因式分解——公式法(1)教案
12.5《因式分解——公式法》参考教案

12.5 因式分解一、课题:12.5 因式分解(第二课时—公式法)二、教学目标:1、能熟练运用公式将多项式进行因式分解.2、能找到适当的方法将多项式因式分解并分解彻底.3、提高对因式分解的认识和将多项式因式分解的能力.重点:掌握公式法进行因式分解.难点:找到适当的方法将多项式因式分解并分解彻底.三、教学过程:(一)读一读:学生自主学习课本第44页例题1(3)(4)的内容,回答下列问题:1.我们学过哪些乘法公式?请把公式表示出来.2.乘法公式如果反过来用,它们的结果都是什么形式?能够成为什么公式呢?这些公式用语言可以怎样叙述?3.用这种方法对多项式进行因式分解的方法叫( )(二)查一查:下列各式能否用公式来分解因式?如果可以,应分解成什么式子?如果不可以,请说明理由.(1)x2-4x+4; (2)1+16a2 (3)4x2+4x-1;(4)x2+6x+9(三)学一学例1、对下列多项式进行因式分解:(1)25x2 -16y2(2)-z2+(x-y)2分析:以上各式均满足使用( )公式分解因式的条件,所以可直接利用( )公式进行因式分解.例2 把多项式x2+4xy+4y2分解因式.分析:(1)判断左边是否为完全平方式.(2)判断中间一项是哪两个数积的二倍.(3)看清中间一项的符号,写出因式分解结果例3. 把下列多项式分解因式(1) 4x3y+4x2y2+xy3(2) 3x3 -12xy先用( )方法分解因式,再用( )方法分解因式.(四)练一练:课本45页练习题(五)比一比:(学生独立完成)1.把下列各式分解因式:(1)-492+x2(2)4(x+m)2 -(x-m)22.把下列各式分解因式:(1)x2-12xy+36y2;(2)a2-14ab+49b2;(3)16a4+24a2b2+9b4;(4)49a2-112ab+64b2.3.把下列各式分解因式。
(1) a3-14a2+49a (2) 3a3-27ab2(3) 2am+an+2bm+bn (4) -25xy+25x2+4y2(六)谈一谈:让学生自由发言,谈出本节课的收获,解答此类问题的关键。
公式法因式分解教案

公式法因式分解教案公式法因式分解教案篇一学习重点:同底数幂乘法运算性质的推导和应用.学习过程:一、创设情境引入新课复习乘方an的意义:an表示个相乘,即an=.乘方的结果叫a叫做,n是问题:一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算?列式为,你能利用乘方的意义进行计算吗?二、探究新知:探一探:1根据乘方的意义填空(1)23×24=(2×2×2)×(2×2×2×2)=2();(2)55×54=_________=5();(3)(-3)3×(-3)2=_________________=(-3)();(4)a6a7=________________=a().(5)5m5n猜一猜:aman=(m、n都是正整数)你能证明你的猜想吗?说一说:你能用语言叙述同底数幂的乘法法则吗?同理可得:amanap=(m、n、p都是正整数)三、范例学习:【例1】计算:(1)103×104;(2)aa3;(3)mm3m5;(4)xmx3m+1(5)xx2+x2x1.填空:⑴10×109=;⑵b2×b5=;⑶x4x=;⑷x3x3=.2.计算:(1)a2a6;(2)(-x)(-x)3;(3)8m(-8)38n;(4)b3(-b2)(-b)4.【例2】:把下列各式化成(x+y)n或(x-y)n的形式. (1)(x+y)4(x+y)3(2)(x-y)3(x-y)(y-x)(3)-8(x-y)2(x-y)(4)(x+y)2m(x+y)m+1四、学以致用:1.计算:⑴10n10m+1=⑵x7x5=⑶mm7m9=⑷-4444=⑸22n22n+1=⑹y5y2y4y=2.判断题:判断下列计算是否正确?并说明理由⑴a2a3=a6();⑵a2a3=a5();⑶a2+a3=a5();⑷aa7=a0+7=a7();⑸a5a5=2a10();⑹25×32=67()。
因式分解公式法教案

因式分解公式法教案教案题目:因式分解公式法教学目标:1. 能够掌握因式分解公式法的原理和基础知识2. 能够运用因式分解公式法解决简单的数学问题3. 能够理解因式分解公式法在数学实际问题中的作用教学内容:1. 因式分解的定义与形式2. 因式分解的基本原理3. 因式分解的基本公式教学过程:一、引入(5分钟)1. 引出本堂课的主题——因式分解公式法2. 通过学生平时的生活经验,询问学生是否有听说过因式分解以及它的作用二、讲解(30分钟)1. 因式分解的定义与形式因式分解指将一个整式分成若干个因式的乘积的过程。
在形式上,可以表示为:Ax^2+Bx+C = A(x-x_1)(x-x_2)式子中A,B,C,x_1,x_2都是常数。
2. 因式分解的基本原理因式分解要求将一个整式使用质因数或代数因式相乘的形式,展开成简单整式的乘积。
它的基本原理就是质因数分解和代数因式分解。
3. 因式分解的基本公式本节课所讲的因式分解公式有以下几个:(1)差的平方公式:a^2-b^2=(a-b)(a+b)(2)完全平方公式:a^2+2ab+b^2 = (a+b)^2及a^2-2ab+b^2 = (a-b)^2(3)二次三项式ax^2+bx+c=(mx+p)(nx+q)三、练习(15分钟)1. 练习应用差的平方公式、完全平方公式等进行因式分解的例题2. 练习应用二次三项式应用因式分解公式法解决实际问题四、总结(10分钟)1. 总结本节课所学的内容2. 阐述因式分解公式法在实际生活和数学问题中的作用五、作业布置(5分钟)1. 布置因式分解相关的题目作为课后作业2. 鼓励学生使用因式分解公式法解决生活中的有关问题教学方法:1. 讲授法2. 案例法3. 情景模拟法教学辅助手段:1. PowerPoint2. 黑板3. 教学视频教学评价:1. 学生的理解情况是否清晰2. 学生在练习过程中的解题能力是否提高3. 学生是否能够将所学知识运用到实际问题中去。
(完整版)因式分解——公式法教案

因式分解——公式法(1)一.教课内容人教版八年级上册数学十四章因式分解——公式法第一课时二.教材剖析分解因式与数系中分解质因数近似,是代数中一种重要的恒等变形,它是在学生学习了整式运算的基础上提出来的,是整式乘法的逆向变形。
在后边的学习过程中应用宽泛,如:将分式通分和约分,二次根式的计算与化简,以及解方程都将以它为基础。
所以分解因式这一章在整个教材中起到了承上启下的作用。
同时,在因式分解中表现了数学的众多思想,如:“化归”思想、“类比”思想、“整体”思想等。
所以,因式分解的学习是数学学习的重要内容。
依据《课标》的要求,本章介绍了最基本的两种分解因式的方法:提公因式法和运用公式法(平方差、完好平方公式)。
所以公式法是分解因式的重要方法之一,是现阶段的学习要点。
三.教课目的知识与技术:理解和掌握平方差公式的构造特色,会运用平方差公式分解因式过程与方法: 1. 培育学生自主研究、合作沟通的能力2.培育学生察看、剖析和创新能力,深入学生逆向思想能力和数学应企图识,浸透整体思想感情、态度与价值观:让学生在合作学习的过程中体验成功的愉悦,进而加强学好数学的梦想和信心四.教课重难点要点:会运用平方差公式分解因式难点:正确理解和掌握公式的构造特色,并擅长运用平方差公式分解因式易错点:分解因式不完全五.教课方案(一)温故知新1.什么是因式分解?以下变形过程中,哪个是因式分解?为何?22(1)( 2x - 1) = 4 x- 4x + 1;(2)3x2 + 9xy - 3x = 3x( x+ 3y + 1);(3)x2 - 4+ 2x = ( x + 2)( x - 2) + 2x.2.我们已经学过的因式分解的方法是什么?将以下多项式分解因式。
(1) a3b3 - 2a2 b - ab ;( 2) - 9 x2 y + 3xy2 - 6 xy.【设计企图】经过复习因式分解的定义和方法,为持续学习公式法作好铺垫。
3.依据乘法公式进行计算:(1)( x + 1)(x -1);(2)( x + 2 y)(x - 2 y).4.依据上题结果分解因式:(1) x2 - 1;(2) x 2 - 4 y 2 .由以上 3、 4 两题,你发现了什么?【设计企图】经过整式乘法中的平方差公式引出公式法因式分解进而引出课题。
北师大版数学八年级下册第四章因式分解4.3公式法(第1课时)教案设计

4.3 公式法(第1课时运用平方差公式因式分解)教学目标1.理解平方差公式,弄清平方差公式的形式和特点;2.掌握运用平方差公式分解因式的方法,能正确运用平方差公式把多项式分解因式,培养学生多步骤分解因式的能力.教学重点掌握运用平方差公式分解因式的方法.教学难点能会综合运用提公因式法和平方差公式对多项式进行因式分解.课时安排1课时教学过程复习巩固1.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做因式分解.因式分解也可称为分解因式.2.平方差公式:(a+b)( a-b)=a2-b2.导入新课活动1(学生交流,教师点评)【问题1】填空:(1)(x+5)(x-5)=;(2)(3x+y)(3x-y)=;(3)(3m+2n)(3m–2n)=.它们的结果有什么共同特征?答案:(1)x2–25;(2)9x2–y2;(3)9m2–4n2学生:以上都是用平方差公式:(a+b)( a-b)=a2-b2计算得出来的.【问题2】根据问题1中等式填空:(1)x2-25=;(2)9x2−y2=;(3)9m2-4n2=.答案:(1)(x+5)(x-5)(2)(3x+y)(3x-y);(3)(3m+2n)(3m–2n).教师总结:公共特点:是两个数(式)的和与这两个数(式)的差的积,等于这两个数(式)的平方差,反过来,两个数(式)的平方差就可以化成这两个数(式)的和与这两个数(式)的差的积的形式,这种变形就是我们今天学习的内容,引出课题.探究新知探究点一用平方差公式因式分解(a+b)( a-b)=a2-b2反过来,a2-b2=(a+b)( a-b).两个数的平方差,等于这两个数的和与这两个数的差的积.【注意】公式中的a,b既可以是单项式,也可以是多项式活动2(学生交流,教师点评)【问题3】(师生互动)下列多项式中能用平方差公式分解因式的是()A.a2+(-b)2B.5m2-20mnC.-x2-y2D.-x2+9解析:A中a2+(-b)2符号相同,不能用平方差公式分解因式,错误;B中5m2-20mn两项都不是平方项,不能用平方差公式分解因式,错误;C中-x2-y2符号相同,不能用平方差公式分解因式,错误;D中-x2+9=-x2+32,两项符号相反,能用平方差公式分解因式,正确.故选D.【方法总结】能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.【互动】(小组交流)下列各式中,能运用平方差公式分解的多项式是.(填序号)①x2+y2;②1-x2;③-x2-y2;④x2-xy.答案:②.活动3小组讨论(师生互学)【例1】因式分解:(1)a4-116b4;(2)x3y2-xy4.【探索思路】(引发学生思考)观察各式的特点,运用平方差公式进行因式分解.解:(1) a4-116b4=⎝⎛⎭⎪⎫a2+14b2⎝⎛⎭⎪⎫a2-14b2=⎝⎛⎭⎪⎫a2+14b2⎝⎛⎭⎪⎫a-12b⎝⎛⎭⎪⎫a+12b.(2) x3y2-xy4=xy2(x2-y2)=xy2(x+y)(x-y).【总结】(学生总结,老师点评)因式分解前应先分析多项式的特点,一般先提公因式,再套用公式.分解因式必须进行到每一个多项式都不能再分解因式为止.【例2】分解因式:9(m+n)2-(m-n)2.解:原式=[3(m+n)]2-(m-n)2=[3(m+n)+(m-n)][3(m+n)-(m-n)]=(3m+3n+m-n)(3m+3n-m+n)=(4m+2n)(2m+4n)=4(2m+n)(m+2n).【总结】1.如果一个二项式,它能够化成两个整式的平方差的形式,那么就可以用平方差公式分解因式,将多项式分解成两个整式的和与差的积.2.当多项式各项含有公因式时,通常先提出这个公因式,然后再进一步因式分解.【注意】多项式的因式分解有没有分解到不能再分解为止.【即学即练】(学生独学)因式分解:(1)(a+b)2-4a2; (2) x4-y4.解:(1) (a+b)2-4a2=(a+b-2a)(a+b+2a)=(b-a)(3a+b);(2)x4-y4=(x2)2-(y2)2=(x2+y2)(x2-y2)=(x2+y2)(x+y)(x-y).活动4(合作探究,解决问题)探究点二用平方差公式因式分解解决综合问题.(师生互动)【例2】248-1可以被60和70之间某两个自然数整除,求这两个数.【探索思路】被自然数整除的含义是什么?248-1这个数比较大,怎样求出符合要求的两个数?解:248-1=(224+1)(224-1)=(224+1)(212+1)(212-1)=(224+1)(212+1)(26+1)(26-1).∵26=64,∴26-1=63,26+1=65,∴这两个数是65和63.【题后总结】(学生总结,老师点评)解决整除的基本思路就是将数化为整数乘积的形式,然后分析被哪些数整除.活动5拓展延伸(学生对学)【例3】利用因式分解计算:(1)1012-992;(2)5722×14-4282×14.【探索思路】观察式子特点,用提公因式法和平方差公式进行因式分解. 解:(1)1012-992=(101+99)(101-99)=400.(2)5722×14-4282×14=(5722-4282)×14=(572+428)(572-428)×14=1000×144×14=36 000.【题后总结】(学生总结,老师点评)对于一些比较复杂的计算,如果通过变形转化为平方差公式的形式,使运算简便.【即学即练】 (学生独学)求证:当n 为整数时,多项式(2n +1)2-(2n -1)2一定能被8整除.证明:原式=(2n +1+2n -1)(2n +1-2n +1)=4n ·2=8n ,∵n 为整数,∴8n 被8整除,即多项式(2n +1)2-(2n -1)2一定能被8整除.课堂练习1下列多项式中能用平方差公式因式分解的是( )A.a 2+(−b )2B.5m 2−20mnC.x 2−y 2D.x 2+92.因式分解(2x +3)2 -x 2的结果是( )A.3(x 2+4x +3)B.3(x 2+2x +3)C.(3x +3)(x +3)D.3(x +1)(x +3)3 若a +b =3,a -b =7,则b 2-a 2的值为( )A.-21B.21C.-10D.104.用平方差公式进行简便计算:(1)38²-37² ; (2)213²-87²;(3)229²-171²; (4)91×89.5.已知x 2-y 2=-1,x +y =12,求x -y 的值.6.已知4m +n =40,2m -3n =5.求(m +2n )2-(3m -n )2的值.参考答案:1.C 解析:A.a 2+(−b )2中两项符号相同,不能用平方差公式因式分解,故A 选项错误;B.5m 2−20mn 两项不都是平方项,不能用平方差公式因式分解,故B 选项错误;C.x 2−y 2中两项符号相反,能用平方差公式因式分解,故C 选项正确;D.x 2+9中,两项符号相同,不能用平方差公式因式分解,故D 选项错误.选C.2.D 解析:(2x +3)2 -x 2=(2x +3+x )(2x +3-x )=(3x +3)(x +3)=3(x +1)(x +3)3.A 解析: b 2-a 2=(b +a )(b -a )= 3×(−7)= −21.4.解:(1)38²−37²=(38+37)(38−37)=75.(2)213²-87²=(213+87)(213-87)=300×126=37800.(3)229²-171²=(229+171)(229-171)=400×58=23200.(4)91×89=(90+1)(90−1)=90²-1=8100-1=8099.5.解:∵x 2-y 2=(x +y )(x -y )=-1,x +y =12,∴x -y =-2.6.解:原式=(m +2n +3m −n )(m +2n −3m +n )=(4m +n )(3n −2m )=− (4m +n )(2m −3n ).当4m +n =40,2m −3n =5时,原式=−40×5=−200.课堂小结(学生总结,老师点评,当堂达标)一、运用平方差公式因式分解:a2-b2=(a+b)(a-b).二、平方差公式的特点:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.布置作业教材第100页习题4.4板书设计3 公式法第1课时运用平方差公式因式分解用平方差公式因式分解:a2-b2=(a+b)(a-b).【问题1】例1因式分解:(1)a4-116b4;(2)x3y2-xy4.【问题2】例2 248-1可以被60和70之间某两个自然数整除,求这两个数.。
公式法(一)教学设计

第四章 因式分解3.公式法(一)胶州市第二十三中学 田芳【教学目标】:1.知识与技能:(1)理解平方差公式的本质:即结构的不变性,字母的可变性;(2)会用平方差公式进行因式分解;(3)使学生了解提公因式法是分解因式首先考虑的方法,再考虑用平方差公式分解2.过程与方法:经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,渗透数学的“互逆”、换元、整体的思想,感受数学知识的完整性.3.情感与态度:在探究的过程中培养学生独立思考的习惯,在交流的过程中学会向别人清晰地表达自己的思维和想法,在解决问题的过程中让学生深刻感受到“数学是有用的”。
【教学重点、难点】重点:会用平方差公式进行因式分解。
难点:如何根据一个多项式的形式和特点灵活地选择一个公式。
【教学方法】小组合作、知识类比。
【教学过程】一、 复习回顾 小组合作解决活动内容:填空:(1)(x+5)(x –5) = ;(2)(3x+y )(3x –y )= ;(3)(3m +2n )(3m –2n )= .它们的结果有什么共同特征?尝试将它们的结果分别写成两个因式的乘积:活动目的:学生通过观察、对比,把整式乘法中的平方差公式进行逆向运用,发展学生.____________________49_;____________________9__;____________________2522222=-=-=-n m y x x的观察能力与逆向思维能力.二、 探究新知(一)活动内容:谈谈你的感受。
结论:整式乘法公式的逆向变形得到分解因式的方法。
这种分解因式的方法称为运用公式法。
活动目的:引导学生从第一环节的感性认识上升到理性认识,区别整式乘法与分解因式的同时,认识学习新的分解因式的方法——公式法。
(二)活动内容:说一说 找特征))((22b a b a b a -+=-(1)公式左边:(是一个将要被分解因式的多项式)★被分解的多项式含有两项,且这两项异号,并且能写成( )2-( )2的形式。
初中数学公式法因式分解教案设计

初中数学公式法因式分解教案设计一、教学目标:1.了解因式分解的基本概念,能够正确运用公式法因式分解。
2.培养学生的逻辑思维和应用能力,能够将各种因式分解形式转换。
3.通过因式分解,培养求解策略和思考能力。
二、教学重难点:教学重点:因式分解的基本概念和公式法的运用。
教学难点:练习题的运用能力,强化问题的简化和逻辑思维。
三、教学过程:1.引入1.1.告诉学生,因式分解是代数运算中的一项基本技能,掌握好因式分解对于解决其他数学问题也非常有帮助。
1.2.通过一个例子来引入:8x+12y的因式分解。
1.3.介绍公式法因式分解方法,让学生能够掌握其基本思路。
公式法因式分解,就是通过一些公式和规律,将一个多项式化简成一个或几个乘积的形式。
三类常见的公式:a² - b² = (a+b)(a-b)a³ + b³ = (a+b)(a² - ab + b²)a³ - b³ = (a-b)(a² + ab + b²)2.讲解公式法因式分解的步骤2.1.找出整个式子中的公因式:将多项式中每一项中的公因式提出来。
2.2.分解第一个括号中的项:根据公式将括号内部的项进行分解。
2.3.分解第二个括号中的项:同样根据公式进行分解。
3.让学生通过例题掌握公式法因式分解的基本步骤和做法。
例题:4.1、因式分解3a^2 + 12a:这题中3和a都是整个式子的公因式。
3a² + 12a = 3a(a + 4)5.2、因式分解9x^2 + 12xy:乘因式法,这题中9和x²都是整个式子的公因式。
9x² + 12xy = 3x(3x + 4y)6.3、因式分解 x^2 - 4y^2:使用公式x² - y² = (x + y)(x - y)这题可以分类讨论,即:x² - 4y² = (x + 2y)(x - 2y)这个过程也可以反推,即将括号内的式子做乘法,看看是否能还原成原本的式子。
沪科初中数学七下《《因式分解》公式法教案

8.4《因式分解》公式法教学目标(一)教学知识点运用平方差公式分解因式.(二)能力训练要求1.能说出平方差公式的特点.2.能较熟练地应用平方差公式分解因式.3.初步会用提公因式法与公式法分解因式.•并能说出提公因式在这类因式分解中的作用.4.知道因式分解的要求:把多项式的每一个因式都分解到不能再分解.(三)情感与价值观要求培养学生的观察、联想能力,进一步了解换元的思想方法.教学重点应用平方差公式分解因式.教学难点灵活应用公式和提公因式法分解因式,并理解因式分解的要求.教学方法自主探索法.教具准备投影片.教学过程Ⅰ.提出问题,创设情境出示投影片,让学生思考下列问题.问题1:你能叙述多项式因式分解的定义吗?问题2:运用提公因式法分解因式的步骤是什么?问题3:你能将a2-b2分解因式吗?你是如何思考的?[生]1.多项式的因式分解其实是整式乘法的逆用,•也就是把一个多项式化成了几个整式的积的形式.2.提公因式法的第一步是观察多项式各项是否有公因式,如果没有公因式,•就不能使用提公因式法对该多项式进行因式分解.3.对不能使用提公因式法分解因式的多项式,不能说不能进行因式分解.[生]要将a2-b2进行因式分解,可以发现它没有公因式,•不能用提公因式法分解因式,但我们还可以发现这个多项式是两个数的平方差形式,所以用平方差公式可以写成如下形式:a2-b2=(a+b)(a-b).[师]多项式的乘法公式的逆向应用,就是多项式的因式分解公式,如果被分解的多项式符合公式的条件,就可以直接写出因式分解的结果,这种分解因式的方法称为运用公式法.今天我们就来学习利用平方差公式分解因式.Ⅱ.导入新课[师]观察平方差公式:a2-b2=(a+b)(a-b)的项、指数、符号有什么特点?(让学生分析、讨论、总结,最后得出下列结论)(1)左边是二项式,每项都是平方的形式,两项的符号相反.(2)右边是两个多项式的积,一个因式是两数的和,另一个因式是这两数的差.(3)在乘法公式中,“平方差”是计算结果,而在分解因式,•“平方差”是得分解因式的多项式.由此可知如果多项式是两数差的形式,并且这两个数又都可以写成平方的形式,那么这个多项式可以运用平方差公式分解因式.出示投影片[做下列填空题的作用在于训练学生迅速地把一个单项式写成平方的形式.•也可以对积的乘方、幂的乘方运算法则给予一定时间的复习,避免出现4a2=(4a)2•这一类错误] 填空:(1)4a2=()2;(2)49b2=()2;(3)0.16a4=()2;(4)1.21a2b2=()2;(5)214x4=()2;(6)549x4y2=()2.例题解析:出示投影片:[例1]分解因式(1)4x2-9 (2)(x+p)2-(x+q)[例2]分解因式(1)x4-y4(2)a3b-ab可放手让学生独立思考求解,然后师生共同讨论,纠正学生解题中可能发生的错误,并对各种错误进行评析.[师生共析][例1](1)(教师可以通过多媒体课件演示(1)中的2x,(2)中的x+p•相当于平方差公式中的a;(1)中的3,(2)中的x+q相当于平方差中的b,进而说明公式中的a与b•可以表示一个数,也可以表示一个单项式,甚至是多项式,渗透换元的思想方法)[例2](1)x4-y4可以写成(x2)2-(y2)2的形式,这样就可以利用平方差公式进行因式分解了.但分解到(x2+y2)(x2-y2)后,部分学生会不继续分解因式,针对这种情况,可以回顾因式分解定义后,•让学生理解因式分解的要求是必须进行到多项式的每一个因式都不能再分解为止.(2)不能直接利用平方差公式分解因式,但通过观察可以发现a3b-ab•有公因式ab,应先提出公因式,再进一步分解.解:(1)x4-y4=(x2+y2)(x2-y2)=(x2+y2)(x+y)(x-y).(2)a3b-ab=ab(a2-1)=ab(a+1)(a-1).学生解题中可能发生如下错误:(1)系数变形时计算错误;(2)结果不化简;(3)化简时去括号发生符号错误.最后教师提出:(1)多项式分解因式的结果要化简:(2)在化简过程中要正确应用去括号法则,并注意合并同类项.练一练:(出示投影片)把下列各式分解因式(1)36(x+y)2-49(x-y)2(2)(x-1)+b2(1-x)(3)(x2+x+1)2-1(4)2()4x y--2()4x y+.Ⅲ.随堂练习1.课本P76练习1、2.Ⅳ.课时小结1.如果多项式各项含有公因式,则第一步是提出这个公因式.2.如果多项式各项没有公因式,则第一步考虑用公式分解因式.3.第一步分解因式以后,所含的多项式还可以继续分解,•则需要进一步分解因式.直到每个多项式因式都不能分解为止.Ⅴ.课后作业1.课本P78习题4(2)(4)5(1)(2)题.2.预习“用完全平方公式分解因式”.。
初二【数学(人教版)】因式分解——公式法(第一课时) 教学设计

2分钟1.5分钟0.5分钟归纳总结拓展提升例:利用因式分解计算22224914.35114.3)2(202120202020)1(⨯-⨯-+分析:(1)中2220212020-可利用平方差公式分解成)20212020()20212020(-⨯+,进而再进行化简运算;(1)中可以先提取共同的因数3.14,再利用平方差公式分解计算.解:2021202120202020)1()20212020(2020)20212020()20212020(2020202120202020)1(22-=--=-⨯++=-⨯++=-+28.6210014.3)4951()4951(14.3)4951(14.34914.35114.3)2(2222=⨯⨯=-⨯+⨯=-⨯=⨯-⨯例:如图,在一块长为a的正方形纸片的四角,各减去一个边长为b的正方形,其中a=1.86,b=0.34,求剩余部分面积.分析:求正方形减去四角后的面积,即用大正方形的面积,减去四个小正方面即可。
先可以列出式子为a2-4b2,若直接带入数值,发现运算量较大,所以可以先将a2-4b2因式分解后,再代入数值运算,可大大简化运算过程。
解:S剩= a2-4b2=(a+2b)(a-2b)把a=1.86,b=0.34带入S剩=(1.86+2×0.34)×(1.86-2×0.34)=2.72×1 =2.72四.归纳总结问题:今天我们主要学了哪些知识?利用平方差公式分解因式:))((22bababa-+=-问题:怎样判断能否利用平方差公式因式分解?利用平方差公式分解需要满足所给多项式能够写成两项平方差的形课后作业式,或者在变形后能够写成两项平方差的形式.平方差公式中的字母a,b可以表示数、单项式或多项式.问题:在运用平方差公式分解因式时,我们应该注意哪些问题?(1)若多项式中有公因式,应先提取公因式,再进一步分解因式;(2)因式分解要彻底,直到不能继续再分解为止.五.拓展提升如图,100个正方形由小到大套在一起,从外向里相间画上阴影,最里面一个小正方形没有画阴影,最外面一层画阴影,最外面的正方形的边长为100cm,向里依次为99cm,98cm,…,1cm,那么在这个图形中,所有画阴影部分的面积和是多少?解:每一块阴影的面积可以表示成相邻正方形的面积的差,而正方形的面积是其边长的平方,这样就可以逆用平方差公式计算了.则S阴影=(1002-992)+(982-972)+…+(22-12)=100+99+98+97+…+2+1=5050(cm2).答:所有阴影部分的面积和是5050cm2.六.课后作业1.下列所向是能否用平方差公式分解因式?为什么?22222222)4()3()2()1(yxyxyxyx--+--+2.分解因式16)4(4)3(49)2(251)1(422222+----ayyxbaba3.已知x+2y=3, x2-4y2=-15,求x-2y的值和x, y的值.。
[因式分解公式法教案]公式法分解因式
![[因式分解公式法教案]公式法分解因式](https://img.taocdn.com/s3/m/b9123ed851e2524de518964bcf84b9d528ea2c5e.png)
[因式分解公式法教案]公式法分解因式公式法分解因式篇一:分解因式法_课件设计教学目标:1、会用分解因式法(提公因式,公式法)解某些简单的数字系数的一元二次方程。
2、能根据具体的一元一次方程的特征灵活选择方法,体会解决问题方法的多样性。
教学程序:一、复习:1、一元二次方程的求根公式:x=(b2-4ac≥0)2、分别用配方法、公式法解方程:x2-3x+2=03、分解因式:(1)5 x2-4x (2)x-2-x(x-2)(3) (x+1)2-25二、新授:1、分析小颖、小明、小亮的解法:小颖:用公式法解正确;小明:两边约去x,是非同解变形,结果丢掉一根,错误。
小亮:利用“如果ab=0,那么a=0或b=0”来求解,正确。
2、分解因式法:利用分解因式来解一元二次方程的方法叫分解因式法。
3、例题讲析:例:解下列方程:(1) 5x2=4x(2) x-2=x(x-2)解:(1)原方程可变形为:5x2-4x=0x(5x-4)=0x=0或5x=4=0∴x1=0或x2=(2)原方程可变形为x-2-x(x-2)=0(x-2)(1-x)=0x-2=0或1-x=0∴x1=2,x2=14、想一想你能用分解因式法简单方程x2-4=0 (x+1)2-25=0吗?解:x2-4=0(x+1)2-25=0x2-22=0 (x+1)2-52=0(x+2)(x-2)=0 (x+1+5)(x+1-5)=0x+2=0或x-2=0x+6=0或x-4=0∴x1=-2, x2=2 ∴x1=-6 , x2=4三、巩固:练习:P62 随堂练习1、2四、小结:(1)在一元二次方程的一边为0,而另一边易于分解成两个一次因式时,就可用分解因式法来解。
(2)分解因式时,用公式法提公式因式法五、作业:P62 习题2.7 1、2公式法分解因式篇二:初中数学说课稿万能一、说教材用因式分解法求解一元二次方程是北师大版九年级上册第二章第四节内容,是中学数学的主要内容之一,在初中数学中占有重要地位。
因式分解 公式法(一)

因式分解——公式法(一)一、教学目标:(一)知识与技能:1.使学生了解运用公式法分解因式的意义;2.会用平方差公式进行因式分解;3.使学生了解提公因式法是分解因式首先考虑的方法,再考虑用平方差公式分解因式.(二)过程与方法:1.发展学生的观察能力和逆向思维能力;2.培养学生对平方差公式的运用能力。
(三)情感与态度:在引导学生逆用乘法公式的过程中,培养学生逆向思维的意识。
二、教学重点和难点:1.教学重点:利用平方差公式分解因式.2.教学难点:领会因式分解的解题步骤和分解因式的彻底性.应用逆向思维的方向,演绎出平方差公式,•对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.三、教学方法:采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.四、教学用具:多媒体五、教学过程:一知识回顾:1什么叫多项式的分解因式?2分解因式和整式乘法有何关系?3我们学了什么方法进行因式分解?练习1:根据因式分解的概念,判断下列由左边到右边的变形,哪些是因式分解,哪些不是,为什么?1.(2x-1)2=4x2-4x+12. 3x2+9xy-3x=3x(x+3y-1)3.4x2-1-4xy+y2=(2x+1)(2x-1)-y(4x-y)练习2把下列各式进行因式分解(1).a3b3-a2b-ab(2).-9x2y+3xy2-6xy二观察探讨,体验新知在横线内填上适当的式子,使等式成立:(1)(x+5)(x-5)= -(2)(a+b)(a-b)=()(3)x2-25 =(4)a2-b2=知识探索平方差公式:a2-b2=(a+b)(a-b).评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).公式的结构特征:什么形式的多项式能用平方差公式进行分解下列多项式能转化成()2-()2的形式吗?如果能,请将其转化成()2-()2的形式。
(1)m2-1(2)4m2-9(3)4m2+9(4)x2-25y2(5)-x2-25y2(6)-x2+25y2抢答题(1)a2-82(2)16x2-y2(3)2+4x2(4)4k2-25m2n2三范例学习,应用所学例1:把下列各式分解因式:(1)4x2-9(2) 9(a+b)2-4(a-b)2在使用平方差公式分解因式时,要注意:先把要计算的式子与平方差公式对照,明确哪个相当于a,哪个相当于b.牛刀小试:把下列各式分解因式:(1)a22(2)(2a+b)2- (a+2b)2方法:先考虑能否用提取公因式法,再考虑能否用平方差公式分解因式。
二次三项式的因式分解(用公式法)教学案(一)

二次三项式的因式分解(用公式法)教学案(一)一、素质教育目标(一)知识教学点:1.使学生理解二次三项式的意义;了解二次三项式的因式分解与解一元二次方程的关系.2.使学生会利用一元二次方程的求根公式在实数范围内将二次三项式分解因式.(二)能力训练点:通过本节课的教学,提高学生研究问题的能力.(三)德育渗透点:结合教材对学生进行辩证唯物主义观点的教育,进一步渗透认识问题和解决问题的一般规律,即由一般到特殊,再由特殊到一般.二、教学重点、难点、疑点及解决办法1.教学重点:用公式法将二次三项式因式分解.2.教学难点:一元二次方程的根与二次三项式因式分解的关系.3.教学疑点:一个二次三项式在实数范围内因式分解的条件.三、教学步骤(一)明确目标二次三项式的因式分解常用的方法是公式法、十字相乘法等.但对有些二次三项式,用这两种方法比较困难,如将二次三项式4x2+8x-1因式分解.在学习了一元二次方程的解法后,我们知道,任何一个有实根的一元二次方程,用求根公式都可以求出.那么一元二次方程ax2+bx+c=0(a≠0)的两个根与二次三项式ax2+bx+c的因式分解有无关系呢?这就是我们本节课研究的问题,也就是研究和探索二次三项式因式分解的又一种方法——用公式法.(二)整体感知一元二次方程的一般形式是ax2+bx+c=0(a≠0),观察方程的特点:左边是一个二次三项式,曾经借助于将左边二次三项式因式分解来解一元二次方程.反之,我们还可以利用方程的根,来将二次三项式因式分解.即在分解二次三项式ax2+bx+c的因式时,可先用公式求出方程ax2+bx+c=0的两个根x1,x2,然后写成ax2+bx+c=a (x-x1)(x-x2).通过知识之间的相互联系、相互作用和相互促进,对学生进行辩证唯物主义思想教育.公式ax2+bx+c=a(x-x1)(x-x2)的得出的依据是根与系数的关系.一元二次方程根与系数的关系为公式ax2+bx+c=a(x-x1)(x-x2)的得出奠定了基础.通过因式分解新方法的导出,不仅使学生学习了一个新方法,还能进一步启发学生学习的兴趣,提高他们研究问题的能力.(三)重点、难点的学习与目标完成过程1.复习提问(1)写出关于x的二次三项式?(2)将下列二次三项式在实数范围因式分解.①x2-2x+1;②x2-5x+6;③6x2+x-2;④4x2+8x-1.由④感觉比较困难,引出本节课所要解决的问题.2.①引入:观察上式①,②,③方程的两个根与方程左边的二次三项式的因式分解之关系.①x2-2x+1=0;解:原式变形为(x-1)(x-1)=0.∴ x1=x2=1,②x2-5x+6=0;解原方程可变为(x-2)(x-3)=0∴ x1=2,x2=3.③6x2+x-2=0解:原方程可变为(2x-1)(3x+2)=0.观察以上各例,可以看出,1,2是方程x2-3x+2=0的两个根,而x2-3x+2=(x-1)(x-2),……所以我们可以利用一元二次方程的两个根来分解相应左边的二次三项式.②推导出公式=a(x-x1)(x-x2).这就是说,在分解二次三项式ax2+bx+c的因式时,可先用公式求出方程ax2+bx+c=0的两个根x1,x2,然后写成ax2+bx+c=a(x-x1)(x-x2).教师引导学生从具体的数字系数的例子,观察、探索结论,再从一般的字母系数的例子得出一般性的推导,由此可知认识事物的一般规律是由特殊到一般,再由一般到特殊.③公式的应用例1 把4x2+8x-1分解因式解:∵方程4x2+8x-1=0的根是教师板书,学生回答.由①到②是把4分解成2×2分别与两个因式相乘所得到的.目的是化简①.练习:将下列各式在实数范围因式分解.(1)x2+20x+96;(2)x2-5x+3学生板书、笔答,评价.解2 用两种方程把4x2-5分解因式.方法二,解:∵ 4x2-5=0,方法一比方法二简单,要求学生灵活选择,择其简单的方法.练习:将下列各式因式分解.(1)4x2-8x+1;(2)27x2-4x-8;(3)25x2+20x+1;(4)2x2-6x+4;(5)2x2-5x-3.学生练习,板书,选择恰当的方法,教师引导,注意以下两点:(1)要注意一元二次方程与二次三项式的区别与联系,例如方程2x2-6x-4=0,可变形为x2-3x-2=0;但将二次三项式分解因式时,就不能将3x2-6x-12变形为x2-2x-4.(2)还要注意符号方面的错误,比如上面的例子如果写成2x2-5x-(3)一元二次方程ax2+bx+c=0(a≠0)当△≥0时,方程有两个实根.当△<0时,方程无实根.这就决定了:当b2-4ac≥0时,二次三项式ax1+bx+c在实数范围内可以分解;当b2-4ac<0时,二次三项式ax2+bx+c在实数范围内不可以分解.(四)总结与扩展(1)用公式法将二次三项式ax2+bx+c因式分解的步骤是先求出方程ax2+bx+c=0(a≠0)的两个根,再将ax2+bx+c写成a(x-x1)(x-x2)形式.(2)二次三项式ax2+bx+c因式分解的条件是:当b2-4ac≥0,二次三项式ax2+bx+c在实数范围内可以分解;b2-4ac<0时,二次三项式ax2+bx+c在实数范围内不可以分解.(3)通过本节课结论的探索、发现、推导、产生的过程,培养学生的探索精神,激发学生的求知欲望,对学生进行辩证唯物主义思想教育,渗透认识事物的一般规律.四、布置作业教材 P.39中 A1.2(1)——(7).五、板书设计12.5 二次三项式的因式分解(一)结论:在分解二次三项式例1.把4x2+8x-1分解因式ax2+bx+c的因式时解:………可先用公式求出方程:……ax2+bx+c=0的两个根x1,x2,然后写成练习:………ax2+bx+c=a(x-x1)(x-x2)六、作业参考答案教材 P.38中A1(1)(5x+6)(x+1);(2)(2y-3)(3y-2);(3)-(2x-6)(2x+5);(4)(5p-3)(2p+1);(5)(a+16)(a+24);(6)(3xy-7)(xy-1);(7)3(x+2)(2x-7);(8)(3x+5y)(5x-3y);A2关于网通联系我们用户注册协议隐私条款免责条款京ICP证020038。
八年级数学上因式分解—公式法学习教案

教学目标:1.理解什么是因式分解,掌握因式分解的基本方法。
2.通过例题的练习,能够灵活运用公式法进行因式分解。
3.培养学生的实际应用能力,能够运用因式分解解决实际问题。
教学重点:1.公式法分解因式的基本思路和方法。
2.掌握一些常见的分解公式。
教学难点:1.运用公式法解决复杂因式分解问题。
2.培养学生的思维能力,能够灵活运用公式法解决实际问题。
教学准备:教师准备课件、书籍和练习册。
学生准备笔记本、课本和笔。
教学过程:一、导入新课(15分钟)1.引导学生回顾因数和倍数的概念,复习因数分解的方法。
2.提问学生,如何做因式分解?二、讲解因式分解—公式法(10分钟)1.通过例题解析,介绍因式分解的公式法。
2.阐述因式分解—公式法的基本思路和方法。
3.教师让学生记住常见的因式分解公式。
三、练习(30分钟)1.让学生做一些简单的练习题,巩固因式分解—公式法的运用。
2.老师解答学生存在的问题,并解释难题的解法。
3.让学生自主解题,互相审题和指导。
四、归纳总结(10分钟)1.让学生归纳总结因式分解—公式法的基本要点。
2.教师指导学生进行相关知识的总结,鼓励学生提出问题。
五、拓展应用(15分钟)1.提出一些实际问题,应用因式分解—公式法解决。
2.让学生自主思考和解答,促进学生的实际应用能力。
六、总结回顾(10分钟)1.教师对课堂进行总结,强调因式分解—公式法的重要性。
2.教师进行小结,提醒学生对公式法的重要性进行二次总结。
扩展:1.教师可提供一些拓展练习和应用题,让学生进一步巩固因式分解—公式法的运用。
2.鼓励学生自主探索和研究,提高解题的实际应用能力。
教学反思:因式分解—公式法是数学中的一个重要知识点,对于学生来说比较抽象和困难。
通过本堂课的教学实践,我发现学生对公式法的理解和应用还有待提高。
在以后的教学中,我将尝试通过更多的实例和练习,帮助学生更好地掌握因式分解—公式法。
最新因式分解(公式法)说课稿1

《运用公式法(1)》——运用平方差公式分解因式庞晓红临漳四中一、教材分析(一)地位和作用分解因式与数系中分解质因数类似,是代数中一种重要的恒等变形,它是在学生学习了整式运算的基础上提出来的,是整式乘法的逆向变形。
在后面的学习过程中应用广泛,如:将分式通分和约分,二次根式的计算与化简,以及解方程都将以它为基础。
因此分解因式这一章在整个教材中起到了承上启下的作用。
同时,在因式分解中体现了数学的众多思想,如:“化归”思想、“类比”思想、“整体”思想等。
因此,因式分解的学习是数学学习的重要内容。
根据《课标》的要求,本章介绍了最基本的两种分解因式的方法:提公因式法和运用公式法(平方差、完全平方公式)。
因此平方差公式是分解因式的重要方法之一,是现阶段的学习重点(二)学情分析:学生已经学习了乘法公式中的平方差公式,在上一节课学习了提公因式法分解因式,初步体会了分解因式与整式乘法的互逆关系,为本节课的学习奠定了良好的基础。
学生已经建立了较好的预习习惯,为本节课的难点突破提供了先决条件。
(三)教学目标1、知识与技能理解和掌握平方差公式的结构特征,会运用平方差公式分解因式2、过程与方法①培养学生自主探索、合作交流的能力②培养学生观察、分析和创新能力,深化学生逆向思维能力和数学应用意识,渗透整体思想3、情感与态度让学生在合作学习的过程中体验成功的喜悦,从而增强学好数学的愿望和信心(四)教学重难点、1、教学重点:会运用平方差公式分解因式,培养学生观察、分析问题的能力。
2、教学难点:准确理解和掌握公式的结构特征,并善于运用平方差公式分解因式。
3、易错点:分解因式不彻底。
二、学法与教法分析1、学法分析:①注意分解因式与整式乘法的关系,两者是互逆的。
②注意平方差公式的特点。
2、教法分析:根据《课标》的要求,结合本班学生的知识水平,本堂课采用对比,探究,讲练结合的方法完成教学目标。
在教学过程中,所选例题保证基本的运算技能,避免复杂的题型,直接用公式不超过两次。
《因式分解《公式法》优质课获奖教案

按照新课程标准要求,学科核心素养作为现代教育体系的核心理论,提高学生的兴趣、学习的主动性,是当前教育教学研究所注重的重要环节之一。
2021年4月,教育部发布文件,对教育机构改革进行了深入和细致的解读。
从中我们不难看出,作为一线教师,教育教学手段和理论知识水平是下一步需要进一步提高的重要能力。
本课作为课本中比较重要的一环,对核心素养进行了贯彻,将课堂环节设计进行了细致剖析,力求达到学生乐学,教师乐教的理想状态。
《公式法》教学目标1.了解运用公式法分解因式的意义;2.掌握用平方差公式和完全平方公式分解因式.教学重点掌握运用平方差公式和完全平方公式分解因式.教学难点将某些单项式化为平方形式,再用平方差公式分解因式.教学过程Ⅰ.创设问题情境,引入新课我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式.如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本节课我们就来学习另外的一种因式分解的方法——公式法.Ⅱ.新课讲解1.请看乘法公式(1)(a+b)(a-b)=a2-b2左边是整式乘法,右边是一个多项式,把这个等式反过来就是(2)a2-b2=(a+b)(a-b)左边是一个多项式,右边是整式的乘积.判断一下,第二个式子从左边到右边是否是因式分解?第(1)个等式可以看作是整式乘法中的平方差公式,第(2)个等式可以看作是因式分解中的平方差公式.同理,完全平方公式需要反向运用2.例题讲解[例1]把下列各式分解因式:(1)25-16x2;(2)9a 2-41b 2. 解:(1)25-16x 2=52-(4x )2=(5+4x )(5-4x );(2)9a 2-41 b 2=(3a )2-(21b )2 =(3a +21b )(3a -21b ). [例2]把下列各式分解因式: (1)9(m +n )2-(m -n )2;(2)2x 3-8x .解:(1)9(m +n )2-(m -n )2=[3(m +n )]2-(m -n )2=[3(m +n )+(m -n )][3(m +n )-(m -n )]=(3m +3n +m -n )(3m +3n -m +n )=(4m +2n )(2m +4n )=4(2m +n )(m +2n )(2)2x 3-8x =2x (x 2-4)=2x (x +2)(x -2)说明:例1是把一个多项式的两项都化成两个单项式的平方,利用平方差公式分解因式;例2的(1)是把一个二项式化成两个多项式的平方差,然后用平方差公式分解因式,例2的(2)是先提公因式,然后再用平方差公式分解因式,由此可知,当一个题中既要用提公因式法,又要用公式法分解因式时,首先要考虑提公因式法,再考虑公式法.[例3]分解因式:(1)3ax 2+6axy +3ay 2 (2)(a +b )2-12(a +b )xy +36x 2y 2Ⅲ.课堂练习1.判断正误(1)x 2+y 2=(x +y )(x -y );( )(2)x 2-y 2=(x +y )(x -y );( )(3)-x 2+y 2=(-x +y )(-x -y );( )(4)-x 2-y 2=-(x +y )(x -y ).( )2.把下列各式分解因式(1)a 2b 2-m 2(2)(m -a )2-(n +b )2(3)x2-(a+b-c)2(4)-16x4+81y43.下列各式是否是完全平方式?如果不是,请说明理由.(1)a2-4a+4;(2)x2+4x+4y2;(3)4a2+2ab+4b2;(4)a2-2ab+b2;(5)x2-6x-9;(6)a2+a+0.25.[教学反思]学生对生活中的立体图形感兴趣,气氛极好,能认识圆柱、圆椎、正方体、长方体、棱柱、球,并能用自己的语言简单描述它们的某些特征,也能分别举出生活中的物体哪些是属于圆柱、圆椎、正方体、长方体、棱柱、球.本节课的教学活动,主要是让学生通过观察、动手操作,熟悉长方体、正方体的展开图以及图形折叠后的形状。
沪科初中数学七下《《因式分解》公式法教案_1

8.4《因式分解》公式法教学目标(一)教学知识点用完全平方公式分解因式(二)能力训练要求1.理解完全平方公式的特点.2.能较熟悉地运用完全平方公式分解因式.3.会用提公因式、完全平方公式分解因式,•并能说出提公因式在这类因式分解中的作用.4.能灵活应用提公因式法、公式法分解因式.(三)情感与价值观要求通过综合运用提公因式法,完全平方公式分解因式,进一步培养学生的观察和联想能力.通过知识结构图培养学生归纳总结的能力.教学重点用完全平方公式分解因式.教学难点灵活应用公式分解因式.教学方法探究与讲练相结合的方法.教具准备投影片.教学过程Ⅰ.提出问题,创设情境问题1:根据学习用平方差公式分解因式的经验和方法,•分析和推测什么叫做运用完全平方公式分解因式?能够用完全平方公式分解因式的多项式具有什么特点?问题2:把下列各式分解因式.(1)a2+2ab+b2(2)a2-2ab+b2[生]将整式乘法的平方差公式反过来写即是分解因式的平方差公式.同样道理,把整式乘法的完全平方公式反过来写即分解因式的完全平方公式.[师]能不能用语言叙述呢?[生]能.两个数的平方和,加上(或减去)这两数的积的2倍,•等于这两个数的和(或差)的平方.问题2其实就是完全平方公式的符号表示.即:a2+2ab+b2=(a+b)2,a2-2ab+b2(a-b)2.[师]今天我们就来研究用完全平方公式分解因式.Ⅱ.导入新课出示投影片下列各式是不是完全平方式?(1)a2-4a+4(2)x2+4x+4y2(3)4a2+2ab+14b2(4)a2-ab+b2(6)a2+a+0.25(放手让学生讨论,达到熟悉公式结构特征的目的).结果:(1)a2-4a+4=a2-2×2·a+22=(a-2)2(3)4a2+2ab+14b2=(2a)2+2×2a·12b+(12b)2=(2a+12b)2(6)a2+a+0.25=a2+2·a·0.5+0.52=(a+0.5)2(2)、(4)、(5)都不是.方法总结:分解因式的完全平方公式,左边是一个二次三项式,其中有两个数的平方和还有这两个数的积的2倍或这两个数的积的2倍的相反数,符合这些特征,就可以化成右边的两数和(或差)的平方.从而达到因式分解的目的.例题解析出示投影片[例1]分解因式:(1)16x2+24x+9 (2)-x2+4xy-4y2[例2]分解因式:(1)3ax2+6axy+3ay2(2)(a+b)2-12(a+b)+36学生有前一节学习公式法的经验,可以让学生尝试独立完成,然后与同伴交流、总结解题经验.[例1](1)分析:在(1)中,16x2=(4x)2,9=32,24x=2·4x·3,所以16x2+14x+9是一个完全平方式,即解:(1)16x2+24x+9=(4x)2+2·4x·3+32=(4x+3)2.(2)分析:在(2)中两个平方项前有负号,所以应考虑添括号法则将负号提出,然后再考虑完全平方公式,因为4y2=(2y)2,4xy=2·x·2y.所以:解:-x2+4xy-4y2=-(x2-4xy+4y2)=-[x2-2·x·2y+(2y)]2=-(x-2y)2.练一练:出示投影片把下列多项式分解因式:(1)6a-a2-9;(2)-8ab-16a2-b2;(4)4x2+20(x-x2)+25(1-x)2Ⅲ.随堂练习课本P76练习1、2.Ⅳ.课时小结学习因式分解内容后,你有什么收获,能将前后知识联系,做个总结吗?(引导学生回顾本大节内容,梳理知识,培养学生的总结归纳能力,最后出示投影片,给出分解因式的知识框架图,使学生对这部分知识有一个清晰的了解)Ⅴ.课后作业课本P78习题4(1)(2)5(3)(4)题.。
《因式分解 公式法教案 (公开课获奖)2022华师大版1 (新版)华东师大版

因式分解公式法128 (2+有理数的乘法和除法教学目标:1、了解有理数除法的意义,理解有理数的除法法则,会进行有理数的除法运算,会求有理数的倒数。
2、通过实例,探究出有理数除法法则。
会把有理数除法转化为有理数乘法,培养学生的化归思想。
重点:有理数除法法则的运用及倒数的概念难点:怎样根据不同的情况来选取适当的方法求商,0不能作除数以及0没有倒数的理解。
教学过程:一、创设情景,导入新课1、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘.几个数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。
有一个因数是0,积就为0.2、有理数乘法运算律:a×b = b×a (a×b)×c = a×(b×c). a×(b+c)=a×b + a×c3、计算(分组练习,然后交流)(见ppt)二、合作交流,解读探究1、(1)6个同样大小的苹果平均分给3个小孩,每个小孩分到几个苹果?(2)怎样计算下列各式?(-6)÷3 6÷(-3)(-6)÷(-3)学生:独立思考后,再将结果与同桌交流。
教师:引导学生回顾小学知识,根据除法是乘法的逆运算完成上例,要求6÷3即要求3×?=6,由3×2=6可知6÷3=2。
同理(-6)÷3=-2,6÷(-3)=-2,(-6)÷(-3)=2。
根据以上运算,你能发现什么规律?对于两个有理数a,b,其中b≠0,如果有一个有理数c 使得c×b=a,那么我们规定a÷b=c,称c叫做a除以b的商。
2、从有理数的除法是通过乘法来规定,引导学生对比乘法法则,自己总结有理数除法法则,经讨论后,板书有理数除法法则。
同号两数相除得正数,异号两数相除得负数,并且把它们的绝对值相除。
初中数学教学课例《八年级数学上册因式分解——公式法(第一课时)》教学设计及总结反思

学思想引导启发学生发现了什么?能把上面的结果写 出来了吗?
如果学生上面的练习不能顺利的做出来,接着再做 下面这组练习。
(x+y)(x﹣y)=(2a+3b)(2a-3b)=( 设计意图:这组练习是预案,绝大多数学生对上面 的练习不能通过时就采用,我们的学生学习基础差,知 识巩固差,只有当绝大多数学生都通过后才能往下学 习。 二、发现规律 X2﹣y2=4a2﹣9b2=x2﹣y2= 给学生 3 分钟时间,分小组交流一下,引导学生: 通过情景创设与自主探索你发现了什么?由上面一比 子进一步推广到 a 方减 b 方等于什么? 三、建模 构建两种数学模型:文字模型,两个数的平方差等 于这两个数的和乘以这两个数的差。 符号模型,a2﹣b2=(a+b)(a﹣b) 四、运用 例 3 分解因式: 让学生在课堂作业本上自己做,不能看课本。 (1)4x2﹣9;(2)(x+p)2﹣(x+q)2;
解:原式=(2x)2﹣32 解:原式=〔(x+p)+(x+q)〕 〔(x+p)﹣(x+q)〕
=(2x+3)(2x﹣3)=(2x+p+q)(p﹣q) 设计意图:让学生巩固构建起来的数学模型,做到 及时强化,加深印象。 课堂作业:第 168 页练习第一题,第二题的第一, 二小题。 做完后先让学生进行合作交流。讨论一下怎么做? 设计意图:及时巩固强化例三。 五、拓展 例 4 分解因式: 让学生在课堂作业本上自己做,不能看课本。 (1)x4﹣y4(2)a3b﹣ab 解:原式=(x2+y2)(x2﹣y2)解:原式=ab(a2﹣1) =(x2+y2)(x+y)(x﹣y)=ab(a+1)(a﹣1) 设计意图:有问题教师老师讲解一下,没问题可以 往下深入。通过上面的学习大部分学生已经会“运用” 和“拓展”了。引导基础差的,反应迟钝的学生,强化 只是模型的运用。模型中的两个数或字母是可以代替一 个数或字母或单项式或多项式的。分解因式要先提公因 式再用公式法,分解到不能分解为止。 课堂作业:第 168 页练习第二题的第三第四小题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14.3.2因式分解——公式法(1)
一.教学内容
人教版八年级上册数学十四章因式分解——公式法第一课时
二.教材分析
分解因式与数系中分解质因数类似,是代数中一种重要的恒等变形,它是 在学生学习了整式运算的基础上提出来的,是整式乘法的逆向变形。
在后面 的学习过程中应用广泛,如:将分式通分和约分,二次根式的计算与化简, 以及解方程都将以它为基础。
因此分解因式这一章在整个教材中起到了承上 启下的作用。
同时,在因式分解中体现了数学的众多思想,如:“化归”思想、 “类比”思想、“整体”思想等。
因此,因式分解的学习是数学 学习的重要内 容。
根据《课标》的要求,本章介绍了最基本的两种分解因式的方法:提公 因式法和运用公式法(平方差、完全平方公式)。
因此公式法是分解因式的重 要方法之一,是现阶段的学习重点。
三.教学目标
知识与技能 :理解和掌握平方差公式的结构特征,会运用平方差公 式分解因式
过程与方法:1.培养学生自主探索、合作交流的能力
2.培养学生观察、分析和创新能力,深化学生逆向思维能力 和数学应用意识,渗透整体思想
情感、态度与价值观:让学生在合作学习的过程中体验成功的喜悦,从而 增强学好数学的愿望和信心
四.教学重难点
重点:会运用平方差公式分解因式
难点:准确理解和掌握公式的结构特征,并善于运用平方差公式分解因式 易错点:分解因式不彻底
五.教学设计
(一)温故知新
1.什么是因式分解?下列变形过程中,哪个是因式分解?为什么?
.
2)2-)(2(24-)3();13(33-93)2(;
14-41-212222x x x x x y x x x xy x x x x ++=+++=++=))(( 2.我们已经学过的因式分解的方法是什么?将下列多项式分解因式。
.6-39-)2(;
-2-122233xy xy y x ab b a b a +)(
【设计意图】通过复习因式分解的定义和方法,为继续学习公式法作好铺垫。
3.根据乘法公式进行计算:
).2-(22)1-(11y x y x x x ))((;
))((++
4.根据上题结果分解因式:
.4-21-1222y x x )(;
)(
由以上3、 4两题,你发现了什么?
【设计意图】通过整式乘法中的平方差公式引出公式法因式分解从而引出课题。
(二)教学新知
1.探究平方差公式分解因式
师:请同学们观察多项式22-b a ,它有什么特点?你能将它分解因式 吗?
[学生讨论、交流得出因式分解平方差公式]
师板书公式:)-)((b -22b a b a a +=
师:你能用语言文字来描述这个公式吗?
语言表述:两个数的平方差等于这两个数的和与这两个数的差的积。
2.理解平方差公式
(1)平方差公式的结构特征是什么?
(2)两个平方项的符号有什么特点?
师生共同讨论,得出
平方差公式的特点:
①左边是二项式,每一项都是平方项,并且两个平方项的符号相反; ②右边是两个平方项的底数的和与差的积。
及时演练:下列多项式能否用平方差公式来分解因式,为什么?
.--4-3-)2(;122222222y x y x y x y x );()(;
)(++
(三)应用新知
例1.将下列各式分解因式:
;)(9-412x
.)(-222q x p x ++))(( [师生共同分析:2222223-29-4,39,)2(4)(x x x x =
==,故可用平方差 公式分解因式;在(2)中,把x+p 和x+q 各看成一个整体,设 x+p=m,x+q=n,则原式化为22-n m ,故可用平方差公式分解因式。
]
解:;)()3-2)(32(3-)2(9-412
22x x x x +==
).-)(2(]-))][(()[(2q p q p x q x p x q x p x ++=+++++=)()原式( 【设计意图】通过例题,让学生充分认识到平方差公式的结构特征中,a,b 既可 以是单项式,也可以是多项式,同时初步了解平方差公式分解因式的步骤。
及时演练1.将下列多项式分解因式:
;251-122
b a )( ;4-9222b a )( ;361-32b +)( .)2(-2422y x y x ++))((
[学生独立完成,并指定学生黑板演示]
例2.分解因式:
;-144y x )(
.-23ab b a )( 解:
);
-()
-)((-)(-1222222222244y x y x y x y x y x y x y x ))(()()(++=+== ).1-)(1()1-(-223a a ab a ab ab b a +==)(
【设计意图】通过上面因式分解的过程,得出分解因式的注意事项:①有公因 式要先提取公因式,再应用公式分解;②每个因式要化简,并且分解彻底。
及时演练2.分解因式:
;4-12y y x )( .16-24+a )(
(四)课堂小结
1.具备什么形式的多项式可以用平方差公式来因式分解?
2.分解因式的一般步骤:一提二套
3.分解因式时要注意什么?
(五)作业
书本119页复习巩固第2题
六.教学反思
探索分解因式的方法实际上是对整式乘法的再认识,而本节正是对平
方差公式的再认识。
本节课的教学设计借助于学生已有的整式乘法运算的 基础,给学生留有充分探索与交流的时间和空间,让他们经历从整式乘法到 分解因式的转换过程并能用符号合理的表示出分解因式的关系式,同时感受 到这种互逆变形的过程和数学知识的整体性。
通过例题的讲解、练习的巩固、 错题的纠正,让学生逐步掌握运用公式进行因式分解。