二次根式的加法与减法计算
九年级数学 二次根式加减法的步骤
二次根式加减法的步骤一般地,形如√a的代数式叫做二次根式,二次根式加减法计算要先将二次根式化为最简二次根式,再将被开方数相同的进行合并。
1二次根式定义一般地,形如√a的代数式叫做二次根式,其中,a 叫做被开方数。
当a≥0时,√a表示a的算术平方根;当a小于0时,√a 的值为纯虚数(在一元二次方程求根公式中,若根号下为负数,则方程有两个共轭虚根)。
判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察。
2二次根式加减法的步骤1.同类二次根式一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。
化简:根号12等于4的根号32.合并同类二次根式把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。
3.二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并。
3二次根式化简一般步骤1.把带分数或小数化成假分数。
2.把开方数分解成质因数或分解因式。
3.把根号内能开得尽方的因式或因数移到根号外。
4.化去根号内的分母,或化去分母中的根号。
5.约分。
4最简二次根式条件1.被开方数的因数是整数或字母,因式是整式。
2.被开方数中不含有可化为平方数或平方式的因数或因式。
知识点1:同类二次根式(Ⅰ)几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式,如这样的二次根式都是同类二次根式。
(Ⅱ)判断同类二次根式的方法:(1)首先将不是最简形式的二次根式化为最简二次根式以后,再看被开方数是否相同。
(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关。
知识点2:合并同类二次根式的方法合并同类二次根式的理论依据是逆用乘法对加法的分配律,合并同类二次根式,只把它们的系数相加,根指数和被开方数都不变,不是同类二次根式的不能合并。
二次根式的加减3
复习引入
计算: (1) 80 20 5 ; (2) 3 40
2 1 2 5 10
探索新知
探究
要 焊接一个如图 21.3-1 所示的钢架,大约需要 多少米钢材(精确到 0.01m)?
B
2m
A
4m
D 1m C
图21.3-1
范例点击 范例
例 1.如 图 所 示 的 Rt△ ABC 中 ,∠ B=90°, 点 P 从 点 B 开 始 沿 BA 边 以 1 厘 米 /•秒 的 速 度 向 点 A 移 动 ;同 时 ,点 Q 也 从 点 B 开 始 沿 BC 边 以 2 厘 米 /秒 的 速 度 向 点 C 移 动 . 问 : 几 秒 后 △ PBQ 的 面 积 为 35 平 方 厘 米 ? PQ 的 距 离 是 多 少 厘 米 ? 结 ( 果用最简二次根式表示)
(1)说出 2 5 的三个同类二次根式;
(2)试举出一组同类二次根式. (3)下列各式中哪些是同类二次根式?
1 1 2 a 3 3 2 , 75 , , , 3, 8ab ,6b , 2 50 27 3 2b
练习4下列计算正确的是(B) A. 2x 3 x 5 x B.2a x 3b x (2a 3b) x C.4 5 5 5 20 5 14a 22b D. 7 a 11b 2
(1 )数学来源于生活,应用于生活,因此我们应该热 爱生活,热爱数学; (2)将实际问题转化为数学问题,只要审清题意弄明 白,就一定可以做出来.
小结作业
作业
教材P21 习题21.3
第6、8题
双基演练
1.已 知 直 角 三 角 形 的 两 条 直 角 边 的 长 分 别 为 5 和 5,那 么 斜 边 的 长 应 为 ( ) . ( •结 果 用 最 简 二 次 根 式 ) A. 5 2 B. 50 C. 2 5 D. 以 上 都 不 对 2. 小 明 想 自 己 钉 一 个 长 与 宽 分 别 为 30cm 和 20cm 的 长 方 形 的 木 框 , • 为 了 增 加 其 稳 定 性 ,他 沿 长 方 形 的 对 角 线 又 钉 上 了 一 根 木 条 ,木 条 的 长 应 为 ( )米.(结果用最简二次根式表示) A. 13 100 B. 1300 C. 10 13 D. 5 13 3. 地 有 一 长 方 形 鱼 塘 , 知 鱼 塘 的 长 是 宽 的 2 倍 , 的 面 积 是 1600m2, 某 已 它 •鱼 塘 的 宽 是 _______m. ( 结 果 用 最 简 二 次 根 式 ) 4 . 已 知 等 腰 直 角 三 角 形 的 直 角 边 的 边 长 为 2 , •那 么 这 个 等 腰 直 角 三 角 形 的 周 长 是 ________. ( 结 果 用 最 简 二 次 根 式 )
初二数学二次根式加减法[人教版]
二次根式的加减法
看下面问题: 1.下列二次根式中哪个是最 简二次根式?哪个不是?为 什么?
12, 2 3
2. 12与2 3的形式与实质是 什么? 3. 2 3 5 3 ,可以化简吗? 4. 12 75,可以化简吗?
上次更新: 2018年4月9日星期一
同类二次根式定义
同类二次根式 定义
几个二次根式化成最简二次 根式以后,如果被开方数相 同,这几个二次根式就叫做 同类二次根式. 例如, 8, 1 8,4 2 是同类 二次根式.
二次根式的加减法例题
二次根式的加减法练习题
练习1 判断下列各式是否是同类二 次根式?
(1) 12, (2) 32., (3) 23, (4) 128, (5) 39( , 6) 40.
答案: 同类二次根式有
(2) 32, (4) 128.
二次根式的加减法例题
例题2 计算:
分析: 本题考查二次根式的加减法 运算,应先化简各二次根式, 再合并同类二次根式 1 解: 32 2 0.5 27
1 32 2 0.5 27 3
3 4 2 2 3 3 2 3
二次根式的加减法练习题
二次根式加减法的法则: 二次根式相加减,先把各 个二次根式化成最简二 次根式,再把同类二次 根式进行合并,合并方 法为系数相加减,根式 不变.
第五节二次根式的加减法
然新规矩增多了壹些,但这也不能成为你的借口和理由,否则还要你这个嫡福晋做什么?”爷第壹次当着 第十一章二次根式
对爷说:“爷教训得是,妾身刚刚跟姐妹们闲聊天,壹时忘记了规矩,还望爷恕罪。”“不是爷挑你的理,咱们贝勒府自从升格为王府以来,虽 ; https:///u/5053696712 lgh80neh 众人的面,这么不给雅思琦面子,又是破天荒的头壹遭。众人耳朵里听着,心里直打鼓:爷这是怎么了?不过大家也没有心思想为什么,都在提 心吊胆不要成为了第二个被爷教训的对象。不过,这只是大家的壹厢情愿而已。爷前面的壹番话刚壹出口,就觉得对福晋实在是重了壹些,毕竟 她是嫡福晋,管理好后院诸人是她的天职。福晋要是没有了威信,还怎么可能去管理其它的诸人?因此,稍微顿了壹顿,他将目光又逐壹扫过在 场的每壹个人,然后再次开口道:“福晋疏于管理是末,你们没有做好自己份内的事情是本,归根究底,这府里的规矩是要靠你们每壹个人认真 做好。你们不上心去做好,福晋就壹个人,怎么管得过来?”众人壹听,爷的这股火果然烧到了自己的身上。还没等大家想好怎么办呢,惜月见 淑清有想起身的动作,立即手疾眼快即刻效仿,这两个人壹带头,其它人全跟着赶快起身跪下,七嘴八舌地说着“请爷恕罪”之类的话,眼见着 自己面前跪倒的这壹片,他也有些后悔。明明是因为自己在怡然居生了壹肚子闷气,现在跑到霞光苑来撒这股子邪火,对眼前这些诸人确实很不 公平。可自己那番话已经说出口,断然没有收回的道理,只好继续把这壹出戏唱下去:“行了,你们都起来吧,爷才说了这么壹句,你们就又是 下跪又是恕罪的,好像都是爷的不是似的。”众人更是忐忑不安了,爷的这脸色变得太快了!刚刚还怒气冲冲的样子,现在又和风细雨,这是真 的平安无事了,还是山雨欲来风满楼?第六十四章 乍到就在众人不知道是听从命令起身,还是继续跪着听训话,只听红莲的声音在门外响起: “年侧福晋吉祥!”这壹回谁也不用猜测爷的脸色,也不用观望别人,众人步调壹致地立即起了身,因为谁也不想被这个年龄与她们相比最小, 位份与她们相比最高的新妇看到她们被爷训话的场面,实在是太丢人现眼的事情。望着王爷的背影消失在院外的小路上,冰凝和吟雪、月影三个 人以最快的速度冲回房间,吟雪负责打水,月影负责卸妆,两人兵分两路、七手八脚地用最短的时间完成了换装任务。壹头的金银首饰,壹身的 喜服锦衣,全都乱七八糟地扔在壹旁,头发梳成了壹个发髻,只插了壹个镶有珍珠的银簪,额边垂下几缕青丝,既换作了妇人打扮,又保留了壹 些女孩子的俏皮与天真。衣裳换了壹件淡紫色的旗装,不是特意挑选的紫色,只是冰凝太喜欢紫色,她的衣服大部分都是这个颜色。虽然她非常 不习惯旗装,但即将进行的是新妇敬茶,这娘的意
二次根式的加减(知识讲解)-八年级数学下册基础知识专项讲练(沪科版)
专题16.7 二次根式的加减(知识讲解)【学习目标】1、理解并掌握同类二次根式的概念和二次根式的加减法法则,会合并同类二次根式,进行简单的二次根式加减运算;2、会利用运算律和运算法则进行二次根式的混合运算.【要点梳理】要点一、同类二次根式1.定义:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式.特别说明:(1)判断几个二次根式是否是同类二次根式,必须先将二次根式化成最简二次根式,再看被开方数是否相同;(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关.2.合并同类二次根式合并同类二次根式,只把系数相加减,根指数和被开方数不变.(合并同类二次根式的方法与整式加减运算中的合并同类项类似)特别说明:(1)根号外面的因式就是这个根式的系数;(2)二次根式的系数是带分数的要变成假分数的形式.要点二、二次根式的加减1.二次根式的加减实质就是合并同类二次根式,即先把各个二次根式化成最简二次根式,再把其中的同类二次根式进行合并.对于没有合并的二次根式,仍要写到结果中.特别说明:(1)在进行二次根式的加减运算时,整式加减运算中的交换律、结合律及去括号、添括号法则仍然适用.(2)二次根式加减运算的步骤:1)将每个二次根式都化简成为最简二次根式;2)判断哪些二次根式是同类二次根式,把同类的二次根式结合为一组;3)合并同类二次根式.要点三、二次根式的混合运算二次根式的混合运算是对二次根式的乘除及加减运算法则的综合运用.特别说明:(1)二次根式的混合运算顺序与实数中的运算顺序一样,先乘方,后乘除,最后算加减,有括号要先算括号里面的;(2)在实数运算和整式运算中的运算律和乘法公式在二次根式的运算中仍然适用;(3)二次根式混合运算的结果要写成最简形式.【典型例题】类型一、二次根式➽➼概念➽➼同类二次根式✭✭分母有理化1.判断下列二次根式中哪些是同类二次根式:举一反三:【变式1a的值.【点拨】本题考查同类二次根式,掌握同类二次根式的定义,即“被开方数相同的几个最简二次根式是同类二次根式”正确解答的前提.【变式2】分别求出满足下列条件的字母a的取值:(1)(2)2.【阅读材料】把分母中的根号化去,使分母转化为有理数的过程,叫做分母有理化.通常把分子、分母乘以同一个不等于0的式子,以达到化去分母中根号的目的..=【理解应用】(1) 化简: ∵∵ (2)2020++ 2020++【点拨】本题考查了分母有理化,正确的计算是解题的关键.举一反三:【变式1)3x x ≤【变式2【点拨】本题考查根式的运算,解题的关键是熟练掌握根式的运算及根式分母有理化.类型二、二次根式➽➼二次根式的加减运算-+-+.3.计算:38|32|12举一反三:【变式1】计算:6-【变式2】计算:(1)(2) )011+类型三、二次根式➽➼二次根式的混合运算4.计算下列各式.(1)1)举一反三:.【变式1|1【分析】先运用二次根式乘法法则计算,并化简二次根式,去绝对值符号,最后合并同类二次根式即可.【点拨】本题考查二次根式的混合运算,化简绝对值,熟练掌握二次根式的运算法则是解题的关键. 【变式2】计算:(1)1 (2))21+.类型四、二次根式➽➼二次根式的化简求值5.解答下列各题(1) 已知2x =,2y =.求22x xy y ++的值.(2) 若2y =,求y x 的平方根.【答案】(1) 19; (2) 3±.【分析】(1)分别求出22,,x y xy ,再代入到代数式求值即可;举一反三:【变式1】已知x =y 22205520x xy y ++的值.【点拨】本题主要考查了分母有理化,正确化简各数是解题关键.【变式2】已知3x =+3y =-(1) x y +=______;x y -=______;xy =______.(2) 根据以上的计算结果,利用整体代入的数学方法,计算式子223x xy y x y -+--的值.【点拨】本题考查了二次根式的化简求值问题,正确对所求式子变形是解本题的关键.类型五、二次根式➽➼应用6.阅读材料并回答问题肖博睿同学发现如下正确结论:材料一:若0A B ->,则A B >;若0A B -=,则A B =;若0A B -<,则A B <;材料二:完全平方公式:(1)()2222a ab b a b ++=+;(2)()2222a ab b a b -+=-.(1)(2) 2912x x ++___________()2______2=+;(3) 试比较142x x y ⎛⎫- ⎪⎝⎭与()2y x y -的大小(写出相应的解答过程). )解:又32>(322-)解:根据题意,)解:4又()22x y -142x x y ⎛- ⎝【点拨】本题考查利用作差法解代数式比较大小,整式混合运算、合并同类项、完全平方公式因式分解、平方式的非负性等知识,读懂材料,掌握作差法比较代数式大小的方法是解决问题的关键.举一反三:【变式1】设一个三角形的三边分别为a ,b ,c ,p =12(a +b +c ),则有下列面积公式:S S (1) 一个三角形的三边长依次为3,5,6,任选以上一个公式求这个三角形的面积;(2)任选以上一个公式求这个三角形的面积.解题的关键.【变式2】某居民小区有一块形状为长方形ABCD的绿地,长方形绿地的长BC为,宽AB,现要在长方形绿地中修建一个长方形花坛(即图中阴影部分),长方形花坛的长为m,宽为1)m.(1)长方形ABCD的周长是多少?(2)除去修建花坛的地方,其他地方全修建成通道,通通上要铺上造价为2元的地砖,5/m要铺完整个通道,则购买地砖需要花费多少元?答:购买地砖需要花费660元.【点拨】本题考查二次根式的应用,长方形的周长和面积,平方差公式.解题的关键是掌握二次根式的混合运算顺序和运算法则及其性质.。
二次根式的概念和运算
二次根式的概念和运算二次根式是数学中的一种特殊形式,它是指一个数的平方根。
在本文中,我们将探讨二次根式的概念和运算法则。
一、概念二次根式是指一个数的平方根,可以表示为√a的形式,其中a 是一个非负实数。
如果a是一个正实数,则二次根式√a是一个正实数;如果a是零,则二次根式√0等于零;如果a是一个负实数,则二次根式√a 是一个虚数。
例如,√4 = 2,因为2的平方等于4;√9 = 3,因为3的平方等于9;√0 = 0;而√-1是一个虚数,通常表示为i。
二、运算法则1. 二次根式的加法和减法当我们进行二次根式的加法和减法运算时,需要满足被开方数相同的条件。
例如,√5 + √5 = 2√5,√3 - √3 = 0。
2. 二次根式的乘法二次根式的乘法遵循以下法则:√a * √b = √(a * b)。
例如,√2 * √3 = √(2 * 3) = √6。
3. 二次根式的除法二次根式的除法遵循以下法则:√a / √b = √(a / b)。
例如,√8 / √2 = √(8 / 2) = √4 = 2。
注意,当二次根式的分母含有根号时,需要进行有理化处理,即将分母有理化为不含根号的形式。
例如,√2 / (√3 + √2)可以有理化为(√2 / (√3 + √2)) * ((√3 - √2) / (√3 - √2)),得到(√2 * (√3 - √2)) / ((√3)^2 - (√2)^2) = (√6 - 2) / (3 - 2) = √6 - 2。
4. 二次根式的化简当我们遇到二次根式较复杂的情况时,可以尝试对其进行化简。
例如,√72可以化简为√(36 * 2),进一步化简为√36 * √2,即6√2。
另外,还存在一些特殊的二次根式,如√4 = 2,√1 = 1等。
三、实例演练接下来,让我们通过一些实例来加深对二次根式运算法则的理解。
例1:计算√5 + 2√5。
解:根据二次根式的加法法则,√5 + 2√5 = 3√5。
八年级数学 暑假同步讲义 第3讲 二次根式的运算(解析版)
二次根式的运算内容分析二次根式的加减法和乘除法是八年级数学上学期第一章第一节内容,是二次根式的加、减、乘、除、乘方、开方的混合运算.它是以二次根式的概念和性质为基础,同时又紧密地联系着整式、分式的运算,也可以说它是运算问题在初中阶段一次总结性、提高性的综合学习.知识结构模块一:二次根式的加减法知识精讲1.二次根式的加法和减法:先把各个二次根式化为最简二次根式,再把同类二次根式分别合并(化简 合并).班假暑级年八2 / 19【例1】计算:(1)4817543--; (2)11(0.53)(75)38---. 【答案】(1)332;(2)3442+. 【解析】(1)原式43311=533433--=;(2)原式232353234⎛⎫⎛⎫=-⨯-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭22235343244=--+=+. 【总结】本题主要考查二次根式的加减运算,注意先化简后合并.【例2】计算:(1)2391634m m +; (2)850()p q p q-+-. 【答案】(1)m 5;(2)()q p q p -⎪⎪⎭⎫⎝⎛-+225. 【解析】(1)2323916342353434m m m m m m m +=⨯+⨯=+=;(2)82250()52()2()52()p q p q p q p q p q p q p q ⎛⎫-+=-+-=+- ⎪---⎝⎭. 【总结】本题主要考查二次根式的加减运算,注意先化简后合并.【例3】计算:例题解析(1)32832222x x x x x x + (2315032222x x x x x 【答案】(1)x x x 223422⎪⎭⎫ ⎝⎛++;(2)xx 22-【解析】(1)原式22322422224222x x x x x x x x x x ⎛=+=++ ⎝; (2)原式2122422522252222x xx x x x x x x x x x x x =⋅+-==- 【总结】本题主要考查二次根式的加减运算,注意先化简后合并.【例4】如图,长方形内有两个正方形,面积分别为4和2,求阴影部分的面积. 【答案】222-.【解析】阴影部分的宽为22-,长为2.【总结】本题主要考查利用二次根式的运算求几何图形的面积.【例5】 计算: (133244()(0)a b a b a a b a --->;(25072()m n m n--;(3221a b a b a b a b a b -++--(0)a b >>. 【答案】(1)()b a b --2;(2)()n m n m -⎪⎭⎫ ⎝⎛-+256;(3222221b a b b a +--.【解析】(1)由题可知:0>-b a ,则原式((22a b a b a b a b b a b =----=--(2)原式()()5562()262m n m n m n m n m n ⎛=--=+- --⎝(3)原式2222222222111a b a b a b a b a b a b a b ---⎛=-=--- +--⎝ 222221b a b b a+--. 【总结】本题主要考查二次根式的加减运算,注意先化简后合并.【例6】先化简,再求值:336436y x x xy xy x y y ⎛⎛+- ⎝⎝,其中32x =,27y =. 【答案】2225.【解析】原式364x x y ⎛⎛=+⋅-+ ⎝⎝43x y ⎛==- ⎝当32x =,27y =时,原式=22252723272343=⨯⨯⎪⎪⎪⎪⎭⎫ ⎝⎛⨯-. 【总结】本题主要考查二次根式的化简求值,注意先化简再带值计算.【例7】设直角三角形的两条直角边分别为a b ,,斜边为c ,周长为C . (1)如果a b ==C ; (2)如果a b ==,求C . 【答案】(1)230;(2)17058+.【解析】(1)因为2133382885022==+=+=b a c , 所以2302132122521328850=++=++=C ;(2)因为1701254522=+=+=b a c ,所以170581705553+=++=C . 【总结】本题主要考查二次根式的化简以及加法运算在几何图形中的运用.【例8】解不等式:24x x +>- 【答案】5125<x .【解析】由24x x +>24x x >-2x ->x . 【总结】本题主要考查二次根式的运算在解不等式中的运用,注意判断不等式两边所除的数的符号.1、二次根式的乘法和除法(1)两个二次根式相乘,被开方数相乘,根指数不变; (2)两个二次根式相除,被开方数相除,根指数不变.【例9】计算:(1)1232⨯;(2)4xy y ⋅.【答案】(1)68;(2)x y 2.例题解析知识精讲模块二:二次根式的乘除法师生总结1、二次根式加减法的步骤是什么?【解析】(1(2.【总结】本题主要考查二次根式的乘法运算,注意法则的准确运用.【例10】计算.(1(2;(3(4.【答案】(1)3;(2)y xy 26;(3)y yx 552;(4. 【解析】(13==;(2=;(3= (422=. 【总结】本题主要考查二次根式的除法运算,注意法则的准确运用.【例11】 计算:(1; (2;(3)53; (4【答案】(1)z xyz ;(2)36;(3)a ax 1562;(4)22222222y x y x --.【解析】(113=(2332⎛=÷== ⎝⎭;(3)53536a ax ax ==;(4 【总结】本题主要考查二次根式的乘除运算,注意法则的准确运用.【例12】 计算:(1(2)(3(0,0x y >>);(4 (0a b >>).【答案】(1)b b a --2;(2)ab 330;(3)y y x +;(4)cbca cbca ++.【解析】(1)由题意可得:0<b 2a a =⋅-=-;(2)=(3x yy+;(4=.【例13】 计算:(1);(2)⎛- ⎝【答案】(1)2-2)-【解析】(1)1515288=-=-=-(2)⎛- ⎝332122⎛⎫=-⋅-- ⎪⎝⎭ 【总结】本题主要考查二次根式的乘除运算,注意法则的准确运用以及符号的准确判定.班假暑级年八8 / 19EDCBA【例14】 如图所示,在面积为2a 的正方形ABCD 中,截得直角三角形ABE 的面积为33a ,求BE 的长. 【答案】36a . 【解析】正方形的边长为a 2,则a AB BE 3321=⋅⋅,则36aBE =. 【总结】本题主要考查二次根式的运算在几何图形中的运用.【例15】 已知2和10是等腰三角形的两条边,其面积为192,求等腰三角形的高. 【答案】腰上的高为:10190;底边上的高为382. 【解析】由题意可得:等腰三角形的三边长为10,10,2, 由2191021=⋅⋅h ,解得:10190=h ,即腰上的高为10190;由119222h ⋅⋅=,解得:382h =,即底边上的高为382. 【总结】本题考查的知识点较多,一方面考查二次根式的乘除运算,另外考查了三角形的三边关系,另一方面此题没有说明是哪条边的高,因此要分类讨论. 【例16】 解方程:32622x -=-. 【答案】324312x +=. 【解析】由32622x -=-,得:26223x =+,则22326x +=,化简,得:324312x +=. 【总结】本题主要考查二次根式的运算在解方程中的运用.随堂检测【习题1】 计算:(1) (2;(3)(⎛- ⎝. 【答案】(1)52511;(2)33172417-;(3)334.【解析】(1); (2)33172417354233224227581312325.0-=---+=---+;(3)(⎛-== ⎝ 【总结】本题主要考查二次根式的加减运算,注意先化简再合并.【习题2】 计算:(1(2)-. 【答案】(1)26-;(2)12431--.【解析】(1-(2)-+11==. 【总结】本题主要考查二次根式的加减运算,注意先化简再合并.【习题3】 计算:(1)(2)263x ⎛ ⎝;(38a 【答案】(1)y x52+;(2)xy x x 7+;(3)a a 2. 【解析】(1)+= (2)2623x ⎛=+= ⎝; (3822a == 【总结】本题主要考查二次根式的加减运算,注意先化简再合并.【习题4】 计算:(1)(-; (2)⎛- ⎝ ;(3); (4)(⎛÷ ⎝; 【答案】(1)-108;(2)34-;(3)10;(4)3236+-.【解析】(1)((108-=-=-;(2)(43⎛-=-=- ⎝ ; (3)(=;(4)((18⎛⎛÷=÷=- ⎝⎝⎭【总结】主要考查二次根式的混合运算,注意法则的准确运用以及符号的判定. 【习题5】 计算:(1)(3-;(2)3(3)a . 【答案】(1)()b ab b a -+;(2)()xy y x +-4;(3)a a a a 2221522+⎪⎭⎫ ⎝⎛-+.【解析】(1)原式(3232b a ab =+-(2)(34x y -+(3)原式21252522a a a a ⎛=++- ⎝【总结】本题主要考查二次根式的加减运算,注意先化简再合并,另外只有同类二次根式才能合并.【习题6】 计算:(1)(2; (2)(3 (4)32⎛⨯ ⎝ 【答案】(1)61230-;(2)331-;(3)332-.【解析】(1)(2121830=+-=-(2)1-(3)原式223=-=(4)原式271633881=⨯⨯== 【总结】主要考查二次根式的混合运算,注意法则的准确运用以及符号的判定. 【习题7】 计算:(1)(2)(3)3⎛ ⎝; (4)(.【答案】(1)x 365;(2)y x 2108;(3)35;(4)y xy x 2137-+.【解析】(1)155636x÷==;(2)22186108x y x y ==⋅=; (3)533⎛÷= ⎝; (4)(7272x y x y =+=+.【总结】主要考查二次根式的混合运算,注意法则的准确运用以及符号的判定.【习题8】 计算. (1(20)y >; (3(-;(4(-⨯ 【答案】(1)c abc 2;(2)xy 32;(3)a a 434-;(4)x x y 8-.【解析】(12=(2;(3((44233a a --⨯-(4(-⨯=--= 【总结】本题主要考查二次根式的乘法运算,注意法则的准确运用.【习题9】 计算. (1) (20)a b >>; (30)u >;(4)- 【答案】(1)1530;(2)bcac bc ac --;(3)uv uv515;(4)b 15-.【解析】(1)263=;(2=;(3;(4)564-=-⨯-. 【总结】本题主要考查二次根式的除法运算,注意法则的准确运用.【习题10】 计算:(1)3⎛ ⎝;(2()370,0a m ⎛<< ⎝.【答案】(1)0;(2)【解析】(1)原式2230x x y x y ⎛=+=-= ⎝;(2)原式237a m a ⎛=⋅+=- -⎝⎭【总结】本题主要考查二次根式的除法运算,注意法则的准确运用,(2)中要特别注意被开方数的符号.【习题11】 先化简后求值,当149x y ==, 【答案】0.-1y =⋅=-所以当149x y ==,时,原式30=-=.【总结】本题主要考查二次根式的化简求值.班假暑级年八14 / 19【作业1】 计算:(1)1175253108833+--; (2)()2120.12563232⎛⎫+--- ⎪ ⎪⎝⎭;(3) 11484340.533⎛⎫⎛⎫--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; (4)121813324312-+-. 【答案】(1)313-;(2)2417631+-;(3)22335+;(4)31123+. 【解析】(1)118875253108853318331333333+--=+--=-;(2)()2122211720.1256326642623232434⎛⎫+---=+--+=-+ ⎪ ⎪⎝⎭; (3) 1145484340.54333223223333⎛⎫⎛⎫---=--+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; (4)1218133333221221124312263-+-=-+-=+. 【总结】本题主要考查二次根式的加减运算,注意先化简后合并.【作业2】 计算. (1)233835082aa a a a a +-; (2)323272750.755c c c c c+-;(3)22218638xx x x x x ++; 课后作业(4)34⎛⎛- ⎝⎝()00x y >>,. 【答案】(1)a a 2162;(2)c c 33;(3)x x229;(4)xy y 8.【解析】(1)32152162aa a a a ⋅(2)原式225c c =⋅-=(3)原式22623x x x =⋅+=(4)原式7834x x ⎛⎛=--⋅ ⎝⎭⎝88==【总结】本题主要考查二次根式的加减运算,注意先化简后合并.【作业3】 计算.(10.6; (2(3(4) 【答案】(1)205;(2)8;(3)23;(4)35【解析】(110.60.63==;(28;(33122==;(4)1135+6326==-=. 【总结】本题主要考查二次根式的乘除混合运算,注意法则的准确运用.【作业4】 计算:(1)22--;(2)(;(3)(⎛⨯ ⎝; (4)62x 【答案】(1)158;(2)-6;(3)25+-a a ;(4)x 3- 【解析】(1)((22512512-=++-+-=;(2)(12186=-=-;(3)(552a ⎛⨯=+=- ⎝; (4)原式(2233x =-=-.【总结】本题主要考查二次根式的混合运算,注意法则的准确运用.【作业5】 计算.(1(;(2)1(102(0)3m m >;(3(-()00x y >>,. 【答案】(1)ab b a 29;(2)m m ;(3)x xy8-. 【解析】(1)原式22223(992b a b a b =⋅-=-=-;(2)原式21(102223m m m =⋅==;(3)原式16(483y x =-⋅=- 【总结】本题主要考查二次根式的混合运算,注意法则的准确运用. 【作业6】 化简:(1(2)20x y >>.【答案】(1)ab b ;(2)xy .【解析】(1)原式2222b b a b a b =++(2)原式22y y x y x y ===-- 【总结】本题主要考查二次根式的混合运算,注意法则的准确运用.【作业7】 若直角三角形的面积是2,求另一条直角边长及斜边上的高线长.【答案】62;632.【解析】另一条直角边长为:623182=÷;斜边上的高为:63233362=÷⋅. 【总结】本题一方面考查二次根式的化简,另一方面考查等积法的运用.【作业8】 化简:2(0,0)a a b m n ÷>>. 【答案】2221ba ab a +-.【解析】原式2221(n a m a b =⋅222222111a ab a ab m m m a b a b ⎛-+=-+= ⎝.【总结】本题主要考查二次根式的混合运算,注意法则的准确运用. 【作业9】已知3a =+3b =-22a b ab -的值. 【答案】544-.【解析】由题意有:11-=ab ,54=-b a ,所以()2211ab a b a b ab =-=⨯=--- 【总结】本题主要考查利用整体代入的思想求代数式的值.【作业10】 解关于x 的不等式:(11>;(2)())211x x +-.【答案】(1)2332--<x ;(2)52362+-->x . 【解析】(11>+,1x >,则1x >⎝⎭,1>,解得:x <-;(2)由())211x x +-,得:)22x >则x ,所以5x >.【总结】本题主要考查二次根式在解不等式中的运用,注意判定不等式两边所除的二次根式的符号.【作业11】 已知:3a b +=-,23ab =,求+的值.【答案】6623-. 【解析】由题意可得:0<a ,0<b ,则=+== 代入3a b +=-,23ab =,得原式==. 【总结】本题主要考查二次根式的化简求值,解题时注意判定a 、b 的符号,最后利用整体代入的思想求值.【作业12】 求下列式子的值:22x xy y -+,其中x y == 【答案】22.【解析】由题意有:72=+y x ,2=xy ,∴()(222233222x xy y x y xy -+=+-=-⨯=.【总结】本题主要考查利用整体代入的思想求多项式的值.。
二次根式的加减
2
(3)10 2 + (3 8 − 7 2) =9_______;
4 3−6 2
(4)5 12 − 3 8 + 2 27 = __________.
随堂训练
8.若最简根式
2+1
3 − 2 与 3 可以合并,求 的值.
2 + 1 = 2,
解:积为(2+3) 2=5 2(2 ).
2 2+3 2= (2+3) 2
也可由分配律得出:
2 2+3 2= (2+3) 2= 5 2.
新课导入
议一议
问题2:如果两个正方形的面积分别是18和8,那么大正
方形的边长比小正方形的边长大多少?
此问题需要计算 18 − 8,但由于 18, 8不是最简二次根式,先把它们
上面提到的3 2与2 2, 18与 8都是同类二次根式.
同类二次根式可以像同类项那样进行合并.
知识讲解
思考: 观察新课导入两个问题的计算过程,你能总结出二次根式
加减计算的过程吗?
二次根式的加减
一般地,二次根式相加减,先把各个二次根式分别化成最简二次根
式,然后再将同类二次根式分别合并.有括号时,要先去括号.
1
1
= 48 − 4
−3
+ 4 0.5
8
3
=2 11 − 3 11 − 11 2
2
3
2
=4 3 − 4 ×
−3×
+4×
4
3
2
= − 11 − 11 2.
=4 3 − 2 − 3 + 2 2
=3 3 + 2.
随堂训练
二次根式的运算
二次根式的运算二次根式是代数中常见的一种形式,它包括了平方根和其他次方根。
在数学中,我们经常需要对二次根式进行各种运算。
本文将介绍二次根式的基本运算方法和相关概念。
一、二次根式的定义二次根式可以表示为√a的形式,其中a为非负实数。
根号下的数称为被开方数,它代表了一个数的平方根。
二次根式也可以写为指数形式,如a的1/2次方或a的1/3次方。
二、二次根式的基本运算1. 二次根式的加减法对于同类项的二次根式,可以对它们的被开方数进行加减运算。
例如,√2 + √3可以简化为√(2 + 3),即√5。
2. 二次根式的乘法二次根式的乘法运算需要注意求根的法则。
例如,√2 × √3可以化简为√(2 × 3),即√6。
3. 二次根式的除法同理,对于二次根式的除法运算,我们需要将除数和被除数的根号下的数相除,并合并同类项。
例如,√6 ÷ √2 可以化简为√(6 ÷ 2),即√3。
三、二次根式的化简有时候,我们需要将二次根式进行进一步的化简。
以下是几种常见的化简方式:1. 化简平方根如果一个二次根式的被开方数可以被完全平方数整除,那么我们可以化简为一个整数。
例如,√4可以化简为2。
2. 合并同类项对于具有相同根号下数的二次根式,我们可以合并它们,得到一个更简洁的表达式。
例如,√2 + √2可以合并为2√2。
3. 有理化分母当二次根式出现在分母中时,我们通常需要对分母进行有理化。
有理化的目的是将分母化为有理数,方便进行运算。
例如,将1/√3有理化分母,可以得到√3/3。
四、二次根式的应用二次根式在代数中有着广泛的应用。
它常出现在几何学、物理学等领域的计算中。
在几何学中,二次根式可以表示线段长度、面积以及体积等。
例如,计算某个多边形的面积时,可能需要计算边长的二次根式。
在物理学中,二次根式可以表示物理量的大小。
例如,物体的质量、速度等都可以用二次根式来表示。
总结:二次根式是代数中常见的一种形式,它包括平方根和其他次方根。
二次根式加减法法则
二次根式加减法法则
二次根式加减法法则:先把各个二次根式化简成最简二次根式,再把同类二次根式分别合并。
根式加减法法则是根式的运算法则之一,若干根式相加减,先把各根式化成最简根式,再合并同类根式,并将不同类的根式用运算符号连写在一起。
二次根式的加减法
(1)同类二次根式:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。
(2)合并同类二次根式:把几个同类二次根式合并为一个二次根式就
叫做合并同类二次根式。
(3)二次根式加减时,可以先将二次根式化为最简二次根式,再将被
开方数相同的进行合并。
二次根式的乘除法
二次根式相乘除,把被开方数相乘除,根指数不变,再把结果化为最
简二次根式。
(1)乘法运算:两个数的算术平方根的积,等于这两个因式积的算术
平方根。
(2)除法运算:两个数的算术平方根的商,等于这两个数商的算术平
方根。
湘教版八年级上册数学精品教学课件 第5章 二次根式 第1课时 二次根式的加减运算
第5章 二次根式
5.3 二次根式的加法和减法
第1课时 二次根式的加减运算
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1. 理解和掌握二次根式加减的运算法则及能正确地 对二次根式进行加减运算;(重点、难点)
2. 通过实例分析,从中正确地掌握二次根式加减运 算的基本步骤.
问题3 有八只小白兔,每只身上都标有一个最简二次根 式,你能根据被开方数的特征将这些小白兔分到四个不 同的栅栏里吗?
能力提升: 6. 已知 a,b 都是有理数,现定义新运算:a*b= a 3 b,求 (2*3) - (27*32) 的值. 解:∵a*b = a 3 b , ∴ (2*3) - (27*32)
= 2 3 3 27 3 32
= 2 3 3 3 3 12 2
= 11 2.
课堂小结
例5 下图是某土楼的平面剖面图,它是由两个相同圆 心的圆构成. 已知大圆和小圆的面积分别为 763.02 m2 和 150.72 m2,求圆环的宽度 d (π 取 3.14). 解:设大圆和小圆的半径分别为 R,r,
面积分别为 S1,S2,由 S1 = πR2,
S2 = πr2,可得 R
S1,r π
二次根 式的加
减
法则 注意
一般地,二次根式的加减 时,可以先将二次根式化成最 简二次根式,再将被开方数相 同的二次根式进行合并.
运算原理 运算律仍然适用
运算顺序
与实数的运 算顺序一样
S2 . π
d
则 d R r S1 S2
ππ
763.02 150.72
3.14
3.14
243 48
9 34 3
(完整版)二次根式的加减法
二次根式的加减法一、知识概述1、同类二次根式几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式.同类二次根式与整式中的同类项类似.2、二次根式的加减法法则二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.注意:(1)二次根式的加减常分为两大步骤进行,第一步化简;第二步合并;(2)在合并前应注意要先判断清楚它们中哪些二次根式的被开方数是相同的;在合并时类似于以前学过的合并同类项,只需将根号外的因式进行加减,被开方数和根指数不变.3、二次根式的混合运算二次根式的混合运算顺序与有理数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去掉括号).注意:(1)在运算过程中,每一个根式可以看作是一个“单项式”,多个被开方数不同的二次根式的和可以看作“多项式”;(2)有理数(或整式)中的运算律、运算法则及所有的乘法公式在二次根式的运算中仍然适用;(3)二次根式的运算结果必须是最简二次根式.二、重难点知识1、二次根式的加减法运算实质上是合并同类二次根式,在进行二次根式的加减法时,注意先把各个二次根式化为最简二次根式,再把同类项合并,合并同类二次根式的方法与合并同类项类似.2、二次根式的混合运算中可以与有理数的混合运算及整式的混合运算及分式的运算作比较,使二次根式的混合运算易于理解和掌握,并能合理应用运算律及技巧进行计算.二次根式的除法运算转化为分母有理化的问题,同时可避免错误地使用运算律.三、典型例题讲解例1、计算:.分析:本组题中各个加数都不是最简二次根式,因此需先进行化简,然后再把被开方数相同的根式进行合并.解:.例2、计算:分析:先根据去括号的法则,去掉括号,再进行二次根式的加减运算.总结:解此类问题分为三个步骤:一是去括号,二是化简,三是合并,但在去括号时应注意符号的处置.例3、计算下列各题:.思路:(1)题可仿照单项式乘以多项式的方法进行计算;(2)、(3)题可仿用多项式乘法法则进行计算;(4)题可套用完全平方公式计算.例4、计算下列各题.解:例5、化简:总结:在计算过程中要注意各个式子的特点,能否约分或消项(第2小题)达到化简的目的,又要善于在规则允许的情况下可交换相邻项的位置,如,结果为-1,继续运算易出现符号上的差错,而把变为,这样则为1,继续运算可避免错误.例6、已知x、y都为正整数,且.求x+y的值.分析:因为只有化简后被开方数相同的二次根式才能合并,而,易知化简后的被开方数必为222,故可设.由此求出正整数a、b即可求出x、y.解:,于是即a+b=3∴a=2,b=1或a=1,b=2,故x=222,y=888或x=888,y=222.∴x+y=1110,总结:几个二次根式化简后被开方数相同,则它们可以合并,本题则是逆用该结论,即几个二次根式能合并成一个二次根式,则它们化简后的被开方数必相同.课外拓展:例、已知a、b是实数,且,问a、b之间有怎样的关系?请推导.思路分析:由特殊探求一般,在证明一般性的过程中,由因导果,从化简条件等式入手,而化简的基本方法是有理化.解:原等式两边分别乘以,得两式相加得,所以.A 卷一、选择题1、下列计算结果正确的是( )A.B.C.D.2、下列计算正确的是( )A.B.C.D.3、下列各式化简结果不正确的是()A.B.C.D.4、下列计算正确的是()A.B.C.D.5、计算等于()A.·1 B.3C.D.6、在数轴上点A表示实数,点B表示,那么离原点较远的点是()A.A B.BC.A、B的中点D.不能确定B 卷二、填空题7、△ABC的三边长为a、b、c,且a、b满足则△ABC的周长的取值范围是______.8、若成立,则xy的值为______.9、若,则______.10、已知正数a、b,有下列结论:(1)若a=1,b=1,则;(2)若,则;(3)若a=2,b=3,则;(4)若a=1,b=5,则.根据以上几个命题提供的信息,请猜想:若a=6,b=7,则______.三、解答题11、计算或化简下列各题:12、计算:13、已知,求代数式的值.14、计算.[15、先观察下列等式,再回答问题:(1)根据上面三个等式提供的信息,请猜想的结果,并进行验证;(2)请按照上面各等式反映的规律,试写出n(n为正整数)表示的等式,并加以验证.一.选择题DDCBDB二.填空题7、△ABC的周长大于6且小于10.8、由题意有x=2,y=3,∴x y=8.9、.10、=13.三.解答题11.12.13..14. 解:(1)配方法:本题中的根式不符合型,我们可根据分式的基本性质,分子、分母都乘以2,将原式变形为(2)换元法:设,两边同时平方得,所以x2=10,又因为x>0,所以,即.15.。
人教版八年级数学下册教学课件-16.3二次根式的加减
达标检测
1.二 次 根 式 2a - 4与 2可 以 合 并 , 那 么a的 值 ∴在这块木板上可以截出两个分别是8dm2和18dm2的正方形木板.
可 以 为 (B ) (2)化简后被开方式不相同的不能合并,只能用+
(2)化简后被开方式不相同的不能合并,只能用+ 1、二次根式加减法运算法则
二次根式的加减运算法则
的二相次同根式分别
。 合并
注意:合并的实质是对被开方式相同的二次 根式的系数进行合并,即把根号外系数相加减,根
指数和被开方数不变。
梳理
二次根式加减法运算步骤
(1)将每个二次根式化为最简二次根;一化 (2)合并被开方数相同的二次根式。 二合并
注意: 化简后被开方式不相同的不能合并,只能用+或-号连接 在一起。
3.细心算一算
(1)( 8 2 0.25) ( 11 50 2 72)
8
3
(2)( 80 14) ( 31 4 45)
5
55
(3)2a 3ab2 (b 27a3 2ab 3 a)
6
4
拓展提升
如 果a, b都 是 有 理 数 , 且a 2b 5 7 (a b) 5, 求a, b的 值 。
试一试
判断下列计算是否正确? 如有错误,说出错误 原因并改正。
(1) 8 2 2
22 3 5 2 7 5 X
2 3与5 2被开放式不相同, 所以不能合并。
例1计算下列各题:
(1) 54 24
(2) 1 18 3 8
2
9
(3) 90 2 20 5 4 5
解:
4 (1) 54 24 (3) 90 2 20 5
也就是被开方数是整数或整式;
九年级数学二次根式的加减3
8
75
18 32
50
Байду номын сангаас1 12
45
1 2
你可要细心吆!
1、两列火车分别运煤2x吨和3x吨,问这两 +3x=5x(吨) 列火车共运多少?2x _______________ 2、两列火车分别运煤2x吨和3y吨,问这两 列火车共运多少?_______________ (2x +3y)吨 以下问题你能用同样的方法计算吗?
(1)2 75 3 27 3 2 75 9 3 3 10 3 10 3 0
错在没有 按照二次根式 加减混算从左 向右依次进行 的运算顺序计 算。
3 2 ( 2) 72 18 2 3 2 6 2 3 2 2 3 2 9 2 2
运算不完 全,能合并的 没有合并。
初中数学九年级上册 (苏科版)
3.3.1 二次根式的加减
如图,学校要砌一个正方形花坛, 已知外边的正方形边长为 2 2 cm,里面 的正方形的边长为 2cm,两个正方形的 周长和为多少? 两个正方形的周长和为: 2 2
2
4(2 2 2 ) 8 2 4 2
若两个正方形的面积分别为 27cm2、12cm2,则两正方形的周 长和为多少? 两个正方形的周长和为:
15 2 2
练一练:
计算:
(1) 50 32 ( 2) 27 2 3 45
巩固练习
计算: (1)5 2
( 2 )3 40 (3) 12 ( 4 )2 12 4 8 7 18 2 1 2 5 10 1 3 1 27
1 3 48 27
拓展与延伸:
15
2 8 7 18
4 2 8 2
二次根式加减法运算法则
二次根式加减法运算法则
二次根式加减法运算法则是将两个二次根式进行加减运算的方法。
1. 相加减分解法:如果两个二次根式的根指数和根号内的表达式完全相同,那么可以直接将它们的系数相加减即可,根指数和根号内的表达式保持不变。
例如:√2 + √2 = 2√2,√3 - √3 = 0
2. 合并同类项法:如果两个二次根式的根号内的表达式相同,但是根指数不同,可以将它们的系数相加减,并将根号内的表达式保持不变。
例如:2√2 + 3√2 = 5√2,4√5 - 2√5 = 2√5
3. 有理化法:如果两个二次根式的根号内含有分母,可以通过有理化的方法将分母去掉,然后再按照相加减分解法或合并同类项法进行运算。
例如:(1/√2) + (√3/√2) = (√2 + √3)/(√2*√2) = (√2 + √3)/2,(1/√5) - (2/3√5) = (3 - 2√5)/(3√5)
需要注意的是,在进行二次根式加减法运算时,要先将根号内的表达式进行化简,然后再按照以上的运算法则进行运算。