紫外/可见光谱的定量分析方法

合集下载

第三章 紫外-可见吸收光谱分析

第三章   紫外-可见吸收光谱分析

2.不饱和脂肪烃 .
在不饱和烃类分子中,除含有σ键外,还含有π 键,它们可以产生 σ→σ*和π→π* 两种跃迁。 如果存在共轭体系,则随共轭系统的延长, 吸收带将明显向长波方 向移动,吸收强度也随之增强 在共轭体系中, π→π*跃迁产生的吸收带又称为K(Konjugation) 带。其特点是:强度大,εmax›104;位置一般在217~280nm λmax和εmax的大小与共轭链的长短及取代基的位置有关 根据K带是否出现,可判断分子中共轭体系的存在的情况。在紫外光 根据 带是否出现,可判断分子中共轭体系的存在的情况 带是否出现 谱分析中有重要应用。
紫外- §3-3 紫外-可见分光光度法的应用 一、 定性分析 二、纯度检查 三、结构推测 四、定量分析 单组分样品的定量分析 多组分样品的定量分析
一、 定性分析
1、依据:吸收光谱的特征——形状、波长、峰数目、强度、 吸光系数。 、依据:吸收光谱的特征 形状、 形状 波长、峰数目、强度、 吸光系数。 2、方法:对比法 、方法: (1) 对比吸收光谱特征数据 (2) 对比吸光度或吸光系数的比值
3.芳香烃 .
苯有三个吸收带 E1带180∼184nm ε=47000 E 2带200∼204 nm ε=7000 苯环上三个共扼双键的 π → π*跃迁特征吸收带 B带 230-270 nm
ε=200
π → π*与苯环振动引起; 含取代基时, B带简化,红移 当苯环上有取代基时,苯的三个特征谱带都会发生显著的变化, 其中影响较大的是E2带和B谱带。
化合物 H2O CH3OH CH3CL CH3I CH3NH2
λmax(nm) 167 184 173 258 215
εmax 1480 150 200 365 600

氨基酸类物质的紫外光谱分析和定量测定

氨基酸类物质的紫外光谱分析和定量测定

氨基酸类物质的紫外光谱分析和定量测定一、实验目的(1)掌握紫外–可见分光光度计的工作原理与基本操作。

(2)学习紫外–可见吸收光谱的绘制及定量测定方法。

(3)了解氨基酸类物质的紫外吸收光谱的特点。

二、实验原理紫外-可见分光光度法属于吸收光谱法,分子中的电子总是处在某一种运动状态中,每一种状态都具有一定的能量,属于一定的能级。

电子由于受到光、热、电等的激发,从一个能级转移到另一个能级,称为跃迁。

当这些电子吸收了外来辐射的能量,就从一个能量较低的能级跃迁到另一个能量较高的能级。

物质对不同波长的光线具有不同的吸收能力,如果改变通过某一吸收物质的入射光的波长,并纪录该物质在每一波长处的吸光度(A ),然后以波长为横坐标,以吸光度为纵坐标作图,这样得到的谱图为该物质的吸收光谱或吸收曲线。

当一定波长的光通过某物质的溶液时,入射光强度I 0与透过光强度I t 之比的对数与该物质的浓度c 及厚度b 成正比。

其数学表达式为:0l o g l o g tIA T k b cI ==-= (一)式(一)为Lambert-Beer 定律,是分光光度法定量分析的基础,其中T 为透光率(透射比)。

物质的吸收光谱反映了它在不同的光谱区域内吸收能力的分布情况,不同的物质,由于分子结构不同,吸收光谱也不同,可以从波形、波峰的强度、位置及其数目反映出来,因此,吸收光谱带有分子结构与组成的信息。

氨基酸类物质的一个重要光学性质是对光有吸收作用。

20种氨基酸在可见光区域均无光吸收,在远紫外区(<220 nm )均有光吸收,在紫外区(近紫外区)(220 nm —300 nm )只有三种AA 有光吸收能力,这三种氨基酸分别是苯丙氨酸、酪氨酸、色氨酸,因为它们的结构均含有含有苯环共轭双键系统。

苯丙氨酸最大吸收波长在259 nm 、酪氨酸在278 nm 、色氨酸在279 nm ,蛋白质一般都含有这三种氨基酸残基,所以其最大光吸收在大约280 nm 波长处,因此能利用分光光度法很方便的测定蛋白质的含量。

第三节 紫外-可见分光光度分析方法药剂

第三节  紫外-可见分光光度分析方法药剂

安宫黄体酮(M=386.53)
炔诺酮(M=298.43)
% Ε 1cm = 571 Ε = 408 1 它们λmax相同,但吸光系数有明显差别
1% 1cm
λmax = 240 ± 1nm
λmax = 240 ± 1nm
对比吸光度比值或吸光系数比值
例如:维生素B12的鉴别: 药典规定:
A361 = 1.70 ~ 1.88 A278 A361 = 3.15 ~ 3.45 A550
1% 1cm
注:浓度为2mg/ml的肾上腺素HCl溶 液,要求含肾上腺酮小于0.06%
C ≤ 2 × 10 × 0.06% = 1.2 × 10 ( g / 100ml )
−3 −4
A ≤ E Cl = 435 ×1.2 ×10 ×1 = 0.05
1% 1cm
−4
2、在化合物 λ max 处杂质无吸收, 而在化合物 λ min 处杂质有吸收 规定:化合物在 λ max 与 λ min 处吸光度比值为一限量 例:碘磷:λ max : 294 nm λ min : 262 nm 杂质 无吸收 有吸收 A 纯碘磷: 294 = 3 . 39 ,含杂质 A294 < 3 . 39 A262 A262 规定:碘磷药品
第三节
紫外- 紫外-可见分光光度 分析方法
一、定性鉴别: 1、依据:多数有机化合物具有吸收光谱特征。 特征值:
λmin
A λ1 Aλ2
λmax
λsh
Ε
1% 1cm
ε
吸收光谱形状
同一化合物,在相同条件下应具有相同的 吸收光谱(或吸收曲线)
2、定性鉴别方法: 对比法: (1)对比吸收光谱特征数据 1% λmin λmax λsh Ε1cm或 ε (2)对比吸光度比值或吸光系数比值 A λ1 E λ1 或 Aλ 2 E λ2 (3)对比吸收光谱一致性

有机波谱分析--紫外-可见光谱法

有机波谱分析--紫外-可见光谱法
λmax=230~270nm; εmax=200~7000 L·mol-1·cm-1。
②呈一宽峰,且有精细结构。 ③当苯环被烷基以外的基团取代或溶剂极性增大时,精细
结构将会减弱甚至消失。
(4)E 带:芳香族化合物的特征谱带。
Ethylene
●E1带:苯环中“乙烯键”的π→π*跃迁产生的吸收带。 λmax=180~200nm,远紫外区; εmax=5×104L·mol-1·cm-1,强吸收。(不常用)
3.互变异构
4.氢键效应 1)溶质分子间氢键
使n→*共轭受限,轨道能差增大,波长蓝移。
2)分子内氢键:能差减小,波长红移。
例如:邻硝基苯酚和间硝基苯酚
分子内氢键
max=278nm =6.6103
无分子内氢键
max=273nm =6.6103
邻硝基苯酚, 由于分子内氢键的形成,红移了5nm。
3)溶质与溶剂间形成的氢键(属于溶剂效应)
波谱范围:10~800nm
(1)远紫外光区10~200nm (2)近紫外光区200~400nm (3)可见区400~800nm.
一般的紫外光谱是指近紫外区。
1、紫外光谱产生的条件
2、有机分子的化学键类型
★构成分子的化学键主要有 键、 键,还 有未成键孤
对电子构成的非键(n 键)。
★ 5种轨道分别是:
54
2)单环共轭烯烃(乙醇溶剂) ◆母体值: ①共轭二烯不在同一环内
217nm
②共轭二烯在同一环内
◆扩展共轭: ◆取代基增加值: 烷基 卤素 ◆环外双键
253nm
+30nm
+5nm +17nm +5nm
55
●注意: (1)母体值只是指共轭二烯母体本身的λ值,不包括C=C-C=C

紫外-可见分光光度法测定

紫外-可见分光光度法测定

紫外-可见分光光度法测定1. 引言1.1 引言紫外-可见分光光度法是一种常用的分析化学方法,通常用于测定物质的浓度或测定物质的吸光度。

该方法利用紫外-可见光谱仪测量样品对紫外和可见光的吸收情况,从而推断样品中所含物质的浓度或结构。

在化学分析实验中,紫外-可见分光光度法具有灵敏度高、准确性高和简便易行的优点,因此被广泛应用于药物分析、环境监测、食品检测等领域。

本实验旨在通过该方法测定样品中目标物质的浓度,并探讨影响测定结果的因素。

通过对仪器原理、操作步骤、实验结果、数据分析和影响因素的详细讨论,我们将深入了解紫外-可见分光光度法的原理和应用,并为今后在相关领域的研究提供参考和借鉴。

希望本实验能够为我们提供更多关于分光光度法的实际操作经验,提升我们的实验技能和分析能力。

1.2 背景介绍紫外-可见分光光度法是一种广泛应用于化学分析领域的分析方法,通过测定物质在紫外-可见光区域的吸收特性,从而确定物质的浓度或者进行定性分析。

紫外-可见分光光度法具有操作简单、灵敏度高、选择性强的特点,被广泛应用于环境监测、食品安全检测、药品质量控制等领域。

随着科学技术的不断发展,紫外-可见分光光度法在实验室分析中扮演着越来越重要的角色。

通过测定物质在特定波长范围内的光吸收情况,我们可以获得关于物质性质的重要信息,如浓度、溶解度、稳定性等。

掌握紫外-可见分光光度法的原理和操作方法,对于提高实验准确性和效率具有重要意义。

在本文中,我们将介绍紫外-可见分光光度法的仪器原理、操作步骤、实验结果、数据分析和影响因素,希望能够为读者提供一份系统全面的紫外-可见分光光度法测定指南。

通过总结和展望,我们也希望能够进一步探讨该方法在化学分析领域的应用前景。

1.3 研究目的紫外-可见分光光度法是一种常用的分析化学技术,可以用于测定物质的吸光度,从而推断物质的浓度。

本实验的研究目的主要分为以下几点:1. 研究紫外-可见分光光度法在测定物质浓度方面的应用。

1紫外可见光谱实验报告

1紫外可见光谱实验报告
在没有紫外吸收光谱峰的物质中检查含高吸光系数的杂质是紫外吸收光谱的重要用途之一。如乙醇中杂质苯的检查,只需测定256 nm处有无苯的吸收峰即可。因为在这一波段,主成分乙醇无吸收峰。
在测绘比较用的紫外吸收光谱图时,应首先对仪器的波长准确性进行检查和校正。还必须采用相同的溶剂,以排除溶剂的极性对吸收光谱的影响。同时还应注意pH值、温度等因素的影响。在实际应用时,应注意溶剂的纯度。
图5,甲基紫吸光度与浓度的关系曲线
六、分析与讨论
1、从实验结果中可得,所测的未知样品为甲基紫溶液,且其浓度为5μg/mL。
2、从甲基紫及甲基红的结构中可看出,在λmax处的吸收峰为共轭体系的吸收,由于甲基紫的共轭体系较大,所以甲基紫的λmax比甲基红的λmax要大。
3、绘制的标准曲线中,拟合成直线后R² = 0.9954,具有很高的可信度,所以可以通过直接代入未知样品的ABS值求得其浓度。
七、思考题
根据物质吸收曲线,思考如何利用紫外吸收光谱做定性分析?
答:紫外吸收光谱为有机化合物的定性分析提供了有用的信息。其方法是将未知试样和标准品以相同浓度配制在相同的溶剂中,在分别测绘吸收光谱,比较二者是否一致也可将未知试样的吸收光谱与标准图谱,如萨特勒紫外吸收光谱图相比较,如果吸收光谱完全相同,则一般可以认为两者是同一种化合物。但是,有机化合物在紫外区的吸收峰较少,有时会出现不同的结构,只要具有相同的生色团,它们的最大吸收波长max相同,然而其摩尔吸光系数或比吸光系数 值是有差别的因此需利用max和max处的或 等数据作进一步比较。
图1.基团中的σ,π,n成键电子
当它们吸收一定能量ΔE后,将跃迁到较高的能级,占据反键轨道。分子内部结构与这种特定的跃迁是有着密切关系的,使得分子轨道分为成键σ轨道、反键σ*轨道、成键π轨道、反键π*轨道和n轨道,其能量由低到高的顺序为:σ<π<n<π*<σ*。

紫外-可见光谱分析

紫外-可见光谱分析

吸收曲线与最大吸收波长 max可用不同波长的单色
光照射,测吸光度得到——扫描
同一种物质对不同波长光的吸光度不同。吸光度最大
处称为吸收峰,所对应的波长称为最大吸收波长max
峰 肩
末端吸收 谷
吸收曲线可以提供 物质的结构信息,并 作为物质定性分析的 依据之一。 不同浓度的同一种物质,其吸收曲线形状相似λmax不变。而 对于不同物质,它们的吸收曲线形状和λmax则不同。
二、无机化合物的吸收光谱
无机化合物的UV-Vis光谱吸收光谱主要有: 电荷迁移跃迁及配位场跃迁
配位场跃迁( d一d、 f 一f 跃迁)
在配体存在下过渡金属元素5个能量相等的d 轨道和镧系、 锕系7个能量相等的的 f 轨道裂分,吸收辐射后,低能态的d 电子或f电子可以跃迁到高能态的d或f轨道上去。 绝大多数过渡金属离子都具有未充满的 d 轨道,按照晶体场 理论,当它们在溶液中与水或其它配体生成配合物时,受配 体配位场的影响,原来能量相同的 d轨道发生能级分裂,产 生 d-d 电子跃迁。 必须在配体的配位场作用下才可能产生, 所以称为配位场跃迁;
n<p
n
n
p
非极性溶剂中 极性溶剂中
n >p
n p
非极性溶剂中 极性溶剂中
溶剂的极性除了影响吸收峰的位置,还影响吸收光谱 的精细结构:
N HC
N
CH 对称四嗪
N
极性溶剂使精细结构消失
蒸汽中
环己烷
水中
4. 体系pH的影响
pH影响吸光物质的存在形态,产生不同的吸收光谱. 如苯酚,在酸性或中性水溶液中,有210.5nm及270nm 两个吸收带;而在碱性溶液中,则分别红移到235nm和
吸收波长为150~250nm,大部分在远紫外区

紫外-可见分光光度法

紫外-可见分光光度法

紫外-可见分光光度法1 简述紫外-可见分光光度法是在190-800nm波长范围内测定物质的吸光度,用于鉴别、杂质检查和含量测定的方法。

定量分析通常选择物质的最大吸收波长处测出吸光度,然后用对照品或吸收系数求算出被测物质的含量,多用于制剂的含量测定;对已知物质定性可用吸收峰波长或吸光度比值作为鉴别方法;若该物质本身在紫外光区无吸收,而其杂质在紫外光区有相当强度的吸收,或杂质的吸收峰处该物质无吸收,则可用本法作杂质检查。

物质对紫外辐射的吸收是由于分子中原子的外层电子跃迁所产生,因此,紫外吸收主要决定于分子的电子结构,故紫外光谱又称电子光谱。

有机化合物分子结构中如含有共轭体系、芳香环等发色基团,均可在紫外区(200〜400nm)或可见光区(400〜850nm)产生吸收。

通常使用的紫外-可见分光光度计的工作波长范围为190~900nm。

紫外吸收光谱为物质对紫外区辐射的能量吸收图。

朗伯-比尔(Lambert-Beer)定律为光的吸收定律,它是紫外-可见分光光度法定量分析的依据,其数学表达式为:A=log -1=ECL式中A为吸光度;T为透光率;E为吸收系数;C为溶液浓度;L为光路长度。

如溶液的浓度(C)为1%(g/ml),光路长度(L)为lcm,相应的吸光度即为吸收系数以E1%表示。

如溶液的浓度(C)为摩尔浓度(mol/L),光路长度为lcm 1cm时,则相应有吸收系数为摩尔吸收系数,以表示。

2仪器紫外-可见分光光度计主要由光源、单色器、样品室、检测器、记录仪、显示系统和数据处理系统等部分组成。

为了满足紫外-可见光区全波长范围的测定,仪器备有二种光源,即氘灯和碘钨灯,前者用于紫外区,后者用于可见光区。

单色器通常由进光狭缝、出光狭缝、平行光装置、色散元件,聚焦透镜或反射镜等组成。

色散元件有棱镜和光栅二种,棱镜多用天然石英或熔融硅石制成,对200〜400nm波长光的色散能力很强,对600nm以上波长的光色散能力较差,棱镜色散所得的光谱为非匀排光谱。

仪器分析:紫外-可见分光光度法-定量分析

仪器分析:紫外-可见分光光度法-定量分析


Conten点 方法原理
紫外分光光度法的分析应用
三、紫外分光光度法的分析应用 对照品 比较法
定量分析
比色法
定量 分析
吸收系 数法
计算分 光光度

三、紫外分光光度法的分析应用
定量分析 对照品比较法
按各品种项下的方法,分别配制供试品溶液和对照品溶液,对照品溶液 中所含被测成分的量应为供试品溶液中被测成分规定量的100%±10%, 所用溶剂也应完全一致,在规定的波长测定供试品溶液和对照品溶液的 吸光度后,按公式计算供试品中被测溶液的浓度
求得cb。
对于(3),需要解方程组
感谢观看
三、紫外分光光度法的分析应用
定量分析 对照品比较法
计算供试品中被测溶液的浓度∶ cx=(Ax/Ar)cr
式中 cx为供试品溶液的浓度; Ax为供试品溶液的吸光度; cr为对照品溶 液的浓度; Ar为对照品溶液的吸光度。
三、紫外分光光度法的分析应用
定量分析 吸收系数法
按各品种项下的方法配制供试品溶液,在规定的波长处测定其 吸光度,再以该品种在规定条件下的吸收系数计算含量。用本 法测定时,吸收系数通常应大于100,并注意仪器的校正和检 定。
三、紫外分光光度法的分析应用 定量分析-单组分定量分析方法
标准曲线法:配制一系列(5-9)个不同c的标准溶液,在 适当λ-通常为λmax下,以适当的空白溶液作参比,分别测定 A,做出A-c曲线,在相同测定条件下测得试液吸光度Ax, 计算出对应的Ax。
三、紫外分光光度法的分析应用 定量分析-单组分定量分析方法
三、紫外分光光度法的分析应用
定量分析 计算分光光度法
计算分光光度法有多种,使用时应按各品种项下规定的方法进 行。当吸光度处在吸收曲线的陡然上升或下降的部位测定时, 波长的微小变化可能对测定结果造成显著影响,故对照品和供 试品的测试条件应尽可能一致。

紫外-可见分光光度法测定

紫外-可见分光光度法测定

紫外-可见分光光度法测定全文共四篇示例,供读者参考第一篇示例:紫外-可见分光光度法是一种广泛应用于化学分析领域的光谱分析技术。

该技术通过测量物质在紫外-可见光谱范围内吸收或发射的光线强度,来确定样品的化学成分和浓度。

它具有灵敏度高、选择性好、操作简便等优点,因而被广泛用于药物分析、环境监测、食品安全等领域。

在紫外-可见光谱中,紫外光谱通常指波长范围为200-400纳米(nm),可见光谱通常指波长范围为400-700nm。

物质在紫外-可见光谱范围内的吸收光谱是由电子跃迁引起的,不同种类的物质对不同波长的光线有不同的吸收特性,因而可以通过测量样品在不同波长下吸收光强度的变化来推断样品中的化学物质所含有的共轭结构和它的质量浓度。

紫外-可见分光光度法的主要仪器是紫外-可见分光光度计,它由光源、样品室、分光器、检测器和数据处理系统等部分组成。

在实验中,首先要选择合适的波长范围进行分析,然后将样品溶解于适当的溶剂中,放入样品室中进行测量。

当光线穿过样品之后,被检测器捕捉到,根据检测到的光强度差异来推断样品中的化合物。

紫外-可见分光光度法在化学分析中有着广泛的应用。

比如在制药行业中,可以用于药物的含量测定、纯度检验等;在环境监测领域中,可以用于监测水体中有机和无机物质的含量;在食品安全领域中,可用于检测食品中的添加剂是否合格等。

紫外-可见分光光度法是一种准确、快速、简便的化学分析方法,具有广泛的应用前景。

随着科学技术的不断发展,它将在更多的领域中得到应用,为人们的生活和工作带来更多的便利。

第二篇示例:紫外-可见分光光度法是一种常用的分析技术,广泛应用于化学、生物、环境、药物等领域。

本文将通过介绍紫外-可见分光光度法的原理、仪器和应用,来深入了解该技术的特点和优势。

紫外-可见分光光度法是一种基于分子吸收特性的分析方法。

在紫外-可见光谱区域,分子会吸收特定波长的光线,被激发到高能级状态,并发生颜色变化。

通过检测吸收光强度的变化,可以确定样品中目标物质的浓度。

紫外可见分光光度法

紫外可见分光光度法
案例导入
在夏天参加户外活动时,假如天气晴朗,就应该注 意保护皮肤,不然,暴露在火辣辣太阳之下旳皮肤, 数小时后就会出现红肿、瘙痒、发烧、刺痛症状,数 后来出现蜕皮现象,这表白太阳光中有一种光线能伤 害生物细胞。科学家研究证明,这种光线是紫外线。
根据可见光、紫外光与物质分子旳相互作用建立了 紫外-可见分光光度法,
仪器简朴
操作简便
价格低廉
测定迅速
第一节 概述
课堂活动
1.紫外-可见光旳波长范围是
A.200~400nm
B.400~760nm
C.200~760nm
D.360~800nm
2.下列论述错误旳是
A.光旳能量与其波长成反比
B.有色溶液越浓,对光旳吸收也越强烈
C.物质对光旳吸收有选择性 D.光旳能量与其频率成反比
第一节 概述
一、物质对光旳选择性吸收
单色光: 单一波长旳光束 复合光: 具有多种波长旳光束 电磁波谱: 以波长大小顺序排列旳电磁波谱图
波长 10pm 300pm 200nm 400nm 800nm 500mm 1cm 1m
光谱 射线 X射线 紫外光 可见光 红外光 微波 无线电波
措施 光谱法
分光光度法 光谱法
第三节 紫外-可见分光光度计
二、紫外-可见分光光度计旳光学性能
1.测光方式 3.狭缝或光谱带宽 5.波长精确度 7.波长反复性 9.光度反复性
2.波长范围 4.杂散光 6.吸光度范围 8.测光精确度 10.辨别率
第三节 紫外-可见分光光度计
三、紫外-可见分光光度计旳类型 1.可见分光光度计 721型
0.7范围内。若吸光度读数不在此范围,可 采用哪些措施进行调整?
第四节 分析条件旳选择

紫外-可见吸收光谱法精选全文完整版

紫外-可见吸收光谱法精选全文完整版

溶剂极性增大
吸收峰呈规律性蓝移
3、溶剂效应
O
异丙叉丙酮(CH3-C-CH=C
CH3
CH3 )的溶剂效应
吸收带
p → p*
正己烷
230nm
CH3Cl
238nm
CH3OH
237nm
H2 O
243nm
波长
红移
n→ p*
329nm
315nm
309nm

电子跃迁类型主要有四种:σ→σ*、n→σ*、π→π*和
n→π*,各种跃迁所需的能量大小不同,次序为:
σ→σ*> n→σ*≥ π→π* > n →π*,
因此,形成的吸收光谱谱带的位置也不相同。

σ→σ*跃迁:
需要能量最大, λ<200nm ,真空紫外区,εmax > 104
饱和烃(远紫外区);
C-H共价键,如CH4( λmax 125nm)
(I) 顺式二苯乙烯 (II)反式二苯乙烯
2、跨环效应的影响
助色基团虽不共轭,但由于空间排列使电子
云相互影响,使 n→π*吸收峰长移。
O
CH3-C - CH3
O
C
S
lmax156,279 nm
lmax238nm
3、溶剂效应影响
溶剂的极性增大时,n p* 跃迁吸收带蓝移
p p* 跃迁吸收带红移
少,分析速度快。
2 灵敏度高。如在紫外区直接检测抗坏血酸时,其最低检出浓度可
达到10-6g/mL。
3 选择性好。通过适当的选择测量条件,一般可在多种组分共存的
体系中,对某一物质进行测定。
4 精密度和准确度较高。在仪器设备和其他测量条件较好的情况下,

紫外-可见分光光度法

紫外-可见分光光度法

单色器质量的优劣,主要决定于 色散元件的质量。色散元件常用棱镜 和光栅。
3 吸收池
吸收池又称比色皿或比色杯,按材 料可分为玻璃吸收池和石英吸收池,前 者不能用于紫外区。 吸收池的种类很多,其光径可在 0.1~10cm之间,其中以1cm光径吸收池 最为常用。
4 检测器 检测器的作用是检测光信号,并将光 信号转变为电信号。现今使用的分光光度 计大多采用光电管或光电倍增管作为检测 器。 5 信号显示系统 常用的信号显示装置有直读检流计, 电位调节指零装置,以及自动记录和数用 基本结构:
光源→单色器→吸收池→检测器→信号显示系统 ↑ 样品
1 光源
在紫外可见分光光度计中,常用的光 源有两类:热辐射光源和气体放电光源
热辐射光源用于可见光区,如钨灯和 卤钨灯;气体放电光源用于紫外光区,如 氢灯和氘灯。
2 单色器
单色器的主要组成:入射狭缝、出射 狭缝、色散元件和准直镜等部分。
4 要点与注意事项 4.1 开机前将样品室内的干燥剂取出, 仪器自检过程中禁止打开样品室盖。 4.2 比色皿内溶液以皿高的2/3~4/5为 宜,不可过满以防液体溢出腐蚀仪器。 测定时应保持比色皿清洁,池壁上液 滴应用滤纸擦干,切勿用手捏透光面。 测定紫外波长时,需选用石英比色皿。
4.3 测定时,禁止将试剂或液体物质放在 仪器的表面上,如有溶液溢出或其它原因 将样品槽弄脏,要尽可能及时清理干净。 4.4 如果仪器不能初始化,关机重启。 4.5 如果吸收值异常,依次检查:波长设 置是否正确(重新调整波长,并重新调 零)、测量时是否调零(如被误操作,重 新调零)、比色皿是否用错(测定紫外波 段时,要用石英比色皿)、样品准备是否 有误(如有误,重新准备样品)。
2.1.2 按数字[1]键进入%T/ABS(透过率/吸 光度测定)子菜单,选中对应的数字键来 设定测定条件:①NUM WL(设定测试波长 的数目,最多可设定6个不同波长);②WL Setting (设定测试波长具体数值)③ Data Mode( 选择测定吸光度或透光率 ) ,设定完 毕后点击 [Enter] 键确定,所有项目设定完 毕后按数字[0] 键确定,等待仪器调整至准 备状态。

紫外可见光光谱分析法

紫外可见光光谱分析法
σ→σ* : 能量最大;对应真空紫外区,一般发生在饱和烃中,基本无
实用价值; 乙烷λmax=135nm; 甲烷λmax=125nm
n→π*: 能量最小;对应紫外-可见光区,但摩尔吸收系数小,谱带
弱,属于禁阻跃迁。 羰基、硝基等简单生色基团
n→σ*
能量较高;对应远紫外和近紫外区;不易观察,且摩尔吸收小。
机物分子中含有不饱和官能团。
2、生色团与助色团 有机物中含有π键的基团,对200nm以上的辐射具有吸收
性;而且随着π键数目的增加,溶剂的极性增强时发生红移进 入可见光区,使物质具有颜色,因而,称含π键的基团为生色 基团(发色基团),通常表现为n →π*和π→π*跃迁。
如>C=C<(烯),>C=O(羰),-N=N-(偶氮), =C=S(硫羰),
(一) 分子吸收光谱
分子能级
有机物分子在紫外-可见光范围的吸收是由分子的能级跃迁
产生的;分子的能级组成有:
电子能级跃迁:20 ~ 1eV
紫外-可见光区
振动能级跃迁:0.05~1eV
中红外区
转动能级跃迁:0.005~0.05
远红外、微波
当分子受到辐射的作用时,则发生相应能量的能级跃迁
电子能级是分子能中最大的能级,分子在产生 电子能级跃迁的过程中,同时也产生振动能级的跃迁; 振动能级跃迁时也产生转动能级的跃迁;
*不饱和烃及共轭烯烃 在不饱和烃类分子中,除σ键外,还有π键;故不饱和烃产
生的跃迁类型有:σ→σ*和 π→π* 两种; 由于 E σ→σ* > E π→π* , 所以π→π*跃迁比较容易激发,最大吸收峰波长比σ→σ*跃迁
受激发的吸收峰的波长大;
λmaxπ→π* > λmax σ → σ* 乙烷:λmax=135nm 乙烯:λmax=165nm、193nm;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

若变量间成线性关系,则符合方 程式 y = a + b x 式中 a为截距 b为斜率 x为可准确测量的自变量, y是由方程式确定的因变量。
对于给定的xi,对应的实验观测值 为yi, yi与由方程式确定的值的偏 差的平方和为Q。
Q = Σ[yi -(a+b xi)]2 选择适当的a和b值,使Q值为最小 值,就可得最佳直线,称为回归直
得到回归直线方程式
y=0.0006+0.1084x 即 A= 0.0006+0.1084c
此回归直线就是由上述测量数据求 得的最佳校正曲线。在相同的条件 下,测量试液的吸光度A,就可由
此方程式求得Fe2+的含量。
回归分析只有在准确测量的基础上, 才能达到提高分析结果准确度的目 的。在不存在系统误差的情况下, 精密度高的测量数据应与回归直线 十分接近。
普通方法:I0, Is, Ix, As=lg I0/ Is ; Ax=lg I0/ Ix
差示法
I0
Ax'
lgIs Ix
lg Is I0 Ix
(lgI0 Is
lgI0 ) Ix
Ax As bcx bcs b(cx cs)
Ax' b(cxcs): 差示法的基本公式
上式表明在符合比耳定律的浓度范围
内,示差法测得的相对吸光度Ax’与被 测溶液和参比溶液的浓度差Δc=cx-cs成 正比,如果用上述浓度为cs的标准溶液 作参比,测得一系列Δc已知的标准溶 液的相对吸光度Ax’ 。
x xi 3.000 n
y yi 0.3256 n
b x iy x ii2 ( ( x x ii )2 y /in )/n 9 .2 8. 0 1 1 5 .1 0 0 8 5 .0 5 0 1 .2 6 0 /5 0 /2 5 0 0 8 .108
ay b x0 .32 0 5 .16 0 3 .8 04 0 0 .000
r
n xiyi xi yi
[n xi2( xi)2]n [ yi2( yi)2]
5 9 .21 18 .0 5 0 1 .6 028
1 .00
(5 8.0 5 0 1.0 52 0 )5 ( 00 .99 1 9 .67 2 2 ) 8
二.差示法
T A = -lg T
A = εbc

△ A= εb △ c
s 0, s 0, a b
s有最小值,可解得a和b
回归分析 用直尺在坐标纸上画一直线,使其 尽量接近各实验点,往往带有主观 性。对于同一组数据,不同的人往 往会画出不同的直线。要客观地找 出“最佳”直线,就要应用回归分 析。
(regression analysis)它是一种处理 变量之间关系的数学方法。变量间 线性关系是最简单的回归问题,所 采用的方法为最小二乘法(method of least squares)

② /①得 A = -lg T
A c

Ac
dA=
0.434dT ④
T
④代入③中,
c0.43d4T0.43T 4
c AT
TlgT
(c)' 0.4 c
30 4.(4 Tl3 g Tl)42g T0
0.434+lgT=0
– lgT= 0.434=A
所以,当A=0.434时 测定结果误差最小 对应 T=0.368 T%为15-65间或A=0.2-0.8间读数误差对
此时试液Tx=50%,此读数落入适 宜的读数范围内,从而提高了测量
准确度。
应用示差法时,要求仪器光源有足 够的发射强度或能增大光电流放大倍数, 以便能调节参比溶液透光率为100%, 这就要求仪器单色器的质量高,电子学 系统稳定性好。
理论上成线性关系的两个变量,由 于实验误差的存在,测量数据有时 会有所分散,不能都与回归直线吻 合,为确定两个变量之间实际的线 性相关程度,可以计算相关系数r (Correlation coefficient)
r
n xiyi xi yi
[n xi2( xi)2]n [ yi2( yi)2]
式中n为测量次数,通常 0.95<r<0.99表示线性关系良好; r >0.99 表示线性关系极好;当r=1时, 所有测量数据都在回归直线上,当 线性关系较差时,应分析原因,改 进实验方法和技术。
绘制Ax’-Δc工作曲线,则由测得的试液 的相对吸光度Ax’ ,即可从工作曲线上查
得Δc,再根据公式Δc = cx-cs,
这样 cx = cs + Δc 计算试样浓度。
图5-5差示法标尺扩大原理 用标准水溶液作参比液,调T=100%
在示差法中用浓度cs的标准溶液 作参比,调节Ts=100%相当于将仪 器的透光度读数标尺扩大了10倍,
0.000 0.000 0.000 0.000
1.000 0.114 1.000 0.114
2.000 0.212 4.000 0.424
4.000 0.434 16.000 1.736
8.000 0.868 64.000 6.944
Σ xi =15.000 Σ yi =1.628 Σ xi = 85.00 Σ xi yi =9. 218
测定结果影响较小,均为0.03(即为 3%)。 ①调整浓度c ②改变液层厚度 使读数A在0.2-0.8间 ③差示法
高吸光度法(A>0.8)
差示法
低吸光度法(A<0.2) 下面以高吸光度法为例加以说明: 标准溶液(cs),Ts,As=εbcs 样品溶液(cx),Tx,Ax=εbcx ( cs < cx )
线。这种方法称为最小二乘法。
通过计算可求得回归直线的a和b值, 结果为 a = y - b x ①
b (x i( xx i)y x (i)2 y) x iy xii2 (( xx ii )2y/i)n/n②
例如:用分光光度法测定的Fe2+含 量,经显色后测吸光度yi得到下列 数据,求回归直线 浓度xi 吸光度 yi xi 2 xi yi
§5-3 定量分析方法
一、最小二乘法
A= ac + b a.b为常数
测定值 理论值
C1 A1 C2 A2 C3 A3
ac1+b ac2 +b ac3+b
X1=A1- (ac1+b) X2=A2 -(ac2 +b) X3=A3 -(acXn=An -(acn+b)
S x12 x22 x32
相关文档
最新文档