体域网

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

体域网,英文为Body Area Network(BAN),是附着在人体身上的一种网络,由一套小巧可移动、具有通信功能的传感器和一个身体主站(或称BAN协调器)组成。每一传感器既可佩戴在身上,也可植入体内。协调器是网络的管理器,也是BAN和外部网络(如3G、WiMAX、Wi-Fi等)之间的网关,使数据能够得以安全地传送和交换。由于这些传感器通过无线技术进行通信,所以体域网也叫无线体域网(WBAN)。

体域网是一种可长期监视和记录人体健康信号的基本技术,早期应用主要是用来连续监视和记录慢性病(如糖尿病、哮喘病和心脏病等)患者的健康参数,提供某种方式的自动疗法控制。比如,糖尿病患者一旦他的胰岛素水平下降,他身上的BAN马上可以激活一个泵,自动为患者注射胰岛素,使患者不用医生也能把胰岛素控制在正常水平。体域网未来还可广泛应用于消费者电子、娱乐、运动、环境智能、畜牧、泛在计算、军事或安全等领域。不仅

如此,眼前仍停留在科幻小说之中的所谓“智慧尘埃”(具有处理能力和无线通信能力的显微镜器件)将来也完全有可能出现在体域网中。体域网在国际上已经得到了广泛研究,包括医疗技术提供商、医院、保险公司以及工业界的各方人士正在开展战略性合作,但目前仍处在早期阶段,在毫瓦级网络能耗、互操作性、系统设备、安全性、传感器验证、数据一致性等方面面临一系列挑战。IEEE802.15任务组6正在制定的BAN通信标准有望在2010年完成。这种技术一旦被接纳采用,将在医疗保健方面取得重大突破。

体域网虽然是覆盖面最小的网络,但却是惠及面极广的网络,万万不可等闲视之。截至2008年底,我国老年人口已达1.69亿,占总人口的12.79%。我国是世界老年人口最多的国家,占全球老年人口总量的五分之一。老年人为国家、为人民作出了巨大贡献。作为一种回报,我们应该让体域网这种先进技术服务于我国老年人的医疗保健。与此同时,在某种程度上BAN的应用还可以缓解医院拥挤看病难的问题以及助推远程医疗等构想的真正实施。从商业角度看,体域网在我国也必定具有广泛的用途和巨大的潜在市场。

体域网是以人体周围的设备例如随身携带的手表、传感器以及手机等,以及人体内部(即植入设备)等为对象的无线通信专用系统。目前,体域网所使用的频带尚未确定,但400兆赫兹频带以及600兆赫兹频带已被列入议程。

专家认为,体域网技术将在医疗中得到广泛应用。近年来,随着微电子技术的发展,可穿戴、可植入、可侵入的服务于人的健康监护设备已经出现:如穿戴于指尖的血氧传感器、腕表型血糖传感器、腕表型睡眠品质测量器、睡眠生理检查器、可植入型身份识别组件等。假如没有体域网,这些传感器和促动器则都只能独立工作,要自带各自的通信部件,因此通信资源不能有效利用。目前在日本,关于信息通信技术在医疗领域的应用研究相当活跃。

引言

随着无线通信技术的不断发展,无线体域网在健康监测、慢性病防治、老人看护等可穿戴设备中有着广泛的应用[1]。国际电子电气工程协会(IEEE)于2012年2月发布IEEE 802.15.6无线体域网(WBAN)标准,对其物理层(PHY)和无线媒体介入控制层(MAC)进行了规范[2]。该标准为穿戴式及植入式设备而设计,满足短距离近人体无线通信的低功耗、高安全性、高可靠性的要求[3]。随着可穿戴式设备的大规模应用,体域网将具有广阔的应用空间。在此背景下,开发一款支持IEEE802.15.6协议的SoC基带芯片将具有巨大的市场价值。

随着电子系统集成度的大幅提高,SoC的设计规模也在不断扩展,因此SoC的验证工作也越来越复杂。统计表明,SoC流片一次的成功率大约为35%,其失败的主要原因是验证工作不够充分[4]。为了提高芯片的良品率,在体域网基带开发的同时,必须做好验证平台的设计工作。

可穿戴式SoC主要用于健康医疗设备,需要对体温、血氧、血压、心率、心电等信号进行采集和传输,这对人体健康检测及疾病预防有重要作用,其需要较高的传输性能。同时由于信号的传输速率不同[5],在接收端会产生不同的延时及成功收包率。因此在验证平台的设计中需要考虑以下需求:(1)基带协议一致性验证,协议帧格式正确是保证基带完成通信的基础。(2)传输可靠性验证,尽可能地为数据提供一个高质量通信链路。(3)多种健康信息的服务质量(QoS)验证。针对体域网传输信号的多样性,模拟发送不同速率的测试向量,验证其服务质量是否满足可穿戴设备要求。

目前,研究人员大多使用传统的商业软件无线电平台对基带的功能进行验证,例如USRP、bladeRF及HackRF等。与使用FPGA硬件电路实现协议处理的体域网基带不同,此类平台通过上位机软件算法实现协议的处理与开发,并且接口封闭不便于进一步开发,因此不能满足体域网基带SoC验证需求。

结合IEEE802.15.6标准中窄带通信物理层电路设计规范,本文设计并开发了包含FPGA、射频前端、混合信号前端、电源管理等模块的硬件系统。结合穿戴式健康应用的特殊需求,设计并实现了体域网数据流状态机,对多输入向量进行自动加载,实现了体域网基带在不同速率下,对延时、功耗的自动测量。针对自主开发的IEEE802.15.6的基带IP核设计了精准的时序采集模块,实现了协议帧的提取,验证了协议的一致性。同时,为控制节点数据传输,便于直观地进行测试,设计并实现了上位机软件,对测试结果和中间过程进行实时追踪。

1 平台总体结构设计及硬件实现

如图1所示,验证平台硬件系统由高集成度FPGA、收发机电路及电源管理电路组成[6]。

1.1 收发机电路

收发机电路按照IEEE802.15.6标准中物理层窄带通信收发机标准设计,包括混合信号前端及调制解调前端。

本设计采用图2的零中频结构收发机,与传统超外差收发机相比只需要一次变频,结构简单具有较高集成度,符合体域网可穿戴设备小型化、便于携带的要求。但是由于本振频率较高,需要性能较高的压控振荡器及频率合成器,因此使用集成的零中频调制解调芯片MAX2837及混合信号前端芯片MAX19712。

MAX2837是一款零中频收发前端,包括压控振荡器(VCO)、晶体振荡器、频率合成器、混频器、低通滤波器、功率放大器及低噪声放大器等。通过SPI接口配置内部寄存器。内部资源丰富仅需要几个简单的外围元件即可以组成一个完整的电路。

MAX19712是超低功耗、高集成度的混合信号模拟前端(AFE),内置10位数模转换(DAC)及模数转换器(ADC),全双工工作模式,最大工作速度22 MHz,使用SPI接口配置寄存器。

考虑到平台功能的扩展性,基带数据接口按照高速信号布线规则设计[7],以满足其他高速信号基带的验证需求。

相关文档
最新文档