电子-声子相互作用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

H e p D q (a q a q ) C k q C k , k ,q
其 D q 中 i 2 M N q V q (e q • q )
* 对于金属,采用集体坐标表示。设金属为单价,电子与离子间互作用取库仑势
H ep M q Q q q ,
q
其 M q中 i M N 4 q e 2 2(e q• q )
1 /2
H e p ikq ,s 2 M N q sV q K n { e q• s (q K n ) } (a q sa q)C sk q K n C k
其中利用了
1 i(kqk')•l
N e l
k',kqKn
pk'k qKn
剩下的问题是如何选取倒格矢Kn。当采用简约区方案时,Kn的选取应保证散射
代表电子
代表空穴
以上是Hep的一级微扰过程,它用于解释晶体的输运特性。
电子-声子互作用的高阶微扰过程由上述基本过程组成
(a)先发射后吸收q声子,物理实质是电子带着晶格畸变运动,对电子自能产 生修正。 (b)为电子系统对声子扰动场的屏蔽,将改变离子间的互作用势,从而对声子 频率产生修正。 (c)两个电子通过声子的间接互作用,在一定条件下将成为电子之间的有效吸 引势,它是产生超导电性的主要机制。
电子-声子互作用过程的守恒定律
动量 k': (kqKn) 总动量 Kn相 ,这差 是由晶格性 结和 构不 的连 周续 期性造成
* 散射前后能量守恒
电声子作用的实(可观察的)过程和虚(不观察的)过程
对于实过程:电声子散射两次平均时间间隔:
,
E
E|kkq|
3、声子的自能修正
电子系统对声子扰动场的屏蔽,将改变离子 间的互作用势,从而对声子频率产生修正。
为晶格周期势对作 电用 子。 的
由于纵声学模伴随晶体体积和晶格常数的局域变化,因此, C 将发生移动
C ( V C )V V ( V C )V ( V ) c 1 (r)
(r)为形变量, c1为形变势常数。
电子与声子相互作 用的形变势模型
在长波近似下
(r) •u (r) i
q
2V q(e q•q )a (q ei• q r a q e i• q r)
• 考虑单价金属,设N个离子组成的简单晶
格浸没在均匀电子气体中
与电子集体振荡相似,未微扰的LA声子频
率在长波范围内为
q2
4Ne2
M
这里取单体积,N=-1, 为正点阵元胞体
积。LA声子的哈密顿:
j,l
能带电子与晶格振动的相互作用势为
HepHeiHe0i V(rj lul)V(rj l)
j,l
ul•V(ril) h(rj)
j,l
j
其中电子与的 声单 子体 互 h势 (r作 )为 用 u: l •V(rl)
l
若选布洛赫函数
k ( r ) u k ( r ) e i• r k , u k ( r l) u k ( r )
后的电子态k'kqKn 也在第一布里渊区内。现在分两种情况讨论:
(1)k q在第一布里渊区
取 Kn0,这k时 'kq,总波矢守散 恒射 ,过 称N 程 过 为或
在长波近e似 q平 s 下 行, 或有 垂q直 的于 解波 ,矢 分别L 代A 与 表 TA 声子。显L然 A 声 , 子 只 的 有 贡献:
2、电子与声频支声子的相互作用
• 形变势模型是电子与声子互作用的连续模型 更严格的推导应当从晶格模型出发;对于简单晶格只有声频支振动。
*当离子不动时,电子与离子的互作用为:
H e 0 i V (rj l) lR l lia i
j,l
i
*实际上离子在不断地振动,互作用为:
Hei V(rj lul)
对离子势作傅里叶展开
V(r) Vpeip•r
p
1/2
Hepi k,k' q,s
N p 2Mqs
(eqs•p) N 1 l
ei(kqk')•l
Vpk'|eip•r|k(aqsa qs)Ck'Ck
为简单起见,用平面波代替布洛赫函数,取 uk(r)(N)1/2
得到晶格模型中电子与声子互作用的哈密顿
(2)k q超出第一布里渊区
取 Kn0,所k取 qKn回到第一布时 里 eqT•渊 Kn区 0, ,这 这L 时 A 与 TA 声子都对互。 作用有贡献
k’ k
由于从k到k’为大角度散射,显然散射前后电子速度发生了大角度偏转,
故常称 Kn 0 的过程为U过程或倒逆过程
U过程主要在高温大q时存在,对金属的高温特性有重要影响
作为电子系统二次量子化态向量的基函数,则
(r) Ckk(r), (r) Ckk(r)
k
k
Ck和 Ck为能带电子 灭 的 算 产 符 生 , 及 满 消 反 足 对 费 易 米 关 子 系
从单体势容易求出用电子算符表示的电子-声子互作用
Hep (r)h(r)(r)dr k'|h(r)|kCk'Ck k,k'
பைடு நூலகம்
ul•k'|V(rl)|kCk'Ck
l k,k'
1/2
l
k,k'
q,s
2NMq
s
(aqsaqs)Ck'Ckeiq•l {eqs•k'|V(rl)| k}
其中, N为元胞数 M为 ,原子质量 s代, 表格波的偏振指标。
由晶体的周期性边界条件得:
rrl
k ' | V ( r l ) | k d k * ' ( r ) u k ( r r ) e i ( k k ' ) • r u V ( r ) e i ( k k ' ) • l
1、互作用过程
• 能带论只计及晶格周期场对电子的作用(即原子或离子位置固定的情形) 考虑晶格振动时,原子(离子)偏离平衡位置,引起势能的改变。能带 电子将受到晶格位移所产生附加势场的作用,这就是电子和晶格振动的 相互作用。 电子与声子相互作用。
在能带极值附近,电子的能量:
导带
k
C
2k2 2m
C
其中C为带边能量,可能 理带 解电 为子的,势能价带
电子与声子互作用的二次量子化表示为:
Hep d r(r)c1(r)(r) ((r) Ckeik•r) k
ic1
k,q
2V q(eq•q)(aqCkqCk aqCkqCk)
消k灭 电子 q声 和子并 kq产 电生 子 k电子被q声 消子 灭 kq 与 电 和子
当k在费米球 k外 q在而 费米球内时
相关文档
最新文档