小学五年级奥数综合100练习题

合集下载

小学五年级奥数题100道及答案(完整版)

小学五年级奥数题100道及答案(完整版)

小学五年级奥数题100道及答案(完整版)1. 一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是()A. 208B. 203C. 200D. 198答案:A解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208。

2. 有一个自然数,被10 除余7,被7 除余4,被4 除余1。

这个自然数最小是()A. 137B. 107C. 131D. 101答案:C解析:这个数加上 3 就能被10、7、4 整除,10、7、4 的最小公倍数是140,所以这个数是140 - 3 = 137。

3. 一筐苹果,2 个一拿,3 个一拿,4 个一拿,5 个一拿都正好拿完而没有余数,这筐苹果最少应有()A. 120 个B. 90 个C. 60 个D. 30 个答案:C解析:苹果数量是2、3、4、5 的公倍数,最小公倍数是60。

4. 把66 分解质因数是()A. 66 = 1×2×3×11B. 66 = 6×11C. 66 = 2×3×11D. 2×3×11 = 66答案:C解析:分解质因数是把一个合数写成几个质数相乘的形式。

5. 两个质数的积一定是()A. 质数B. 奇数C. 偶数D. 合数答案:D解析:两个质数相乘的积,除了1 和它本身以外还有这两个质数作为因数,所以是合数。

6. 一个合数至少有()个因数。

A. 1B. 2C. 3D. 4答案:C解析:合数是指除了能被1 和本身整除外,还能被其他数(0 除外)整除的自然数。

所以一个合数至少有3 个因数。

7. 10 以内既是奇数又是合数的数是()A. 7B. 8C. 9D. 5答案:C解析:9 不能被2 整除是奇数,同时除了1 和9 本身还有3 这个因数,所以是合数。

8. 下面算式中,结果最大的是()A. 300÷8÷6×5B. 300÷(8÷6)×5C. 300÷(8÷6×5)D. 300÷8÷(6×5)答案:C解析:分别计算出每个选项的结果进行比较。

五年级奥数典型练习100例(详细解析)

五年级奥数典型练习100例(详细解析)

五年级奥数典型练习100例(详细解析)1 五年级奥数(几何问题)及答案:直角三角形【答案解析】2 五年级奥数(几何问题)及答案:三角形面积右图是由大、小两个正方形组成的,小正方形的边长是4厘米,求三角形ABC的面积.三角形面积答案:这道题似乎缺少大正方形的边长这个条件,实际上本题的结果与大正方形的边长没关系.连接AD(见右上图),可以看出,三角形ABD 与三角形ACD 的底都等于小正方形的边长,高都等于大正方形的边长,所以面积相等.因为三角形AGD是三角形ABD与三角形ACD 的公共部分,所以去掉这个公共部分,根据差不变性质,剩下的两个部分,即三角形ABG与三角形GCD面积仍然相等.根据等量代换,求三角形ABC的面积等于求三角形BCD 的面积,等于4×4÷2=83 五年级奥数(几何问题)及答案:阴影面积计算如图,长方形ABCD的面积是2平方厘米,EC=2DE,F是DG的中点.阴影部分的面积是多少平方厘米?【答案解析】如下图,连接FC,△DBF、△BFG的面积相等,设为x平方厘米;△FGC、△DFC的面积相等,设为y平方厘米,那么△DEF的面积为y平方厘米比较②、①式,②式左边比①式左边多2x,②式右边比①式右边大0.5,有2x=0.5,即x=0.25,y=0.25.而阴影部分面积为y+ y= ×0.25= 平方厘米.4 五年级奥数(几何面积)及答案:梯形阴影面积图中ABCD是梯形,三角形ADE面积是1.8,三角形ABF的面积是9,三角形BCF的面积是27.那么阴影部分面积是多少?【答案解析】设△ADF的面积为上,△BCF的面积为下,△ABF的面积为左,△DCF的面积为右.左=右=9;上×下=左×右=9×9=81,而下=27,所以上=81÷27=3.△ADE的面积为1.8,那么△AEF的面积为1.2,则EF:DF= :=1.2:3=0.4.△CEF与△CDF的面积比也为EF与DF的比,所以有=0.4× =0.4×(3+9)=4.8.即阴影部分面积为4.8.5 五年级奥数(行程问题)及答案:外出时间某人下午六时多外出买东西,出门时看手表,发现表的时针和分针的夹角为1100,七时前回家时又看手表,发现时针和分针的夹角仍是1100.那么此人外出多少分钟?【答案解析】如下示意图,开始分针在时针左边1100位置,后来追至时针右边1100位置.6 五年级奥数(行程问题)及答案:发车间隔某人沿电车线路行走,每12分钟有一辆电车从后面追上,每4分钟有一辆电车迎面开来.假设两个起点站的发车间隔是相同的,求这个发车间隔.【答案解析】设电车的速度为a,行人的速度为b,因为每辆电车之间的距离为定值,设为l.7 五年级奥数(约数与倍数)及答案:最大公约数A,B两数都仅含有质因数3和5,它们的最大公约数是75.已知数A有12个约数,数B有10个约数,那么A,B两数的和等于多少?【答案解析】由题意知A可以写成3×52×a,B可以写成3×52×6,其中a、b为整数且只含质因子3、5.即A:31+x×52+y,B=31+m×52+n,其中x、Y、m、n均为自然数(可以为0)由A有12个约数,所以[(1+x)+1]×[ (2+y)+1]=(2+x)×(3+y)=12,所以 .对应A为31+2×52=675,31+1×52+1=1125,或31+0×52+4=46875;由B有10个约数,所以[(1+m)+1]×[(2+n)+l]=(2+m)×(3+n):10,所以 .对应B为31+0×52+2=1875.只有(675,1875)=75,所以A=675,B=1875.那么A,B两数的和为675+1875=25508 五年级奥数(包含与排除)及答案:读故事书甲、乙、丙都在读同-一本故事书,书中有100个故事.每个人都从某一个故事开始,按顺序往后读.已知甲读了7.5个故事,乙读了60个故事,丙读了52个故事.那么甲、乙、丙3人共同读过的故事最少有多少个?【答案解析】只考虑甲乙两人情况,有甲、乙都读过的最少为:75+60-100=35个,此时甲单独读过的为75-35=40个,乙单独读过的为60-35=25个;欲使甲、乙、丙三人都读过的书最少时,应将丙读过的书尽量分散在某端,于是三者都读过书最少为52-40=12个.9 五年级奥数(包含与排除)及答案:剪绳子有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断.问绳子共被剪成了多少段?【答案解析】只需先计算剪了多少刀,再加上1即为剪成的段数.从一端开始,将绳上距离这个端点整数厘米数的点编号,并将距离长度作为编号.10 五年级奥数(整除问题)及答案:除数各数位数字是0、1或2,且能被除数25整除的最小自然数是多少?【答案解析】225=25×9,所以要求分别能被25和9整除,要能被25整除,所以最后两位就是00。

小学五年级数学奥数题100道及答案(完整版)

小学五年级数学奥数题100道及答案(完整版)

小学五年级数学奥数题100道及答案(完整版)题目1:计算:1 + 2 + 3 + 4 + 5 + …+ 99 + 100答案:5050解析:这是一个等差数列求和,公式为(首项+ 末项)×项数÷ 2 ,即(1 + 100)×100 ÷2 = 5050题目2:有三个连续自然数,它们的乘积是60,求这三个数。

答案:3、4、5解析:将60 分解质因数60 = 2×2×3×5 = 3×4×5题目3:一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是多少?答案:208解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208题目4:甲、乙两车同时从A、B 两地相向而行,在距A 地60 千米处第一次相遇。

各自到达对方出发地后立即返回,途中又在距A 地40 千米处相遇。

A、B 两地相距多少千米?答案:110 千米解析:第一次相遇时,两车共行了一个全程,甲行了60 千米。

第二次相遇时,两车共行了三个全程,甲行了60×3 = 180 千米。

此时甲距离 A 地40 千米,所以两个全程是180 + 40 = 220 千米,全程为110 千米。

题目5:鸡兔同笼,共有头48 个,脚132 只,鸡和兔各有多少只?答案:鸡30 只,兔18 只解析:假设全是鸡,有脚48×2 = 96 只,少了132 - 96 = 36 只脚。

每把一只鸡换成一只兔,脚多4 - 2 = 2 只,所以兔有36÷2 = 18 只,鸡有48 - 18 = 30 只。

题目6:小明从一楼到三楼用了18 秒,照这样计算,他从一楼到六楼需要多少秒?答案:45 秒解析:一楼到三楼走了 2 层楼梯,每层用时18÷2 = 9 秒。

一楼到六楼走5 层楼梯,用时5×9 = 45 秒。

小学五年级数学奥数题100道附完整答案

小学五年级数学奥数题100道附完整答案

小学五年级数学奥数题100道附完整答案题目1:一个数除以4 余3,除以5 余4,除以6 余5,这个数最小是多少?答案:这个数加上1 就能被4、5、6 整除,4、5、6 的最小公倍数是60,所以这个数最小是59。

题目2:有三根铁丝,长度分别是120 厘米、180 厘米和300 厘米。

现在要把它们截成相等的小段,每根都不能有剩余,每小段最长多少厘米?一共可以截成多少段?答案:每小段的长度是120、180、300 的最大公因数,即60 厘米。

一共可以截成:(120 + 180 + 300) ÷60 = 10 段。

题目3:一间教室长8 米,宽6 米,高4 米。

要粉刷教室的天花板和四周墙壁,除去门窗和黑板面积25.4 平方米,粉刷的面积是多少平方米?答案:天花板面积:8×6 = 48 平方米,四周墙壁面积:2×(8×4 + 6×4) = 112 平方米,总面积:48 + 112 = 160 平方米,粉刷面积:160 - 25.4 = 134.6 平方米。

题目4:一个长方体玻璃缸,从里面量长40 厘米,宽25 厘米,缸内水深12 厘米。

把一块石头浸入水中后,水面升到16 厘米,求石块的体积。

答案:升高的水的体积就是石块的体积,40×25×(16 - 12) = 4000 立方厘米。

题目5:甲、乙两数的最大公因数是12,最小公倍数是180,甲数是36,乙数是多少?答案:180×12÷36 = 60,乙数是60。

题目6:有一筐苹果,无论是平均分给8 个人,还是平均分给18 个人,结果都剩下3 个,这筐苹果至少有多少个?答案:8 和18 的最小公倍数是72,72 + 3 = 75 个,这筐苹果至少有75 个。

题目7:一个长方体的棱长总和是80 厘米,长10 厘米,宽7 厘米,高是多少厘米?答案:高:80÷4 - 10 - 7 = 3 厘米。

奥数思维训练100题五年级

奥数思维训练100题五年级

奥数思维训练100题五年级姓名:__________ 班级:__________ 得分:__________一、行程问题1.甲、乙两人分别从相距 180 千米的两地同时出发相向而行,甲每小时行 12 千米,乙每小时行 15 千米,几小时后相遇?2.一辆汽车从 A 地开往 B 地,每小时行 70 千米,5 小时到达。

返回时每小时多行 10 千米,几小时能回到 A地?3.小明和小刚同时从学校和家出发相向而行,小明每分钟走 80 米,小刚每分钟走 70 米,两家相距 1500 米,几分钟后相遇?4.甲、乙两车分别从相距 240 千米的两地同时出发,甲车每小时行 60 千米,乙车每小时行 40 千米,几小时后两车相遇?5.一辆摩托车从甲地到乙地每小时行 45 千米,4 小时到达。

返回时每小时行 36 千米,需要几小时?6.小红和小明分别从公园的两端同时出发,小红每分钟走 50 米,小明每分钟走 60 米,公园长 1100 米,几分钟后相遇?7.甲、乙两人同时从相距 140 千米的两地出发,相向而行,甲每小时行 18 千米,乙每小时行 14 千米,几小时相遇?8.一辆汽车以每小时 80 千米的速度从甲地开往乙地,6 小时到达。

按原路返回时速度降低 20 千米/小时,返回需要几小时?9.小强和小亮从相距 168 千米的两地同时出发,小强每小时行 14 千米,小亮每小时行 12 千米,几小时相遇?10.一辆自行车从 A 地到 B 地每小时行 16 千米,3 小时到达。

返回时每小时行 12 千米,几小时能回到 A地?二、工程问题11.一项工程,甲队单独做 15 天完成,乙队单独做 20 天完成。

两队合作,几天能完成这项工程?12.修一条路,甲工程队单独修要 30 天,乙工程队单独修要 40 天。

两队合修 12 天后,还剩几分之几没修?13.一件工作,甲单独做 24 小时完成,乙单独做 30 小时完成。

甲乙合作 8 小时后,还剩下几分之几?14.一项工程,甲队单独做 18 天完成,乙队单独做 24 天完成。

五年级奥数题型训练及答案(并附上100道奥数练习题)

五年级奥数题型训练及答案(并附上100道奥数练习题)

五年级奥数题型训练及答案(附上100道奥数练习题)工程问题1、某工车间共有77个工人,已知每天每个工人平均可加工甲种部件5个,或者乙种部件4个,或丙种部件3个。

但加工3个甲种部件,一个乙种部件和9个丙种部件才恰好配成一套。

问应安排甲、乙、丙种部件工人各多少人时,才能使生产出来的甲、乙、丙三种部件恰好都配套?2、哥哥现在的年龄是弟弟当年年龄的三倍,哥哥当年的年龄与弟弟现在的年龄相同,哥哥与弟弟现在的年龄和为30岁,问哥哥、弟弟现在多少岁?------------------------------------------------------------------------------应用题3.实验室中培养了一种奇特的植物,它生长得非常迅速,每天都会生长到昨天质量的2倍还多3公斤.培养了3天后,植物的质量达到45公斤,求这株植物原来有多少公斤?分数应用题4.实验小学六年级有学生152人.现在要选出男生人数的1/11 和女生5人,到国际数学家大会与专家见面.学校按照上述要求选出若干名代表后,剩下的男、女生人数相等.问:实验小学六年级有男生多少人?5、汽车若干辆装运一批货物。

如果每辆装3.5吨,这批货物就有2吨不能运走;如果每辆装4吨,装完这批货物后,还可以装其他货物1吨.这批货物有多少吨?6、一个分数,分子与分母的和是122,如果分子、分母都减去19,得到的分数约简后是1/5,那么原来的分数是多少?7、一个生产队共有耕地208亩,计划使水浇地比旱地队多62亩,那么水浇地和旱地各应是多少亩?8、有红黄两种玻璃球一堆,其中红球个数是黄球个数的1.5倍,如果从这堆球中每次同时取出红球5个,黄球4个,那么取了多少次后红球剩9个,黄球剩2个。

9.一个机床厂,今年第一季度生产车床198台,比去年同期的产量2倍多36台,去年第一季度生产多少台?10、同院三家的灯泡,一家是一个15瓦的,一家是一个25瓦的,一家是两个15瓦的,这个月共付电费3 0.8元,按瓦数分配,各家应付电费多少?11.排列组合将A 、B 、C 、D 、E 、F 、G 七位同学在操场排成一列,其中学生与必须相邻.请问共有多少种不同的排列方法?12.列组合将三盘同样的红花和四盘同样的黄花摆放成一排,要求三盘红花互不相邻,共有__________种不同的方法.------------------------------------------------------------------------------求面积13、如图,梯形ABCD中上底为2,下底为3,三角形ADO的面积为12,那么梯形ABCD的面积为多少?14、右图是一块长方形耕地,它由四个小长方形拼合而成,其中三个小长方形的面积分别为15、18、30公顷,问图中阴影部分的面积是多少?15. (1992年武汉市小学数学竞赛试题)如图,在等边三角形ABC中,AF=3FB,FH垂直于BC,已知阴影部分的面积为1平方厘米,这个等边三角形的面积是多少平方厘米?16、(第十三届“华罗庚金杯”少年组数学邀请赛决赛试卷(小学组)图中,ABCD和CGEF是两个正方形,AG和CF相交与H,已知CH等于CF的三分之一,三角形CHG的面积等于6平方厘米,求五边形ABGEF的面积。

五年级奥数题100道

五年级奥数题100道

五年级奥数题100道一、简便运算1.25×32×1252.99×1013.45×994.88×1255.102×356.78×99+787.56×101-568.32×25×1259.99×99+9910.101×101-101二、图形问题11.一个平行四边形的底是 12 厘米,高是 8 厘米,求它的面积。

12.一个三角形的底是 15 厘米,高是 10 厘米,求它的面积。

13.一个梯形的上底是 8 厘米,下底是 12 厘米,高是 10 厘米,求它的面积。

14.一个长方形的长是 18 厘米,宽是 12 厘米,求它的周长和面积。

15.一个正方形的边长是 10 厘米,求它的周长和面积。

16.一个圆形的半径是 5 厘米,求它的周长和面积。

17.一个平行四边形的面积是 48 平方厘米,底是 8 厘米,求高。

18.一个三角形的面积是 30 平方厘米,底是 10 厘米,求高。

19.一个梯形的面积是 60 平方厘米,上底是 6 厘米,下底是 14 厘米,求高。

20.一个长方形的周长是 40 厘米,长是 12 厘米,求宽和面积。

三、应用题21.小明有 120 颗糖,小红有 80 颗糖,小明给小红多少颗糖后,两人的糖一样多?22.学校图书馆有故事书和科技书共 800 本,故事书是科技书的 3 倍,故事书和科技书各有多少本?23.甲乙两人同时从相距 200 千米的两地相向而行,甲每小时行 30 千米,乙每小时行 20 千米,几小时后两人相遇?24.一个工程队修一条路,每天修 30 米,8 天修完,如果每天修 40 米,几天修完?25.小明买了 5 个笔记本和 3 支钢笔,一共花了 45 元,已知一个笔记本 5 元,一支钢笔多少元?26.有一批货物,用大卡车运需要 6 次运完,用小卡车运需要 12 次运完,如果大、小卡车一起运,几次运完?27.一个水池有甲、乙两个进水管,单开甲管 8 小时注满水池,单开乙管 12 小时注满水池,两管同时开,几小时注满水池?28.小明从一楼走到二楼需要 20 秒,照这样的速度,他从一楼走到五楼需要多少秒?29.小红在做一道减法题时,把被减数个位上的 3 错写成了 8,把十位上的 6 错写成了 9,得到的差是 138,正确的差是多少?30.有一个数,把它乘以 4 以后减去 46,再把所得的差除以 3,然后减去 10,最后得 4。

小学五年级奥数题100道及答案

小学五年级奥数题100道及答案

小学五年级奥数题100道及答案由于篇幅限制,我将提供几道小学五年级奥数题目及答案,供参考:1. 题目:一个数的3倍加上5等于这个数的5倍减去9,求这个数。

答案:设这个数为x,根据题意得3x + 5 = 5x - 9,解得2x = 14,所以x = 7。

2. 题目:一个自然数,它加上100后是一个完全平方数,它本身也是一个完全平方数,求这个数。

答案:设这个数为x^2,根据题意得x^2 + 100 = y^2,其中y也是自然数。

因为100是10^2,所以y至少是11。

我们可以通过试错法找到满足条件的x,即x = 9,所以这个数是81。

3. 题目:小明从家到学校的距离是1200米,他每分钟走80米。

一天,他提前10分钟到达学校,求他那天走了多少分钟。

答案:小明通常需要1200 / 80 = 15分钟。

提前10分钟到达,说明他那天走了15 - 10 = 5分钟。

4. 题目:一个长方体的长、宽、高分别是8厘米、6厘米和5厘米,求它的表面积和体积。

答案:表面积 = 2 * (8 * 6 + 6 * 5 + 8 * 5) = 2 * (48 + 30+ 40) = 2 * 118 = 236平方厘米。

体积 = 8 * 6 * 5 = 240立方厘米。

5. 题目:一个数列的前四项是2,5,8,11,求第10项。

答案:这是一个等差数列,公差为3。

第n项的公式是a_n = a_1+ (n - 1) * d,其中a_1是首项,d是公差。

所以第10项a_10 = 2+ (10 - 1) * 3 = 2 + 27 = 29。

6. 题目:一个水池有一个进水管和一个出水管,单开进水管5小时可注满水池,单开出水管8小时可放完一池水。

如果两个管子同时开,多少小时可以注满水池?答案:设水池容量为V,进水管每小时注水量为V/5,出水管每小时排水量为V/8。

同时开时,每小时净注水量为V/5 - V/8 = 3V/40。

所以注满水池需要的时间为V / (3V/40) = 40/3小时。

(word完整版)五年级奥数题100题(附答案)

(word完整版)五年级奥数题100题(附答案)

五年级奥数题100题(附答案)1. 765×213÷27+765×327÷27解:原式=765÷27×(213+327)= 765÷27×540=765×20=153002. (9999+9997+...+9001)-(1+3+ (999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1) =9000+9000+…….+9000 (500个9000)=45000003.19981999×19991998-19981998×19991999解:(19981998+1)×19991998-19981998×19991999=19981998×19991998-19981998×19991999+19991998=19991998-19981998=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000。

6.297+293+289+…+209解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99)=50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/49.有7个数,它们的平均数是18。

5年级奥数题100道

5年级奥数题100道

5年级奥数题100道姓名:__________ 班级:__________ 得分:__________一、和差倍问题1.甲、乙两数之和为 120,甲比乙大 20,求甲、乙两数。

2.苹果和梨一共有 80 个,苹果比梨多 10 个,苹果和梨各有多少个?3.一个数的 3 倍加上 10 等于这个数的 5 倍减去 20,求这个数。

4.甲、乙、丙三个数的和是 180,甲是乙的 2 倍,丙是甲的 3 倍,求甲、乙、丙三个数。

5.两数之差为 36,其中大数是小数的 4 倍,求两数。

6.有两堆货物,一共重 150 吨,第一堆比第二堆多 30 吨,两堆货物各重多少吨?7.一个数的 4 倍减去这个数的 2 倍等于 36,求这个数。

8.甲、乙、丙三个数的和是 240,乙是甲的 3 倍,丙是乙的 2 倍,求甲、乙、丙三个数。

9.两数之和为 90,大数比小数多 18,求两数。

10.有三种水果,苹果、香蕉和橘子共重 120 千克,苹果的重量是香蕉的 2 倍,橘子的重量是苹果的 3 倍,求三种水果各重多少千克?二、年龄问题11.今年小明 10 岁,爸爸 35 岁,几年后爸爸的年龄是小明的 3 倍?12.小红今年 8 岁,妈妈今年 32 岁,多少年后妈妈的年龄是小红的 3 倍?13.今年哥哥 15 岁,弟弟 10 岁,几年后兄弟两人的年龄和是 45 岁?14.父亲今年 40 岁,儿子今年 12 岁,多少年后父亲的年龄是儿子的 2 倍?15.李老师今年 30 岁,学生今年 10 岁,几年后老师的年龄是学生的 2 倍?16.今年爷爷 60 岁,孙子 12 岁,多少年后爷爷的年龄是孙子的 4 倍?17.妈妈今年 36 岁,女儿今年 12 岁,几年后母女年龄和是 60 岁?18.父亲今年 45 岁,儿子今年 15 岁,多少年前父亲的年龄是儿子的 4 倍?19.今年姐姐 18 岁,妹妹 12 岁,几年后姐妹年龄和是 40 岁?20.张老师今年 48 岁,学生今年 16 岁,几年后老师的年龄是学生的 3 倍?三、行程问题21.甲、乙两地相距 360 千米,一辆汽车从甲地开往乙地,每小时行 60 千米,几小时可以到达?22.小明步行去学校,每分钟走 60 米,15 分钟可以到达学校。

五年级奥数题100道及答案

五年级奥数题100道及答案

五年级奥数题100道及答案1. 小明有5个苹果,他给小华2个,自己还剩下多少个苹果?答案:小明还剩下3个苹果。

2. 一个班级有40名学生,如果每2名学生组成一个小组,可以组成多少个小组?答案:可以组成20个小组。

3. 一个数的3倍是45,这个数是多少?答案:这个数是15。

4. 一个长方形的长是15厘米,宽是10厘米,它的周长是多少?答案:周长是50厘米。

5. 一个数加上12等于36,这个数是多少?答案:这个数是24。

6. 如果一个数的一半是18,那么这个数是多少?答案:这个数是36。

7. 一个数的4倍是64,这个数是多少?答案:这个数是16。

8. 一个正方形的边长是8厘米,它的面积是多少?答案:面积是64平方厘米。

9. 一个数的5倍是100,这个数是多少?答案:这个数是20。

10. 一个班级有50名学生,如果每5名学生组成一个小组,可以组成多少个小组?答案:可以组成10个小组。

11. 一个数的6倍是72,这个数是多少?答案:这个数是12。

12. 一个数减去15得到30,这个数是多少?答案:这个数是45。

13. 一个数的7倍是49,这个数是多少?答案:这个数是7。

14. 一个数的8倍是64,这个数是多少?答案:这个数是8。

15. 一个数的9倍是81,这个数是多少?答案:这个数是9。

16. 一个数的10倍是100,这个数是多少?答案:这个数是10。

17. 一个数的11倍是121,这个数是多少?答案:这个数是11。

18. 一个数的12倍是144,这个数是多少?答案:这个数是12。

19. 一个数的13倍是169,这个数是多少?答案:这个数是13。

20. 一个数的14倍是196,这个数是多少?答案:这个数是14。

21. 一个数的15倍是225,这个数是多少?答案:这个数是15。

22. 一个数的16倍是256,这个数是多少?答案:这个数是16。

23. 一个数的17倍是289,这个数是多少?答案:这个数是17。

小学五年级奥数应用题100道及答案解析

小学五年级奥数应用题100道及答案解析

小学五年级奥数应用题100道及答案解析1. 有两根绳子,第一根长56 厘米,第二根长36 厘米。

同时点燃后,平均每分钟都烧掉2 厘米。

多少分钟后,第一根绳子的长度是第二根绳子长度的 3 倍?答案:13 分钟解析:设经过x 分钟。

则第一根绳子剩下56 - 2x 厘米,第二根绳子剩下36 - 2x 厘米。

56 - 2x = 3×(36 - 2x),解得x = 13 。

2. 鸡兔同笼,共有30 个头,88 只脚。

求笼中鸡兔各有多少只?答案:鸡16 只,兔14 只解析:假设全是鸡,应有脚2×30 = 60 只,比实际少88 - 60 = 28 只。

因为每把一只兔当成鸡就少算2 只脚,所以兔有28÷2 = 14 只,鸡有30 - 14 = 16 只。

3. 一列火车通过530 米的桥需40 秒钟,以同样的速度穿过380 米的山洞需30 秒钟。

求这列火车的速度是每秒多少米?车长多少米?答案:车速15 米/秒,车长70 米解析:设火车速度为x 米/秒,车长为y 米。

40x = 530 + y,30x = 380 + y,解得x = 15,y = 70 。

4. 某班有40 名学生,其中有15 人参加数学小组,18 人参加航模小组,有10 人两个小组都参加。

那么有多少人两个小组都不参加?答案:17 人解析:参加了至少一个小组的人数为15 + 18 - 10 = 23 人,两个小组都不参加的人数为40 - 23 = 17 人。

5. 甲、乙、丙三个数的和是105,甲数比乙数多4,乙数比丙数多4,求丙数。

答案:31解析:设丙数为x,则乙数为x + 4,甲数为x + 8 。

x + x + 4 + x + 8 = 105 ,解得x = 31 。

6. 果园里苹果树的棵数是桃树棵数的3 倍,管理人员每天能给25 棵苹果树和15 棵桃树喷撒农药。

几天后,当给桃树喷完农药时,苹果树还有140 棵没有喷药。

5年级奥数题100道及答案

5年级奥数题100道及答案

5年级奥数题100道及答案题目1求下列各数的最大公约数:()A. 70和40B. 56和32C. 45和75D. 84和92答案1A. 70和40解析:70 = 2 * 5 * 740 = 2 * 2 * 2 * 5最大公约数为 2 * 5 = 10题目2根据下列算术题计算,结果填入括号内:48 + 12 - 20 = () A. 48 B. 38 C. 52 D. 80答案2C. 52题目3将1升的水分成8杯,请问每杯水有多少毫升?() A. 125毫升 B. 100毫升C. 200毫升 D. 250毫升答案3A. 125毫升题目4计算(54 - 28)÷ 13的值是:() A. 14 B. 2 C. 3 D. 1答案4B. 2题目5将一个数与1求和,再将结果与0求和,连续求4次和,结果是:() A. 0 B.1 C.2 D. 4答案5B. 1题目6一辆汽车从A地到B地的距离为180千米,上午每小时行驶72千米,下午每小时行驶90千米,求行程所需时间() A. 3小时 B. 4小时 C. 5小时 D. 6小时答案6C. 5小时……(以下省略部分题目和答案)通过以上100道5年级奥数题目和答案的练习,希望对同学们的数学能力提升有所帮助。

每道题目都涵盖了5年级数学知识的不同方面,包括最大公约数、加减法、容量换算、除法和逻辑推理等。

同学们可以逐一思考每道题目,理解问题的本质,灵活运用自己的数学知识解决问题。

希望同学们通过加强对奥数题的练习,不断提升数学能力,培养解决问题的思维能力和逻辑推理能力。

只有不断的练习和思考,才能在数学领域中取得更好的成绩。

加油,同学们!。

五年级100道奥数题

五年级100道奥数题

五年级100道奥数题五年级暑假数学思维训练100题1、765×213÷27+765×327÷272、(101+103+...+199)-(90+92+ (188)3、9×17+91÷17-5×17+45÷174、(9999+9997+...+9001)-(1+3+ (999)5、xxxxxxx÷6、(873×477-198)÷(476×874+199)7、1/2+1/6+1111/12+20+30+428、×+×9、1×2+2×3+3×4+…。

+99×10010、1000+999-998+997+996-995+…+106+105-104+103+102-10111、已知两个整数相除,商是4,余数是8.被除数比除数大59,求被除数。

12、已知一个整数除以15余2,被除数、商和余数的和是100,求被除数和商。

13、已知减数、被减数与差三者之和除以被减数,求商。

14、已知甲、乙两数之和加上甲数是220,加上乙数是170,求甲、乙两数之和。

15、已知两个自然数相除,商是4,余数是15,被除数、除数、商、余数之和是129.请写出这个带余数的除法算式。

16、已知一个两位数除以一个一位数,商仍是两位数,余数是8.求被除数、除数、商及余数之和。

17、已知两个数的和是94,有人计算时将其中一个加数个位上的数漏掉了,结果算出的和是31.求这两个数。

18、___做两个整数的加法,他把万位上的8看成了3,百位上的7看成了9,个位上的5看成了6,算得的结果是.求正确的结果。

19、已知在一个减法算式中,被减数是120,减数是差的3倍,求减数。

20、已知某数除以87,商5余5,这个数除以5的商是多少?21、已知有三根钢管,分别长200,240和360厘米。

5年级奥数思维训练100题

5年级奥数思维训练100题

5年级奥数思维训练100题一、数字规律类。

1. 按规律填数:1,2,5,10,17,(),37。

- 解析:相邻两个数的差依次是1、3、5、7、9、11。

17 + 9 = 26,所以括号里应填26。

2. 数列1,1,2,3,5,8,13,(),34,55。

- 解析:从第三项起,每一项都是前两项之和。

8+13 = 21,所以括号里应填21。

二、数的整除类。

3. 在257后面补上三个数字,组成一个六位数,使它能分别被3、4、5整除,这个六位数最小是多少?- 解析:能被4、5整除,这个数的末位一定是0。

能被4整除的数,十位和个位所组成的两位数一定能被4整除,所以十位上是偶数。

能被3整除的数,各位数字之和能被3整除。

2+5 + 7=14,要使这个数最小且能被3整除,百位上最小就是0,此时各位数字之和为14+0+0 = 14,那么十位上最小就是1,这个数就是257010。

4. 一个数除以3余2,除以5余3,除以7余2,这个数最小是多少?- 解析:我们先找出满足除以3余2且除以7余2的数,即3和7的最小公倍数加2。

3和7的最小公倍数是21,21+2 = 23,23除以5余3,所以这个数最小是23。

三、图形计算类。

5. 一个平行四边形的底是12厘米,高是8厘米,如果底增加4厘米,高不变,那么面积增加多少平方厘米?- 解析:原平行四边形面积=底×高 = 12×8 = 96平方厘米。

底增加4厘米后,新底为12 + 4 = 16厘米,新面积=16×8 = 128平方厘米。

面积增加了128 - 96 = 32平方厘米。

6. 一个三角形的底是10分米,高是8分米,如果底和高都减少2分米,三角形的面积减少多少平方分米?- 解析:原三角形面积=(1)/(2)×底×高=(1)/(2)×10×8 = 40平方分米。

底和高都减少2分米后,新底为10 - 2 = 8分米,新高为8 - 2 = 6分米,新面积=(1)/(2)×8×6 = 24平方分米。

小学五年级奥数题库100道及答案(完整版)

小学五年级奥数题库100道及答案(完整版)

小学五年级奥数题库100道及答案(完整版)题目1:在一个减法算式里,被减数、减数与差的和等于120,而减数是差的3 倍,那么差等于多少?答案:因为被减数= 减数+ 差,被减数+ 减数+ 差= 120,所以被减数= 60。

又因为减数是差的3 倍,设差为x,则减数为3x,所以4x = 60,x = 15,即差等于15。

题目2:有三个连续的偶数,它们的和比其中最大的一个偶数大18,这三个连续偶数分别是多少?答案:设中间的偶数为x,则这三个连续偶数分别为x - 2,x,x + 2。

它们的和为3x。

根据题意可得3x - (x + 2) = 18,解得x = 10。

所以这三个连续偶数分别是8、10、12。

题目3:两个数相除,商是4,余数是10,被除数、除数、商和余数的和是174,被除数是多少?答案:设除数为x,则被除数为4x + 10。

由题意可得4x + 10 + x + 4 + 10 = 174,解得x = 30。

所以被除数为4×30 + 10 = 130。

题目4:一个长方形,如果长增加2 厘米,宽增加5 厘米,那么面积就增加60 平方厘米,这时恰好是一个正方形,原来长方形的面积是多少平方厘米?答案:设正方形的边长为x 厘米。

则原来长方形的长为(x - 2)厘米,宽为(x - 5)厘米。

可列方程:x ²- (x - 2)(x - 5) = 60,解得x = 10。

原来长方形的长为8 厘米,宽为5 厘米,面积为40 平方厘米。

题目5:甲、乙两数的和是162.8,乙数的小数点向右移动一位就等于甲数,求甲、乙两数各是多少?答案:乙数的小数点向右移动一位就等于甲数,说明甲数是乙数的10 倍。

设乙数为x,则甲数为10x,10x + x = 162.8,解得x = 14.8,甲数为148。

题目6:有一堆苹果,如果平均分给 4 个小朋友,剩下2 个;如果平均分给5 个小朋友,也剩下2 个。

这堆苹果至少有多少个?答案:求出4 和5 的最小公倍数为20,再加上2,这堆苹果至少有22 个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学五年级奥数综合100练习题11.甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵。

已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树。

两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?2.有三块草地,面积分别是5,15,24亩。

草地上的草一样厚,而且长得一样快。

第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?3.某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元。

在保证一星期内完成的前提下,选择哪个队单独承包费用最少?4.一个圆柱形容器内放有一个长方形铁块。

现打开水龙头往容器中灌水。

3分钟时水面恰好没过长方体的顶面。

再过18分钟水已灌满容器。

已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比。

5.甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售。

两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?6.有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池。

这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B 池?7.小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校。

小明从家到学校全部步行需要多少时间?8.甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离。

乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地。

最后乙车比甲车迟4分钟到C地。

那么乙车出发后几分钟时,甲车就超过乙车。

9.甲、乙两辆清洁车执行东、西城间的公路清扫任务。

甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?10.今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个。

那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱11.师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?12.一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.13.一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成.如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.......两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时?14.黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?15.一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地需要多长时间?16.甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?17.甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几?18.一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米?19.某校参加军训队列表演比赛,组织一个方阵队伍.如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加.那么组成这个方阵的人数应为几人?20.甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的.这天三台车床21.圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0.4米,如果再截取2根长度为A的金属线则还差2米,长度为A的等于几米?22.某公司要往工地运送甲、乙两种建筑材料.甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次?23.从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米?24.师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5.两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成?25.六年级五个班的同学共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班.又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?26.甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米?27.有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米.容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米.容器的高度是多少厘米?28.有104吨的货物,用载重为9吨的汽车运送.已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成.29.师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?30.奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.去时用了4天,回来时用了3天,问学校距离百花山多少千米?31.某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?32.王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个?33.妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张1.20元.用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱?34.一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间.作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子.大家都说这样的分配公平合理,那么每间房子的价值是多少元?35.小明和小燕的画册都不足20本,如果小明给小燕A本,则小明的画册就是小燕的2倍;如果小燕给小明A本,则小明的画册就是小燕的3倍.原来小明和小燕各有多少本画册?36.有红、黄、白三种球共160个.如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个?37.爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.现在三人的年龄各是多少岁?38.B在A,C两地之间.甲从B地到A地去送信,出发10分钟后,乙从B地出发去送另一封信.乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间?39.甲、乙两个车间共有94个工人,每天共加工1998竹椅.由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅.甲车间每天竹椅产量比乙车间多几把?40.甲放学回家需走10分钟,乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米?41.某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的2.5倍,照这样计算,每天的利润比原来增加几元?42.甲、乙两列火车的速度比是5:4.乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A,B两站距离的比是3:4,那么A,B两站之间的距离为多少千米?43.大、小猴子共35只,它们一起去采摘水蜜桃.猴王不在的时候,一只大猴子一小时可采摘15千克,一只小猴子一小时可采摘11千克.猴王在场监督的时候,每只猴子不论大小每小时都可以采摘12千克.一天,采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共采摘4400千克水蜜桃.在这个猴群中,共有小猴子几只?44.某次数学竞赛设一、二等奖.已知(1)甲、乙两校获奖的人数比为6:5.(2)甲、乙来年感校获二等奖的人数总和占两校获奖人数总和的60%.(3)甲、乙两校获二等奖的人数之比为5:6.问甲校获二等奖的人数占该校获奖总人数的百分数是几?45.已知小明与小强步行的速度比是2:3,小强与小刚步行的速度比是4:5.已知小刚10分钟比小明多走420米,那么小明在20分钟里比小强少走几米?46.加工一批零件,原计划每天加工15个,若干天可以完成.当完成加工任务的3/5时,采用新技术,效率提高20%.结果,完成任务的时间提前10天,这批零件共有几个?47.甲、乙二人在400米的圆形跑道上进行10000米比赛.两人从起点同时同向出发,开始时甲的速度为8米/秒,乙的速度为6米/秒,当甲每次追上乙以后,甲的速度每秒减少2米,乙的速度每秒减少0.5米.这样下去,直到甲发现乙第一次从后面追上自己开始,两人都把自己的速度每秒增加0.5 米,直到终点.那么领先者到达终点时,另一人距离终点多少米?48.小明从家去学校,如果他每小时比原来多走1.5千米,他走这段路只需原来时间的4/5;如果他每小时比原来少走1.5千米,那么他走这段路的时间就比原来时间多几分几之?49.甲、乙、丙、丁现在的年龄和是64岁.甲21岁时,乙17岁;甲18岁时,丙的年龄是丁的3倍.丁现在的年龄是几岁?50.加工一批零件,原计划每天加工30个.当加工完1/3时,由于改进了技术,工作效率提高了10%,结果提前了4天完成任务.问这批零件共有几个?51.自动扶梯以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯向上走,男孩的速度是女孩的2倍,已知男孩走了27级到达扶梯的顶部,而女孩走了18级到达顶部.问扶梯露在外面的部分有多少级?52.两堆苹果一样重,第一堆卖出2/3,第二堆卖出50千克,如果第一堆剩下的苹果比第二堆剩下的苹果少,那么两堆剩下的苹果至少有多少千克?53.甲、乙两车同时从A地出发,不停的往返行驶于A、B两地之间.已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都杂途中C地,甲车的速度是乙车的几倍?54.一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行8千米,因此第二小时比第一小时多行6千米.求甲、乙两地的距离.55.甲、乙两车分别从A、B两地出发,并在A,B两地间不断往返行驶.已知甲车的速度是15千米/小时,甲、乙两车第三次相遇地点与第四次相遇地点相差100千米.求A、B两地的距离.56.某人沿着向上移动的自动扶梯从顶部朝底下用了7分30秒,而他沿着自动扶梯从底朝上走到顶部只用了1分30秒.如果此人不走,那么乘着扶梯从底到顶要多少时间?如果停电,那么此人沿扶梯从底走到顶要多少时间?57.甲、乙两个圆柱体容器,底面积比为5:3,甲容器水深20厘米,乙容器水深10厘米.再往两个容器中注入同样多的水,使得两个容器中的水深相等.这时水深多少厘米?58.A、B两地相距207千米,甲、乙两车8:00同时从A地出发到B地,速度分别为60千米/小时,54千米/小时,丙车8:30从B地出发到A地,速度为48千米/小时.丙车与甲、乙两车距离相等时是几点几分?59.一个长方形的周长是130厘米,如果它的宽增加1/5,长减少1/8,就得到一个相同周长的新长方形.求原长方形的面积.60.有一长方形,它的长与宽的比是5:2,对角线长29厘米,求这个长方形的面积.61.有一个果园,去年结果的果树比不结果的果树的2倍还多60棵,今年又有160棵果树结了果,这时结果的果树正好是不结果的果树的5倍.果园里共有多少棵果树?62.小明步行从甲地出发到乙地,李刚骑摩托车同时从乙地出发到甲地.48分钟后两人相遇,李刚到达甲地后马上返回乙地,在第一次相遇后16分钟追上小明.如果李刚不停地往返于甲、乙两地,那么当小明到达乙地时,李刚共追上小明几次?63.同样走100米,小明要走180步,父亲要走120步.父子同时同方向从同一地点出发,如果每走一步所用的时间相同,那么父亲走出450米后往回走,还要走多少步才能遇到小明?64.一艘轮船在两个港口间航行,水速为6千米/小时,顺水航行需要4小时,逆水航行需要7小时,求两个港口之间的距离.65.有甲、乙、丙三辆汽车,各以一定的速度从A地开往B地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发10分钟,出发后60分钟追上丙,问甲出发后几分钟追上乙?66.甲、乙合作完成一项工作,由于配合的好,甲的工作效率比单独做时提高1/10,乙的工作效率比单独做时提高1/5,甲、乙合作6小时完成了这项工作,如果甲单独做需要11小时,那么乙单独做需要几小时?67.A、B、C、D、E五名学生站成一横排,他们的手****拿着20面小旗.现知道,站在C右边的学生共拿着11面小旗,站在B左边的学生共拿着10面小旗,站在D左边的学生共拿着8面小旗,站在E左边的学生共拿着16面小旗.五名学生从左至右依次是谁?各拿几面小旗?68.小明在360米长的环行的跑道上跑了一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,问他后一半路程用了多少时间?69.小英和小明为了测量飞驶而过的火车的长度和速度,他们拿了两块秒表,小英用一块表记下火车从他面前通过所花的时间是15秒,小明用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是18秒,已知两根电线杆之间的距离是60米,求火车的全长和速度.70.小明从家到学校时,前一半路程步行,后一半路程乘车;他从学校到家时,前1/3时间乘车,后2/3时间步行.结果去学校的时间比回家的时间多20分钟,已知小明从家到学校的路程是多少千米?71.数学练习共举行了20次,共出试题374道,每次出的题数是16,21,24问出16,21,24题的分别有多少次?72.一个整数除以2余1,用所得的商除以5余4,再用所得的商除以6余1.用这个整数除以60,余数是多少?73.少先队员在校园里栽的苹果树苗是梨树苗的2倍.如果每人栽3棵梨树苗,则余2棵;如果每人栽7棵苹果树苗,则少6棵.问共有多少名少先队员?苹果和梨树苗共有多少棵?74.某人开汽车从A城到B城要行200千米,开始时他以56千米/小时的速度行驶,但途中因汽车故障停车修理用去半小时,为了按时到达,他必须把速度增加14千米/小时,跑完以后的路程,他修车的地方距离A城多少千米?75.甲、乙两人分别从A、B两地同时出发,相向而行,乙的速度是甲的2/3,两人相遇后继续前进,甲到达B地,乙到达A地立即返回,已知两人第二次相遇的地点距离第一次相遇的地点是3000米,求A、B两地的距离.76.一条船往返于甲、乙两港之间,已知船在静水中的速度为9千米/小时,平时逆行与顺行所用时间的比为2:1.一天因下雨,水流速度为原来的2倍,这条船往返共用10小时,问甲、乙两港相距多少千米?77.某学校入学考试,确定了录取分数线,报考的学生中,只有1/3被录取,录取者平均分比录取分数线高6分,没有被录取的同学其平均分比录取分数线低15分,所有考生的平均分是80分,问录取分数线是多少分?78.一群学生搬砖,如果有12人每人各搬7块,其余的每人搬5块,那么最后余下148块;如果有30人每人各搬8块,其余的每人搬7块,那么最后余下20块.问学生共有多少人?砖有多少块?79.甲、乙两车分别从A、B两地同时相向而行,已知甲车速度与乙车速度之比为4:3,C地在A、B之间,甲、乙两车到达C地的时间分别是上午8点和下午3点,问甲、乙两车相遇是什么时间?80.一次棋赛,记分方法是,胜者得2分,负者得0分,和棋两人各得1分,每位选手都与其他选手各对局一次,现知道选手中男生是女生的10倍,但其总得分只为女生得分的4.5倍,问共有几名女生参赛?女生共得几分?81.有若干个自然数,它们的算术平均数是10,如果从这些数中去掉最大的一个,则余下的算术平均数为9;如果去掉最小的一个,则余下的算术平均数为11,这些数最多有多少个?这些数中最大的数最大值是几?82.某班有少先队员35人,这个班有男生23人,这个班女生少先队员比男生非少先队员多几人?83.小东计划到周口店参观猿人遗址.如果他坐汽车以40千米/小时的速度行驶,那么比骑车去早到3小时,如果他以8千米/小时的速度步行去,那么比骑车晚到5小时,小东的出发点到周口店有多少千米?84.甲、乙两船在相距90千米的河上航行,如果相向而行,3小时相遇,如果同向而行则15小时甲船追上乙船.求在静水中甲、乙两船的速度.85.二年级两个班共有学生90人,其中少先队员有71人,一班少先队员占本班人数的75%,二班少先队员占本班人数的5/6.一班少先队员人数比二班少先队员人数多几人?86.一个容器中已注满水,有大、中、小三个球.第一次把小球沉入水中,第二次把小球取出,把中球沉入水中,第三次把中球取出,把小球和大球一起沉入水中,现知道每次从容器中溢出水量的情况是:第一次是第二次的1/2,第三次是第二次的1.5倍.求三个球的体积之比.87.某人翻越一座山用了2小时,返回用了2.5小时,他上山的速度是3000米/小时,下山的速度是4500米/小时.问翻越这座山要走多少米?88.钢筋原材料每根长7.3米,每套钢筋架子用长2.4米、2.1米和1.5米的钢筋各一段.现需要绑好钢筋架子100套,至少要用去原材料多少根?89.有一块铜锌合金,其中铜和锌的比2:3.现知道再加入6克锌,熔化后共得新合金36克,新合金中铜和锌的比是多少?90.小明通常总是步行上学,有一天他想锻炼身体,前1/3路程快跑,速度是步行速度的4倍,后一段的路程慢跑,速度是步行速度的2倍.这样小明比平时早35分到校,小明步行上学需要多少分钟?91.甲、乙、丙三人,甲的年龄比乙的年龄的2倍还大3岁,乙的年龄比丙的年龄的2倍小2岁,三个人的年龄之和是109岁,分别求出甲、乙、丙的年龄.92.快车以60千米/小时的速度从甲站向乙站开出,1.5小时后,慢车以40千米/小时的速度从乙站行甲站开出,.两车相遇时,相遇点离两站的中点70千米.甲、乙两站相距多少千米?93.甲、乙两车先后离开学校以相同的速度开往博物馆,已知8:32分甲车与学校的距离是乙车与学校距离的3倍,8:39分甲车与学校的距离是乙车与学校距离的2倍,求甲车离开学校的时间.94.有一个工作小组,当每个工人在各自的工作岗位上工作时,7小时可生产一批零件,如果交换工人甲、乙的岗位,其他人不变,那么可提前1小时,完成这批零件,如果交换工人丙、丁的岗位,其他人不变,也可提前1小时,问如果同时交换甲与乙、丙与丁的岗位,其他人不变,那么完成这批零件需多长的时间.95.用10块长7厘米、宽5厘米、高3厘米的长方体积木,拼成一个长方体,这个长方体的表面积最小是多少?96.公圆只售两种门票:个人票每张5元,10人一张的团体票每张30元,购买10张以上的团体票的可优惠10%.(1)甲单位45人逛公园,按以上规定买票,最少应付多少钱?(2)乙单位208人逛公园,按以上的规定买票,最少应付多少钱?97.甲、乙、丙三人,参加一次考试,共得260分,已知甲得分的1/3,乙得分的1/4与丙得分的一半减去22分都相等,那么丙得分多少?98.一项工程,甲、、乙两人合作4天后,再由乙单独做5天完成,已知甲比乙每天多完成这项工程的1/30.甲、乙单独做这项工程各需要几天?99.有长短两支蜡烛,(相同时间中燃烧长度相同),它们的长度之和为56厘米,将它们同时点燃一段时间后,长蜡烛同短蜡烛点燃前一样长,这时短蜡烛的长度又恰好是长蜡烛的2/3.点燃前长蜡烛有多长?100.一批苹果平均分装在20个筐中,如果每筐多装1/9,可省下几只筐?。

相关文档
最新文档