等差数列知识点总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列
1. 定义
一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。
用递推公式表示为d a a n n =--1(d 为常数)(2≥n );
2.等差数列通项公式:
(1)*
11(1)()n a a n d dn a d n N =+-=+-∈(首项:1a ,公差:d ,末项:n a )
(2)d m n a a m n )(-+=. 从而m
n a a d m
n --=; 3.等差中项
(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2
b a A +=
或b a A +=2
(
2
)
等差中项:数列
{}
n a 是等差数列
)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a
4.等差数列的前n 项和公式:1()
2
n n n a a s +=
1(1)
2
n n na d -=+ 211
()22
d n a d n =
+- 2An Bn =+
(其中A 、B 是常数) (当d ≠0时,S n 是关于n 的二次式且常数项为0)
5.等差数列的证明方法
(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列. (
2
)
等差中项:数列
{}
n a 是等差数列
)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a .
(3)数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。
(4)数列{}n a 是等差数列⇔2
n S An Bn =+,(其中A 、B 是常数)。
注:(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,
其中1a 、d 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。
(2)为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为…,
2,,,,2a d a d a a d a d --++…(公差为d );偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(公差为2d )
7.等差数列的性质:
(1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的
一次函数,且斜率为公差d ;前n 和211(1)()222
n n n d d
S na d n a n -=+
=+-是关于n 的二次函数且常数项为0.
(2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。
(3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有
2m n p a a a +=.
注: =+=+=+--23121n n n
a a a a a a ,图示:
n
n a a n a a n n a a a a a a ++---11
2,,,,,,12321 (4) 若{n a }是等差数列,则232,,n n n n n S S S S S -- ,…也成等差数列
图示:
m
m
m m
m m
S S S m m S S m m S m a a a a a a a a 323231221321-+-+++++++++++ (5)若等差数列{}n a 、{}n b 的前n 和分别为n A 、n B ,且
()n
n
A f n
B =,则21
21
(21)(21)(21)n n n n n n a n a A f n b n b B ---===--. (6)若{}n a 、{}n b 为等差数列,则{}n n a b ±为等差数列
练习:
1.等差数列}{n a 中,33,1112==S a ,求}{n a 的通项公式。
2.等差数列}{n a 前n 项和记为n S ,已知3010=a ,.5020=a (1)求通项n a ;(2)若242=n S ,求.n
3.若69121520a a a a +++=求20S
4.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是多少?