1dm的正方体摆在课桌上成如图的形式,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为()A.33dm2B.24dm2C.21dm2D.42dm213.两个正方体形状的积木摆成如图所示的塔形平放于桌面上,上面正方体下底面的四个顶点恰好是下面相邻正方体的上底面各边的中点,并且下面正方体的棱长为1,则能够看到部分的面积是多少?14.一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.15.用小立方体搭成的几何体的主视图和左视图如图所示,则搭成这个几何体至少要多少个小立方体?最多要多少个小立方体?《第3章投影与三视图》参考答案与试题解析1.如图是一个正六棱柱,它的俯视图是()A.B.C.D.【考点】简单几何体的三视图.【专题】几何图形问题.【分析】找到从上面看所得到的图形即可,注意看见的棱用实线表示.【解答】解:从上面看可得到一个正六边形.故选C.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.2.如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A.B.C.D.【考点】简单几何体的三视图;截一个几何体.【专题】几何图形问题.【分析】俯视图是从物体上面看到的图形,应把所看到的所有棱都表示在所得图形中.【解答】解:从上面看,图2的俯视图是正方形,有一条对角线.故选C.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.如图所示的几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【专题】常规题型.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:几何体的主视图是:故选:A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.如图所示的物体是由四个相同的小长方体堆砌而成的,那么这个物体的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据左视图,后排两层,前排一层,可得答案.【解答】解:后排两层,前排一层,故选:B.【点评】本题考查了简单组合体的三视图,注意左视图后排画在左边,前排画在右边.5.如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方形的个数,则这个几何体的主视图是()A. B. C. D.【考点】由三视图判断几何体;简单组合体的三视图.【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有3列,从左到右分别是3,3,2个正方形.【解答】解:由俯视图中的数字可得:主视图有3列,从左到右分别是3,3,2个正方形.故选C.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.6.长方体的主视图和左视图如图所示(单位:cm),则其俯视图的面积是12 cm2.【考点】由三视图判断几何体.【专题】压轴题.【分析】主视图可得长方体的长与高,左视图可得长方体的宽与高,俯视图的面积=长×宽.【解答】解:易得长方体的长为4,宽为3,所以俯视图的面积=4×3=12cm2.【点评】解决本题的难点是根据所给视图得到长方体的长与宽,关键是理解俯视图的面积等于长方体的长×宽.7.由几个相同小正方体搭成的几何体的主视图与左视图如图所示,则该几何体最少由4个小正方体搭成.【考点】由三视图判断几何体.【专题】压轴题.【分析】仔细观察该几何体的主视图和左视图,发挥空间想象能力,便可得出几何体的形状.【解答】解:仔细观察物体的主视图和左视图可知:该几何体的下面最少要有三个小正方体,上面最少要有一个小正方体,故该几何体最少有4个小正方体组成.故答案为:4.【点评】本题考查了三视图的知识,主视图是从物体的前面看得到的视图,左视图是从物体的左面看得到的视图,考查了学生细心观察能力,属于基础题.8.如图是一个粮仓(圆锥与圆柱组合体)的示意图,请画出它的三视图.【考点】作图﹣三视图.【分析】认真观察实物,可得这个几何体的主视图和左视图都为长方形上面一个三角形,俯视图为一个有圆心的圆.【解答】解:正确的三视图如图所示:.【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.9.如图是由小立方体组成的几何体的俯视图,小正方形中的数字表示该位置小立方体的个数,请画出相应的主视图和左视图.【考点】作图﹣三视图;由三视图判断几何体.【专题】作图题.【分析】由已知条件可知,主视图有2列,每列小正方数形数目分别为2,3,左视图有2列,每列小正方形数目分别为3,2.据此可画出图形.【解答】解:如图所示:【点评】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.10.画出下图中几何体的三种视图.【考点】作图﹣三视图.【分析】①主视图从左往右2列正方形的个数依次为2,1;左视图正方形的个数为2;俯视图从左往右2列正方形的个数依次为1,1;依此画出图形即可.②观察实物图,主视图是圆环;左视图是矩形,内侧有两条横着的虚线;俯视图是矩形,内侧有两条竖着的虚线.【解答】解:①如图所示:②如图所示:【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.11.下图是由一些相同的小正方形构成的几何体的三视图,这些相同的小正方体的个数是()A.4个 B.5个 C.6个 D.7个【考点】由三视图判断几何体.【专题】数形结合.【分析】由俯视图可得最底层几何体的个数,由主视图和左视图可得几何体第二层正方体的个数,相加即可.【解答】解:俯视图中有4个正方形,那么最底层有4个正方体,由主视图可得第二层最多有2个正方体,有左视图可得第二层只有1个正方体,所以共有4+1=5个正方体.故选B.【点评】考查对三视图的理解应用及空间想象能力.只要掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就很容易得到答案.注意俯视图中正方形的个数即为最底层正方体的个数.12.一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为1dm的正方体摆在课桌上成如图的形式,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为()A.33dm2B.24dm2C.21dm2D.42dm2【考点】几何体的表面积.【分析】分三层,每一层再分侧面与上表面两部分求出表面积,然后相加即可得解.【解答】解:最上层,侧面积为4,上表面面积为1,总面积为4+1=5(dm2),中间一层,侧面积为2×4=8,上表面面积为4﹣1=3,总面积为8+3=11(dm2),最下层,侧面积为3×4=12,上表面面积为9﹣4=5,总面积为12+5=17(dm2),5+11+17=33(dm2),所以被他涂上颜色部分的面积为33dm2.故选:A.【点评】本题考查了几何体的表面积,注意分三层,每一层再分侧面积与上表面两部分求解,注意求解的层次性.13.两个正方体形状的积木摆成如图所示的塔形平放于桌面上,上面正方体下底面的四个顶点恰好是下面相邻正方体的上底面各边的中点,并且下面正方体的棱长为1,则能够看到部分的面积是多少?【考点】简单组合体的三视图.【分析】根据正方形的性质求出小正方体的棱长,然后根据可看见的部分有小正方体的5个面,大正方体的四个面积再加一个大正方体减小正方体的面,然后计算即可得解.【解答】解:∵下面正方体的棱长为1,∴下面正方体的面的对角线为=,∴上面正方体的棱长为,可看见的部分有上面正方体的小正方形的5个面,面积为:5×()2=,下面正方体的大正方形的4个完整侧面,面积为:4×12=4,两正方体的重叠面部分可看见的部分,面积为12﹣()2=,所以,能够看到部分的面积为+4+=7.【点评】本题考查了几何体的表面积,正方体的性质,正方形的性质,求出上面小正方体的棱长是解题的关键.14.一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.【考点】由三视图判断几何体.【分析】有三视图可看出这个图形是个四棱柱,然后根据底面菱形的对角线求出菱形的边长,然后求出侧面积.【解答】解:该几何体的形状是直四棱柱,由三视图知,棱柱底面菱形的对角线长分别为4cm,3cm,∴菱形的边长==cm,棱柱的侧面积=×8×4=80(cm2).【点评】本题要先判断出几何体的形状,然后根据其侧面积的计算方法进行计算即可.15.用小立方体搭成的几何体的主视图和左视图如图所示,则搭成这个几何体至少要多少个小立方体?最多要多少个小立方体?【考点】由三视图判断几何体.【分析】根据图形,主视图的底层最多有9个小正方体,最少有3个小正方形.第二层最多有4个小正方形,最少有2个小正方形.【解答】解:综合主视图和左视图,这个几何体的底层最多有3×3=9个小正方体,最少有3个小正方体,第二层最多有4个小正方体,最少有2个小正方体,那么搭成这样的几何体至少需要3+2=5个小正方体,最多需要4+9=13个小正方体.【点评】本题要分别对最多和最少两种情况进行讨论,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”来分析出小正方体的个数.。
工程制图(第三版)习题集答案

ห้องสมุดไป่ตู้图竞赛与提高
竞赛目的
通过参加制图竞赛,激发学生的兴趣和积极性,提高他们的工程制图水平。
竞赛指导
提供竞赛指导,包括竞赛规则、参赛要求、时间安排等,帮助学生更好地准备和参与竞赛。
THANKS
感谢观看
VS
详细描述
曲面立体是由曲面或曲面与平面围成的立 体。在正投影中,当曲面立体的投影与正 投影面平行时,其投影为具有相应形状和 尺寸的圆或椭圆。当曲面立体与正投影面 垂直时,其投影为该曲面的一个顶点。曲 面立体的投影还受到其方向的影响,不同 方向会导致投影形状发生变化。
组合体的投影
总结词
掌握组合体投影的基本规律和作图方法。
总结词
掌握平面立体投影的基本规律和作图方法。
详细描述
平面立体是由直线段围成的立体,其投影规律较为简单。在正投影中,平面立体 的投影与正投影面平行时,其投影为具有相应形状和尺寸的直线段或圆。当平面 立体与正投影面垂直时,其投影为该平面的一个顶点。
曲面立体的投影
总结词
掌握曲面立体投影的基本规律和作图方 法。
总结平面图形的作图步骤,包括准备 阶段、草稿阶段和校核阶段。
平面图形的线段分析
对平面图形中的线段进行分类,如已 知线段、中间线段和连接线段,并分 析它们的画法。
03
正投影法与三视图
正投影法的基本原理
真实性
正投影法能够真实地反映物体的 形状和大小,且投影的长度不会
改变。
积聚性
当直线或平面与投影面垂直时,它 们的投影会积聚到一点或一条线上。
06
工程制图的表达方法
视图、剖视图和断面图的表达方法
视图
视图是用于表达物体外部形状的图形,包括主视图、俯视 图、左视图等。在绘制视图时,应遵循“长对正、高平齐 、宽相等”的原则。
自考:02386土木工程制图,(知识点)讲义 第三章

第三章立体的投影第一节平面立体、曲面体的投影一、平面立体的投影基本几何体按其表面形状特征的不同,可分为平面基本立体和曲面基本立体两种。
1. 平面立体的表面特征是若干平面图形。
2. 曲面立体的表面特征是曲面或曲面和圆平面。
¾常用的基本平面立体包括:正方体、长方体、棱柱、棱锥、棱台。
¾常见的棱柱:三棱柱;四棱柱;五棱柱;六棱柱¾具有代表性的棱柱:六棱柱¾平面立体各表面的交线称为棱线。
平面立体的各表面是由棱线所围成,而每条棱线可由其两端点确定,绘制平面立体的投影又可归结为绘制各棱线及各顶点的投影。
(一)六棱柱六棱柱由顶面和底面及六个侧棱面组成。
侧棱面与侧棱面的交线叫侧棱线,侧棱线相互平行。
六棱柱的顶面和底面为水平面,水平投影反映实形,正面投影和侧面投影都积聚成直线段。
六条棱线均为铅垂线,在水平投影面上的投影积聚成一点,正面投影和侧面投影都互相平行且反映实长。
作图时,应判断其可见性,可见的投影画成粗实线,否则,画成虚线。
画图时一般先画出反映底面实形的那个投影(水平投影),然后再画正面和侧面投影。
作图步骤:①先用画出水平投影的中心线,正面投影和侧面投影的对称线;②画正六棱柱的水平投影根据正六棱柱的高度画出顶面和底面的正面投影和侧面投影。
③ 根据投影规律,再连接顶面和底面的对应顶点的正面投影和侧面投影,即为棱线、棱面的投影。
④最后线型加深。
总结:一个投影为多边形,另外两个为矩形,可判定为棱柱体,多边形的边数可以得出棱柱的棱数。
(二)棱锥棱锥的构成:由一个底面和三个侧棱面组成。
侧棱线交于有限远的一点锥顶。
棱锥处于图示位置时,其底面 ABC 是水平面,在水平投影上反映实形,正面投影和侧面投影积聚成水平直线段。
棱面 SAC为侧垂面,侧面投影积聚成直线段,正面投影和水平投影为类似形。
另两个棱面(SAB,SBC)为一般位置平面,三投影均不反映实形。
作图步骤:①画反映实形的底面的水平投影(等边三角形),再画Δ ABC 的正面投影和侧面投影,它们分别积聚成水平直线段;②根据锥高再画顶点 S的三面投影;③最后将锥顶 S与点 A、B、C 的同面投影相连,即得到三棱锥的投影图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 3 章基本几何体的投影
一、立体的投影3-1已知平面立体的两视图, 完成三视图 , 并求出其表面上点的另二个投影。
1. 2.
3. 4.
班级:姓名:学号:
3-2 已知回转体的两视图, 完成三视图 , 并求出其表面上点的另二个投影。
1. 圆柱
2. 圆锥
3. 圆台
4. 圆球
5. 圆环 ( 作出主视图 )
6. 穿孔圆台
班级:姓名:学号:
二、截交线的投影3-3求平面立体截交线的投影,并完成三视图。
1. 2.
3.4.
班级:姓名:学号:
1. 2.
3.4.
班级:姓名:学号:
1. 2.
3.4.
班级:姓名:学号:
1. 2.
3.4.
班级:姓名:学号:
三、相贯线的投影3-7利用积聚性求圆柱的相贯线。
1. 2. 用近似画法求作相贯线的投影
3.用近似画法求作相贯线的投影4.补画主视图
班级:姓名:学号:
3-8利用辅助平面法求相贯线的投影。
1. 补画主、俯视图上的投影
2. 补全俯视图上的投影
3.
班级:姓名:学号:
3-9求作特殊情况相贯线及综合相交立体的相贯线的投影。
1. 2.
3.补全主视图中的缺线4.补全主、俯视图中的缺线
班级:姓名:学号:
四、轴测投影3-10求作平面体的正等测图。
1.已知柱体特征面的轴测投影与柱体厚度,完成柱体正等测图
(1)
(2)(3)
2.用上图的方法,根据平面体的两面视图,画出其轴测图(尺寸数字按1∶ 1 由图中量取)
(1)(2)(3)
班级:姓名:学号:
3-11求作回转体的正等测图及斜二测图。
1. 2.
3.求作斜二测图4.求作斜二测图
班级:姓名:学号:
3-12作业截交线、相贯线作业
作业指导
一、目的
初步掌握切口平面体、回转体和相贯体的三视图画法。
二、内容和要求
1.根据 3-13 中的切口平面体、回转体和相贯体轴测图画三视图。
2.用 A3 图纸,比例自定,横放,按老师选定的题目作图。
三、作图步骤
1.形体分析:分析未切割前完整立体形状,截切平面位置,截交线与截断面的形状、空间位置、投影特点;参与相贯两形体的形状,相
对位置及相贯线形状、投影特点。
2.选择主视图的投影方向后,确定完整体的特征形方向和切口、切槽的特征方向,相贯体上相贯线哪个投影与圆柱面投影相重合,需要
求作的投影及求作的方法。
3.画完整体三视图(先画特征视图)。
4.画切口和切槽时,应先从反映切口、切槽的特征视图画起,然后再画其他视图。
5.检查底稿,再描深。
四、注意点
1.平面体的截断面应有类似形线框相对应,并应用点、线、面的投影规律指导作图。
2.回转体的切口、切槽应有截交线对应。
3.从轴测图中量得尺寸应沿轴测方向度量。
班级:姓名:学号:
3-13截交线、相贯线作业题
1.2.3.
4.5.6.
班级:姓名:学号:。