变频电机与普通电机的区别
变频电机与工频电机有什么区别
变频电机与工频电机有什么区别一、普通异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。
以下为变频器对电机的影响1、电动机的效率和温升的问题不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。
拒资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。
高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。
因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。
除此之外,还需考虑因集肤效应所产生的附加铜耗。
这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%--20%。
2、电动机绝缘强度问题目前中小型变频器,不少是采用PWM的控制方式。
他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。
另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。
3、谐波电磁噪声与震动普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。
变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。
当电磁力波的频率和电动机机体的固有振动频率一致或接近时,将产生共振现象,从而加大噪声。
由于电动机工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开电动机的各构件的固有震动频率。
4、电动机对频繁启动、制动的适应能力由于采用变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动创造了条件,因而电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲劳和加速老化问题。
2变频电机与普通电机的区别
普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。
变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。
当电磁力波的频率和电动机机体的固有振动频率一致或接近时,将产生共振现象,从而加大噪声。
由于电动机工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开电动机的各构件的固有震动频率。
变频电机与普通电机的区别普通异步电动机与变频电机的区别普通异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。
以下为变频器对电机的影响电动机的效率和温升的问题不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。
据资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。
高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。
因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。
除此之外,还需考虑因集肤效应所产生的附加铜耗。
这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%--20%。
电动机绝缘强度问题目前中小型变频器,不少是采用PWM的控制方式。
他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。
另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。
谐波电磁噪声与震动普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。
变频电机与普通电机的区别
答:普通异步电动机与变频电机的区别一、普通异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。
以下为变频器对电机的影响1、电动机的效率和温升的问题不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。
拒资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。
高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。
因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。
除此之外,还需考虑因集肤效应所产生的附加铜耗。
这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%--20%。
2、电动机绝缘强度问题目前中小型变频器,不少是采用PWM的控制方式。
他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。
另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。
3、谐波电磁噪声与震动普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。
变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。
当电磁力波的频率和电动机机体的固有振动频率一致或接近时,将产生共振现象,从而加大噪声。
由于电动机工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开电动机的各构件的固有震动频率。
4、电动机对频繁启动、制动的适应能力由于采用变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动创造了条件,因而电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲劳和加速老化问题。
浅谈变频电机与普通电机的区别
四 、 小 结
在某 些场 合 ,如电机 长时 间工作 在 中高频 的场合 ,普 通
电机是 可 以改造成 变频 电机 的 。但 是在 电机 长 时间工 作在 低
流 电源 转 换 成 频 率 、电压 均 可 控制 的交 流 电源 以供 给 电动
技 术 出版 社 . 2 0 0 4 .
数;
由上 式 可 知 ,电机 的旋转 速度 取 决 于 电 机 的极 数 和 频
率 。一 般 电机 的极数 是 固定 不 变的 ,因此 不适 合改变 此值 来
[ 2 ] 陈小马 , 高三平 . 浅谈 普通 异步 电机 与 变频 电机 U 】 . 有 色冶金 节
呢 ?下 面我 们一起 来探 讨 一下 。
关键 词 :变频 器 ;变频 电机 ;普通 电机
一
、
外观上的 区别
三、实 际应用情况对 比
1 . 电机 的效 率和 温升 在变频 驱 动下 ,变 频 电机效 率会 高 1 0 %左 右 ,而 温升会 小 2 O %左右 ,尤 其是 在矢 量控 制 或者 直 接转矩控 制 的低 频 区域 。 2 . 变 频 电机 对 于需要 频 繁启 动 、频 繁调 速 、频 繁制 动 的 场合 ,要优 于普通 电动机 。
变 的交 流 电的装置 称作 “ 变 频器 ” 。我们 现在使 用 的变频 器 主要采 用 交一 直一 交方 式 ( V v V F 变 频或 矢量 控制 变频 ),
先 把 工频交 流 电源通过 整 流器转 换成 直流 电源 ,然 后再把 直
5 . 最 主要 的 区别 ,还 是 变频 电动机 有额 外 的散 热 ( 采用 独立 的轴 流风机 强迫 通风 ),在低频 、直 流制 动和 一些 特殊
一文了解变频电机和普通电机的区别
一文了解变频电机和普通电机的区别在我们的生活中,电机的应用非常广泛,无论是家用电器、工业设备还是电动汽车,都离不开电机的运转。
而其中又分为变频电机和普通电机两种类型,那么这两种电机之间到底有什么不同呢?下面让我们来一一了解。
普通电机普通电机是指使用固定的电源频率(如50Hz或60Hz)作为驱动源,存在固定的机械转速和功率输出的电机。
常用于家用电器中,如洗衣机、电风扇等设备。
这些设备一般只需要满足某种相对固定的负载要求,因此使用普通电机即可满足这一需求。
同时,普通电机有具有体积小、结构简单、价格低廉等特点,便于制造和使用,因此也被广泛应用于各种场合。
变频电机变频电机是指使用变频器调节电源频率的电机,因此可以调节电机的机械转速和功率输出。
一般适用于需要更严格控制功率输出的场合,如空调、某些工业设备等。
由于使用了变频器,使得电机运行更加平稳、噪音更低,还可以实现节能、调速等多种功能。
与普通电机不同,变频电机可以输出不同的转速和功率,因此其应用更加广泛。
而且,由于变频电机可以根据负载变化进行调节,因此其能耗更低,寿命更长。
区别总结总体来说,变频电机相对于普通电机具有以下特点:1.能耗更低:可以根据负载需求进行功率输出调节,以达到更加高效的能源利用。
2.运行更加平稳:由于变频器的控制,变频电机的转速和输出更加平稳。
3.寿命更长:运行平稳对电机的结构和零件的磨损比较小,因此变频电机的使用寿命也相对更长。
4.价格更贵:相对于普通电机,变频电机的制造难度相对较高,因此价格也相对较贵。
综上所述,普通电机和变频电机各有其优缺点,需要根据实际需求进行选择。
对于一些负载要求简单,且需要低成本的应用场景,可以选择普通电机;而对于对功率输出和能耗有较高要求的场合,则需要选择变频电机。
总结本文介绍了变频电机和普通电机的区别,希望能对大家理解这两种电机有所帮助。
根据不同的使用需求,选择合适的电机可以获得更好的性能和节能效果。
变频电机和普通电机的五大区别分析
变频电机和普通电机的五大区别分析来源:作者:2017年08月15日15:53关键词:变频电机电机在购买使用电机时很多时候都被推荐购买变频电机,那么变频电机和普通电机的区别到底有什么?变频电机一般分为恒转矩专用电动机,用于有反馈矢量控制的带测速装置的专用电动机以及中频电动机等。
在实际应用中我们发现变频电机和普通电机还是有蛮大区别的。
两者的稳定性和使用寿命是不一样的,而且变频电机更省电,它的使用范围更广泛。
变频电机的散热系统更强劲;变频电机加强了槽绝缘,一是绝缘材料加强,一是加大槽绝缘的厚度,以提高承受高频电压的水平。
同时变频电机增大了电磁负荷。
普通电机工作点基本在磁饱和拐点,如果用做变频,易饱和,产生较高的激磁电流,而变频电机在设计时增大了电磁负荷,使磁路不易饱和。
变频电机和普通电机的区别1,电机的效率和温升在变频驱动下,变频电机效率会高10%左右,而温升会小20%左右,尤其是在矢量控制或者直接转矩控制的低频区域。
2,变频电机对于需要频繁启动、频繁调速、频繁制动的场合,要优于普通电动机。
3,在电磁噪声和振动方面,变频电机在变频驱动时较普通电动机有更低的噪音和更小的电磁振动。
4,电动机的绝缘强度问题。
由于变频电机专为变频器驱动设计,所以能承受较大的du/dt,所以变频电动机的绝缘强度要高。
尤其是在DTC控制模式下,对电动机的绝缘强度是个很大的考验。
5,最主要的区别,还是变频电动机有额外的散热(采用独立的轴流风机强迫通风),在低频、直流制动和一些特殊应用场合下的散热要大大的优于普通的交流异步电动机。
变频电机的优缺点由于采用变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动创造了条件,因而电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲劳和加速老化问题。
调频技术对电机的要求主要是三个方面:第一,绝缘等级;第二,强制冷却;第三,转子轴承。
变频电机与工频电机的区别及电机扭矩计算公式
变频电机与工频电机有什么区别一、普通异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。
以下为变频器对电机的影响1、电动机的效率和温升的问题不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。
拒资料介绍,以目前普遍使用的正弦波PWM 型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。
高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。
因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。
除此之外,还需考虑因集肤效应所产生的附加铜耗。
这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%--20%。
2、电动机绝缘强度问题目前中小型变频器,不少是采用PWM 的控制方式。
他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。
另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。
3、谐波电磁噪声与震动普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。
变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。
当电磁力波的频率和电动机机体的固有振动频率一致或接近时,将产生共振现象,从而加大噪声。
由于电动机工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开电动机的各构件的固有震动频率。
4、电动机对频繁启动、制动的适应能力由于采用变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动创造了条件,因而电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲劳和加速老化问题。
变频器与传统电机的区别
变频器与传统电机的区别
变频器是一种新型的电力调节装置,它可以控制电机的转速和电压,从而实现节能减排的目的。
相对于传统电机,变频器具有以下几个优点:
首先,变频器可以控制电机的转速,从而实现精确控制。
传统电机
只能通过改变电压或者改变机械传动来实现控制,控制效果不够精确。
而变频器可以通过改变电压频率来实现精确控制,可以根据实际需要
调整电机的转速和输出功率,从而实现更好的控制效果。
其次,变频器具有节能效果。
传统电机为了保证输出功率,需要不
断消耗大量的能量,而变频器可以通过控制电机的转速来实现节能,
从而减少能源的消耗。
节能效果明显,可以降低电费成本。
另外,变频器还具有调低噪声、提高运行稳定性、延长电机寿命等
优点。
可以说,变频器已经成为了现代电动机控制的重要组成部分,
得到了广泛的应用。
总的来说,变频器与传统电机相比,具有精确控制、节能、噪声低、运行稳定等方面的优势。
随着科技的进步和工业的发展,变频器的应
用范围将会越来越广泛,取代传统电机成为主流。
变频能效等级
变频能效等级
【原创实用版】
目录
1.变频电机无能效等级标准的原因
2.普通电机和变频电机的区别
3.高效节能电机与变频节能电机的区别
正文
变频电机无能效等级标准的原因:
随着国家对节能要求越来越高,许多项目中对电动机的能效标准有要求。
关于普通电机的能效等级与变频电机的节能问题是经常被提及和业主所关心的。
但两者是有区别的,普通大中型高压异步电动机的能效等级划分可以参考 GB30254-2013 高压三相笼型异步电动机能效限定值及能效
等级。
而变频电机的效率测试因和不同的变频器以及调试方式均有很大的关系,目前国家是没有相关标准的,也就是变频电机没有能效等级的说法。
普通电机和变频电机的区别:
普通电机和变频电机在结构和功能上有很大的区别。
普通电机结构简单,通过调整电源频率来实现电机转速的变化。
而变频电机在设计时考虑了变频器的特性,使得电机在低速运行时仍能保持较高的效率。
因此,变频电机在节能方面具有优势。
高效节能电机与变频节能电机的区别:
高效节能电机是指在设计、制造和使用过程中,通过采用高新技术和优化设计方案,实现电机高效率、低能耗的电机。
而变频节能电机是指通过变频技术,调整电机运行频率,实现电机在低速运行时仍具有较高效率的电机。
第1页共1页。
变频电机转速范围
变频电机转速范围
(最新版)
目录
1.变频电机的概念和分类
2.变频电机的变频范围
3.变频电机的优势和应用
4.变频电机的调速方法
5.变频电机与普通电机的区别
正文
一、变频电机的概念和分类
变频电机是一种能够通过变频器调整输出频率和电压,从而实现转速调节的电机。
它主要分为两类:交直流变频电机和交流变频电机。
其中,交流变频电机根据电机的极数可分为二极、四极、六极和八极等。
二、变频电机的变频范围
变频电机的变频范围取决于其工作的频率范围和变频器的控制范围。
一般来说,变频电机的变频范围可以从低于额定转速到稍高于额定转速。
具体来说,对于三相异步电动机,其额定转速通常为 1500 或 3000 转/分,变频范围一般在 50Hz 到 100Hz 之间。
三、变频电机的优势和应用
变频电机具有调速范围广、启动和停止平稳、节能等优点。
它广泛应用于各种工业生产和民用场合,如风机、水泵、压缩机等。
四、变频电机的调速方法
变频电机的调速方法主要有以下几种:
1.电压调制:通过改变变频器的输出电压来控制电机的转速,一般用
于低功率电机的调速。
2.频率调制:通过改变变频器的输出频率来控制电机的转速,可用于大功率电机的调速。
五、变频电机与普通电机的区别
变频电机与普通电机的主要区别在于其应用于不同的场合。
普通电机通常用于固定转速的场合,而变频电机则适用于需要调整转速的场合。
此外,变频电机在设计、制造和使用过程中具有更高的要求,如独立的散热电机、更高的电压绝缘等级等。
变频调速电动机与普通电动机的区别
变频调速电动机与普通电动机的区别
变频调速电动机与一般电动机相比的不同之处在于如下几个方面。
(1)对于可用于较低频率(例如30Hz以下)的,其通风冷却采纳由单独供电的恒速风扇,一般是将其安装在一个加长的风罩内。
目的是解决一般电动机自带外风扇因频率低时转速也低造成风力减小影响散热的问题。
(2)用于较高转速的电动机,其轴承、润滑脂,以及其他与转速有关的器件,要适应高转速的要求。
(3)电磁设计方案与一般电动机不同,其中包括绕组形式、定转子槽协作、定转子槽形、转子槽斜度、定转子之间的气隙等方面。
转变这些内容主要是为减小变频电源造成的较多谐波影响。
(4)对在平安牢靠性要求较高的场合使用的变频调速电动机,其所用电磁线应使用变频专用电磁线。
这种电磁线的防突发性高电压脉冲力量比一般电磁线高许多。
变频器输出的电压往往会有突发性、高频率的高电压脉冲,其幅值最高可达额定电压的十几倍甚至几十倍,这种高电压脉冲对电磁线的绝缘破坏性很大,一般电磁线很简单被击穿。
而变频专用电磁线(简称为“变频电磁线”)的外层绝缘中添加了一种可抵挡较高电压冲击的材料,同时采纳一些不同于一般电磁线的工艺,从而使其耐脉冲电压的力量有所提高。
(5)对容量较大(机座号大于280)的变频电动机,有的会采纳绝缘轴承等防止轴电流危害的措施。
变频电机与工频电机的区别
电机应用非常广泛,在没有变频器之前,我们使用得最多的就是工频电机。
我原来做变频供水项目的时候,基本上使用的都是工频的,当时最需要注意的就是频率不能太小,有2个理由,一个就是散热问题;另外一个就是频率太低做功基本全无。
今天看到一个资料,将变频电机与工频电机的区别写得比较全,大家一起共享。
变频电机与工频电机的区别一、普通异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。
以下为变频器对电机的影响:1、电动机的效率和温升的问题不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。
拒资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。
高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。
因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。
除此之外,还需考虑因集肤效应所产生的附加铜耗。
这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%--20%。
2、电动机绝缘强度问题目前中小型变频器,不少是采用PWM的控制方式。
他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。
另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。
3、谐波电磁噪声与震动普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。
变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。
变频电机与普通电机的区别
变频电机与普通电机的区别:一、普通异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。
以下为变频器对电机的影响,即变频电机与普通电机的区别:1、电动机的效率和温升的问题不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。
据资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。
高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。
因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。
除此之外,还需考虑因集肤效应所产生的附加铜耗。
这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%--20%。
2、电动机绝缘强度问题目前中小型变频器,不少是采用PWM的控制方式。
他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。
另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。
3、谐波电磁噪声与震动!普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。
变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。
当电磁力波的频率和电动机机体的固有振动频率一致或接近时,将产生共振现象,从而加大噪声。
由于电动机工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开电动机的各构件的固有震动频率。
.4、电动机对频繁启动、制动的适应能力由于采用变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动创造了条件,因而电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲劳和加速老化问题。
变频电机与工频电机的区别
电机应用非常广泛,在没有变频器之前,我们使用得最多的就是工频电机。
我原来做变频供水项目的时候,基本上使用的都是工频的,当时最需要注意的就是频率不能太小,有2个理由,一个就是散热问题;另外一个就是频率太低做功基本全无。
今天看到一个资料,将变频电机与工频电机的区别写得比较全,大家一起共享。
变频电机与工频电机的区别一、普通异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。
以下为变频器对电机的影响:1、电动机的效率和温升的问题不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。
拒资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。
高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。
因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。
除此之外,还需考虑因集肤效应所产生的附加铜耗。
这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%--20%。
2、电动机绝缘强度问题目前中小型变频器,不少是采用PWM的控制方式。
他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。
另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。
3、谐波电磁噪声与震动普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。
变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。
变频电机与普通电机的区别
变频电机与普通电机的区别在很多场合下,许多机械设备需要对电动机进行变频调速,有的企业选择了变频调速电机来调速,而有的企业则直接选用最普通的三相异步电动机来进行调速。
变频电机和普通电机的区别有哪些?下面,为您带来“变频电机与普通电机的区别”,希望对你有所帮助,更多内容尽在。
一、普通异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。
以下为变频器对电机的影响1、电动机的效率和温升的问题不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。
拒资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。
高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。
因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。
除此之外,还需考虑因集肤效应所产生的附加铜耗。
这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%--20%。
2、电动机绝缘强度问题目前中小型变频器,不少是采用PWM的控制方式。
他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。
另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。
3、谐波电磁噪声与震动普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。
变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。
当电磁力波的频率和电动机机体的固有振动频率一致或接近时,将产生共振现象,从而加大噪声。
变频电机与普通电机的区别 缺点有哪些?
变频电机与普通电机的区别缺点有哪些?区别一:变频电机-在特殊场合使用变频器。
它与普通电机的区别在于它增加了一个强大的冷却风扇。
风扇的电源来自单独的电源,不能从主电机启动。
强冷却风扇的功能是确保电机在低速下冷却。
区别二:变频电机可以根据负载调节电机转速,达到节能的目的。
普通电动机是一种不能调节的定速装置。
区别三:差别不大,但它的线圈分布电容小,硅钢板电阻大,所以高频脉冲对电机的影响不大,电机的感应滤波效果好。
区别四:普通电机和变频电机的制造工艺非常不同。
普通电机即工频电机,只需考虑工频的启动过程和工作点,即可设计电机;变频电机需要考虑启动过程和变频范围内的所有点,然后设计电机。
还有以下几点:1、从工作频率来看,变频电机是低质量电机,而普通电机是好电机;2、由于变频器的输出PWM宽度调制波模拟正弦交流电,其中含有大量谐波,因此一般要求在进入普通电机之前通过电抗器滤波器,否则普通电机会产生热量; 3.逆变器的输出PWM宽度调制波包括大量谐波。
特制变频电机。
实际上,它的功能可以理解为电抗器和普通电动机; 4.换言之,相同功率的变频电机比普通电机具有更大的铁截面。
线圈匝数应大于多个导线直径;高绝缘,专用冷却风扇电机; 5.考虑承载能力和高速转子动平衡,以满足弱磁场调速的需要; 6.这种变频电机没有更好的转矩特性,但它克服了普通电机对PWM模拟正弦交流电的失调,需要宽波调节;7.如果变频电机不符合上述特性和要求,则为假变频电机与普通电机相比,电机具有恒定频率和恒定电压,结构差异如下: 1.绝缘等级:一般为F或更高,应加强对地绝缘和线匝绝缘强度,尤其是绝缘耐受冲击电压的能力。
2.对于电机的振动和噪音:充分考虑电机部件的刚度和整体刚度,并尽量提高其固有频率,避免与各种力波共振。
3.冷却方式:一般采用强制通风冷却,即主电机冷却风扇由独立电机驱动。
4.防止轴向电流的措施:容量大于160千瓦的电机应采取轴承绝缘措施。
变频调速电机与普通电机的区别
变频调速电机与普通电机的区别变频电机与普通电机相比,从外形上看,没有太大的区别,但两者从性能和使用方面有较大的差异。
变频电机由变频电源或变频器供电,电机的转速可变化,有恒转矩和恒功率变频电机,而普通电机则是由工频电源供电,其额定转速是相对固定的。
普通电机风扇随电机转子同时转动,而变频电机中是靠另外的轴流风机散热,分机的转速是固定的,能保证电机低速运行时的散热需求。
因而,普通风机被变频使用且低速运行时,可能会因过热而烧掉。
另外,变频电机由于要承受高频磁场,所以绝缘等级要比普通电机高,变频电机槽绝缘、电磁线都有特殊要求,以提高高频冲击波的耐受能力。
变频电机可在其调速范围内任意调速,且电机不会损坏,而一般工频电机只能在额定电压和额定频率条件下运行。
部分电机厂家设计了调节范围较小的宽频普通电机,能保证小范围的变频使用,但范围不能太大,否则电机会因发热甚至烧毁。
变频器为何能节能?变频器节能主要表现在风机、水泵的应用上。
为了保证生产的可靠性,各种生产机械在设计配用动力驱动时,都留有一定的富余量。
当电机不能在满负荷下运行时,除达到动力驱动要求外,多余的力矩增加了有功功率的消耗,造成电能的浪费。
风机、泵类等设备传统的调速方法是通过调节入口或出口的挡板、阀门开度来调节给风量和给水量,其输入功率大,且大量的能源消耗在挡板、阀门的截流过程中。
当使用变频调速时,如果流量要求减小,通过降低泵或风机的转速即可满足要求。
变频不是到处可以省电,有不少场合用变频并不一定能省电。
作为电子电路,变频器本身也要耗电。
一台1.5匹的空调自身耗电算下来也有20-30W,相当于一盏长明灯. 变频器在工频下运行,具有节电功能,是事实。
但是他的前提条件是大功率并且为风机/泵类负载、装置本身具有节电功能。
以上非官方发布内容,仅代表个人观点。
变频电机和普通电机的区别(已看2)
变频电机和普通电机的区别通常用什么来区分呢?它们都能做变频电机用,好像效果也没有什么差别。
那怎么就要分变频和普通电机之分呢?1、变频电机的绝缘性能比普通电机要高,所以同样的中心高,绝缘材料的选择,电磁线的选择,都比普通电机好。
电磁线的耐电压冲击能力要高。
2、变频电动机的主磁路一般设计成不饱和状态,一是考虑高次谐波会加深磁路饱和,二是考虑在低频时,为了提高输出转矩而适当提高变频器的输出电压。
3、普通电机当做变频电机用不是不可以,但要适当提高功率,否则对电机寿命会有比较大的影响。
变频电机较普通电机(恒频恒压)在结构上的区别是:1)绝缘等级,一般为F级或更高,加强对地绝缘和线匝绝缘强度,特别要考虑绝缘耐冲击电压的能力。
2)对电机的振动、噪声问题,要充分考虑电动机构件及整体的刚性,尽力提高其固有频率,以避开与各次力波产生共振现象。
3)冷却方式:一般采用强迫通风冷却,即主电机散热风扇采用独立的电机驱动。
4)防止轴电流措施,对容量超过160KW电动机应采用轴承绝缘措施。
主要是易产生磁路不对称,也会产生轴电流,当其他高频分量所产生的电流结合一起作用时,轴电流将大为增加,从而导致轴承损坏,所以一般要采取绝缘措施。
5)对恒功率变频电动机,当转速超过3000r/min时,应采用耐高温的特殊润滑脂,以补偿轴承的温度升高。
普通电机长时间低频运行会有哪些坏处普通异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。
以下为变频器对电机的影响。
1、电动机的效率和温升的问题不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。
拒资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。
高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。
因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变频电机与普通电机的区别变频电机是可以根据工作需要,通过改变电机的的频率来达到所要的转速要求,当然还增加了强冷风扇,用来保证电机在低转速下的冷却。
变频电机的特点1、电磁设计对普通异步电动机来说,再设计时主要考虑的性能参数是过载能力、启动性能、效率和功率因数。
而变频电动机,由于临界转差率反比于电源频率,可以在临界转差率接近1时直接启动,因此,过载能力和启动性能不在需要过多考虑,而要解决的关键问题是如何改善电动机对非正弦波电源的适应能力。
方式一般如下:1)尽可能的减小定子和转子电阻减小定子电阻即可降低基波铜耗,以弥补高次谐波引起的铜耗增。
2)为抑制电流中的高次谐波,需适当增加电动机的电感。
但转子槽漏抗较大其集肤效应也大,高次谐波铜耗也增大。
因此,电动机漏抗的大小要兼顾到整个调速范围内阻抗匹配的合理性。
;3)变频电动机的主磁路一般设计成不饱和状态,一是考虑高次谐波会加深磁路饱和,二是考虑在低频时,为了提高输出转矩而适当提高变频器的输出电压。
2、结构设计再结构设计时,主要也是考虑非正弦电源特性对变频电机的绝缘结构、振动、噪声冷却方式等方面的影响,一般注意以下问题:1)绝缘等级,一般为F级或更高,加强对地绝缘和线匝绝缘强度,特别要考虑绝缘耐冲击电压的能力。
2)对电机的振动、噪声问题,要充分考虑电动机构件及整体的刚性,尽力提高其固有频率,以避开与各次力波产生共振现象。
3)冷却方式:一般采用强迫通风冷却,即主电机散热风扇采用独立的电机驱动。
4)防止轴电流措施,对容量超过160KW电动机应采用轴承绝缘措施。
主要是易产生磁路不对称,也会产生轴电流,当其他高频分量所产生的电流结合一起作用时,轴电流将大为增加,从而导致轴承损坏,所以一般要采取绝缘措施。
5)对恒功率变频电动机,当转速超过3000/min时,应采用耐高温的特殊润滑脂,以补偿轴承的温度升高。
3、另外还有1、从工频的角度看,变频电机是劣质电机,普通电机才是好电机;2、由于变频器输出的PWM调宽波模拟正弦交流电,含有大量谐波,一般需要经过电抗器滤波后才能进入普通电机,否则普通电机会发热;3、为了适应变频器输出的PWM调宽波模拟正弦交流电含有大量谐波,专门制作的变频电机,其作用实际上可理解为电抗器加普通电机;4 那就是说,同功率的变频电机比普通电机铁心截面要大,线圈匝数要多,线径要大,绝缘要高,专门的冷却风扇电机;5、为了适应弱磁调速的需要,考虑了轴承的承受能力及高速转子动平衡;6、这种变频电机不具备更好的转矩特性,只是克服了普通电机不适应PWM调宽波模拟正弦交流电的需要;7、如果变频电机不具备上述特点和要求,那就是假的变频电机。
变频电机与普通电机的区别有哪些?变频电机可在其调速范围内可任意调速,而电机不会损坏,一般国产的普通电机大部分只能在AC380V/50HZ的条件下运行,普通电机能降频或升频使用,但范围不能太大,否则电机会发热甚至烧坏。
普通风机内散热风扇跟风机机芯用同一条线,而变频风机中这两个是分开的。
所以普通风机变频过低时,可能会因过热而烧掉。
变频电机由于要承受高频磁场,所以绝缘等级要比普通电机高,原则上普通电机是不能用变频器来驱动的,但在实际中为了节约资金,在很多需要调速的场合都用普通电机代替变频电机,但普通电机的调速精度不高,在风机、水泵的节能改造中经常这样做。
在用普通电机代替变频电机时变频器的载波频率尽量低一点,以减少高频对电机的绝缘损坏。
变频调速电机变频调速电机简称变频电机,是变频器驱动的电动机的统称。
目录1简介▪主要参数▪技术特点2特殊设计▪电磁设计▪结构设计3原理4特点5优点6区别7试验8应用1简介变频调速电机简称变频电机,是变频器驱动的电动机的统称。
实际上为变频器设计的电机为变频专用电机,电机可以在变频器的驱动下实现不同的转速与扭矩,以适应负载的需求变化。
变频电动机由传统的鼠笼式电动机发展而来,把传统的电机风机改为独立出来的风机,并且提高了电机绕组的绝缘性能。
在要求不高的场合如小功率和频率在额定工作频率工作情况下,可以用普通鼠笼电动机代替。
主要参数品牌:ABB产品类型:三相异步电动机型号:QABP 4KW-4P极数:4极额定功率:4KW额定电压:380/415/440(V)额定转速:1450(rpm)产品认证:CE应用范围:机械设备行业均可技术特点效率高达到欧洲CEMEP-EU效率等级电机标准二级值,符合中华人民共和国国家标准GB18613-2002中小型三相异步电动机能效限定值。
双频宽电压电压范围220V~690V,适用50Hz和60Hz电源。
噪声低通过优化电磁设计、通风状况、结构尺寸等技术,M2JA系列电动机的噪声较低。
轴承负载能力高电动机选用深沟球轴承,寿命长,80-132中心高电动机为永久型润滑,160-355设有加油装置。
可靠性好电动机为全封闭风冷结构,防护等级IP55,材料及工艺符合环境要求。
电动机机械强度高,坚固耐用,防锈防腐性强。
绕组可靠性好,采用F级绝缘结构,B级考核。
并可根据用户需要增加PTC热敏电阻或热敏开关。
本系列电机功率从0.25KW-315KW,机座中心高从71mm-355mm。
可广泛应用于轻工,纺织,化工,冶金,机床等需要调速转动装置的行业中,是一种理想的调速动力源。
2特殊设计电磁设计对于变频电动机,由于临界转差率反比于电源频率,可以在临界转差率接近1时直接启动,因此,过载能力和启动性能不在需要过多考虑,而要解决的关键问题是如何改善电动机对非正弦波电源的适应能力。
方式一般如下:1)尽可能的减小定子和转子电阻。
减小定子电阻即可降低基波铜耗,以弥补高次谐波引起的铜耗增2)为抑制电流中的高次谐波,需适当增加电动机的电感。
但转子槽漏抗较大其集肤效应也大,高次谐波铜耗也增大。
因此,电动机漏抗的大小要兼顾到整个调速范围内阻抗匹配的合理性。
3)变频电动机的主磁路一般设计成不饱和状态,一是考虑高次谐波会加深磁路饱和,二是考虑在低频时,为了提高输出转矩而适当提高变频器的输出电压。
结构设计在结构设计时,主要也是考虑非正弦电源特性对变频电机的绝缘结构、振动、噪声冷却方式等方面的影响,一般注意以下问题:1)绝缘等级,一般为F级或更高,加强对地绝缘和线匝绝缘强度,特别要考虑绝缘耐冲击电压的能力。
2)对电机的振动、噪声问题,要充分考虑电动机构件及整体的刚性,尽力提高其固有频率,以避开与各次力波产生共振现象。
3)冷却方式:一般采用强迫通风冷却,即主电机散热风扇采用独立的电机驱动。
4)防止轴电流措施,对容量超过160KW电动机应采用轴承绝缘措施。
主要是易产生磁路不对称,也会产生轴电流,当其他高频分量所产生的电流结合一起作用时,轴电流将大为增加,从而导致轴承损坏,所以一般要采取绝缘措施。
5)对恒功率变频电动机,当转速超过3000/min时,应采用耐高温的特殊润滑脂,以补偿轴承的温度升高。
3原理变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。
21世纪初期,使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。
变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。
整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM波形,中间直流环节为滤波、直流储能和缓冲无功功率。
4特点B级温升设计,F级绝缘制造。
采用高分子绝缘材料及真空压力浸漆制造工艺以及采用特殊的绝缘结构,使电气绕组采用绝缘耐压及机械强度有很大提高,足以胜任马达之高速运转及抵抗变频器高频电流冲击以及电压对绝缘之破坏。
平衡质量高,震动等级为R级(降振级)机械零部件加工精度高,并采用专用高精度进口轴承,可以高速运转。
强制通风散热系统,全部采用进口轴流风机超静音、高寿命,强劲风力。
保障马达在任何转速下,得到有效散热,可实现高速或低速长期运行。
经AMCAD软件设计的YP系列电机,与传统变频电机相比较,具备更宽广的调速范围和更高的设计质量,经特殊的磁场设计,进一步抑制高次谐波磁场,以满足宽频、节能和低噪音的设计指标。
具有宽范围恒转矩与功率调速特性,调速平稳,无转矩脉动。
与各类变频器均具有良好的参数匹配,配合矢量控制,可实现零转速全转矩、低频大力矩与高精度转速控制、位置控制及快速动态响应控制。
YP系列变频专用电机可配制刹车器,编码器供货,这样即可获得精准停车,和通过转速闭环控制实现高精度速度控制。
采用“微电机+变频专用电机+编码器+变频器”实现超低速无级调速的精准控制。
YP系列变频专用电机通用性好,其安装尺寸符合IEC标准,与一般标准型电机具备可互换性。
5优点1、具备有启动功能2、采用电磁设计,减少了定子和转子的阻值3、适应不同工况条件下的频繁变速4、在一定程度上节能6区别普通电机是根据市电的频率和相应的功率设计的,只有在额定的情况下才能稳定运行。
变频电机就不同了,变频电机要克服低频时的过热与振动,所以变频电机在设计上要比普通电机性能要好一点。
7试验变频电机试验一般需要采用变频器供电,由于变频器输出频率具有较宽的变化范围,且输出的PWM波含有丰富的谐波,传统的互感器及功率计已经不能满足试验的测量需要,而一般的霍尔电压、电流传感器不对直接影响功率准确度测量的角差指标进行控制和标称,应该采用有明确比差和角差指标的变频功率分析仪及变频功率传感器等作为主电量测量仪器。
变频电机试验台及测量仪器仪表(10张)8应用21世纪,变频调速已经成为主流的调速方案,可广泛应用于各行各业无级变速传动。
特别是随着变频器在工业控制领域内日益广泛的应用,变频电机的使用也日益广泛起来,可以这样说由于变频电机在变频控制方面较普通电机的优越性,凡是用到变频器的地方我们都不难看到变频电机的身影。
普通三相异步电动机与变频电动机的区别普通的三相异步电动机可以用变频器驱动吗?普通的三相异步电动机与变频调速的三相异电动机有何区别?普通异步电机与变频电机的区别——普通异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。
以下为变频器对电机的影响:1、电动机的效率和温升的问题不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。
据资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。
高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。
因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。