自动控制原理ppt
合集下载
根轨迹法(自动控制原理)ppt课件精选全文完整版

1 K (s z1 )( s z2 )....( s zm ) 0 (s p1 )( s p2 )....( s pn )
课程:自动控制原理
第4章 根轨迹法
➢ 以K为参变量的根轨迹上的每一点都必须满足以上方程, 相应地,称之为‘典型根轨迹方程’。
也可以写成
m
n
(s zl ) K (s pi ) 0
可见,根轨迹可以清晰地描绘闭环极点与开环增益K之间的 关系。
课程:自动控制原理
第4章 根轨迹法
2.根轨迹的基本条件
❖ 考察图示系统,其闭环传递函数为:
Y(s) G(s) R(s) 1 G(s)H(s)
闭环特征方程为:
1 G(s)H(s) 0
➢ 因为根轨迹上的每一点s都是闭环特征方程的根,所以根轨 迹上的每一点都应满足:
l 1
i 1
对应的幅值条件为:
相角条件为:
n
( s pi ) K i1
m
(s zl )
l 1
m
n
(s zl ) (s pi ) (2k 1)180
k 1,2,
l 1
i 1
课程:自动控制原理
第4章 根轨迹法
❖ 上述相角条件,即为绘制根轨迹图的依据。具体绘制方法 是:在复平面上选足够多的试验点,对每一个试验点检查 它是否满足相角条件,如果是则该点在根轨迹上,如果不 是则该点不在根轨迹上,最后将在根轨迹上的试验点连接 就得到根轨迹图。
显然,位于实轴上的两个相邻的开环极点之间一定有分离 点,因为任何一条根轨迹不可能开始于一个开环极点终止 于另一个开环极点。同理,位于实轴上的两个相邻的开环 零点之间也一定有分离点。
课程:自动控制原理
第4章 根轨迹法
课程:自动控制原理
第4章 根轨迹法
➢ 以K为参变量的根轨迹上的每一点都必须满足以上方程, 相应地,称之为‘典型根轨迹方程’。
也可以写成
m
n
(s zl ) K (s pi ) 0
可见,根轨迹可以清晰地描绘闭环极点与开环增益K之间的 关系。
课程:自动控制原理
第4章 根轨迹法
2.根轨迹的基本条件
❖ 考察图示系统,其闭环传递函数为:
Y(s) G(s) R(s) 1 G(s)H(s)
闭环特征方程为:
1 G(s)H(s) 0
➢ 因为根轨迹上的每一点s都是闭环特征方程的根,所以根轨 迹上的每一点都应满足:
l 1
i 1
对应的幅值条件为:
相角条件为:
n
( s pi ) K i1
m
(s zl )
l 1
m
n
(s zl ) (s pi ) (2k 1)180
k 1,2,
l 1
i 1
课程:自动控制原理
第4章 根轨迹法
❖ 上述相角条件,即为绘制根轨迹图的依据。具体绘制方法 是:在复平面上选足够多的试验点,对每一个试验点检查 它是否满足相角条件,如果是则该点在根轨迹上,如果不 是则该点不在根轨迹上,最后将在根轨迹上的试验点连接 就得到根轨迹图。
显然,位于实轴上的两个相邻的开环极点之间一定有分离 点,因为任何一条根轨迹不可能开始于一个开环极点终止 于另一个开环极点。同理,位于实轴上的两个相邻的开环 零点之间也一定有分离点。
课程:自动控制原理
第4章 根轨迹法
自动控制原理教学ppt

前馈校正
在系统的输入端引入一个前馈环节, 根据输入信号的特性对系统进行补 偿,以提高系统的跟踪精度和抗干 扰能力。
复合校正方法
串联复合校正
将串联超前、串联滞后和串联滞 后-超前等校正方法结合起来, 设计一个复合的串联校正环节, 以实现更复杂的系统性能要求。
反馈复合校正
将局部反馈、全局反馈和前馈等 校正方法结合起来,设计一个复 合的反馈校正环节,以实现更全
自适应控制系统概述
简要介绍自适应控制系统的基本原理、结构和特点,为后续内容 做铺垫。
自适应控制方法
详细介绍自适应控制方法,如模型参考自适应控制、自校正控制等, 及其在自动控制领域中的应用实例。
自适应控制算法
阐述自适应控制算法的实现过程,包括参数估计、控制器设计等关 键技术。
鲁棒控制理论应用
鲁棒控制系统概述
自动控制应用领域
工业领域
自动控制广泛应用于工业领域,如自 动化生产线、工业机器人、智能制造 等。
01
02
航空航天领域
自动控制是航空航天技术的重要组成 部分,如飞行器的自动驾驶仪、导弹 的制导系统等。
03
交通运输领域
自动控制也应用于交通运输领域,如 智能交通系统、自动驾驶汽车等。
其他领域
此外,自动控制还应用于农业、医疗、 环保等领域,如农业自动化、医疗机 器人、环境监测与治理等。
提高系统的稳态精度。
串联滞后-超前校正
03
结合超前和滞后校正的优点,设计一个既有超前又有滞后的校
正环节,以同时改善系统的动态性能和稳态精度。
反馈校正方法
局部反馈校正
在系统的某个局部引入反馈环节, 以改善该局部的性能,而不影响 系统的其他部分。
全局反馈校正
在系统的输入端引入一个前馈环节, 根据输入信号的特性对系统进行补 偿,以提高系统的跟踪精度和抗干 扰能力。
复合校正方法
串联复合校正
将串联超前、串联滞后和串联滞 后-超前等校正方法结合起来, 设计一个复合的串联校正环节, 以实现更复杂的系统性能要求。
反馈复合校正
将局部反馈、全局反馈和前馈等 校正方法结合起来,设计一个复 合的反馈校正环节,以实现更全
自适应控制系统概述
简要介绍自适应控制系统的基本原理、结构和特点,为后续内容 做铺垫。
自适应控制方法
详细介绍自适应控制方法,如模型参考自适应控制、自校正控制等, 及其在自动控制领域中的应用实例。
自适应控制算法
阐述自适应控制算法的实现过程,包括参数估计、控制器设计等关 键技术。
鲁棒控制理论应用
鲁棒控制系统概述
自动控制应用领域
工业领域
自动控制广泛应用于工业领域,如自 动化生产线、工业机器人、智能制造 等。
01
02
航空航天领域
自动控制是航空航天技术的重要组成 部分,如飞行器的自动驾驶仪、导弹 的制导系统等。
03
交通运输领域
自动控制也应用于交通运输领域,如 智能交通系统、自动驾驶汽车等。
其他领域
此外,自动控制还应用于农业、医疗、 环保等领域,如农业自动化、医疗机 器人、环境监测与治理等。
提高系统的稳态精度。
串联滞后-超前校正
03
结合超前和滞后校正的优点,设计一个既有超前又有滞后的校
正环节,以同时改善系统的动态性能和稳态精度。
反馈校正方法
局部反馈校正
在系统的某个局部引入反馈环节, 以改善该局部的性能,而不影响 系统的其他部分。
全局反馈校正
自动控制原理胡寿松第六版ppt

通常m < n;a1 , … , an; b0 , … , bm 均为实数; 首先将Xs的 分母因式分解,则有
X (s)b 0s (s m p b 1 1) sm s ( 1 p 2) b (s m 1s p n)b m
3) 随动系统中,取θ为输出
d
dt
Tmd d22td d tk 1euaT JmM L
4 在实际使用中;转速常用nr/min表示,设 ML=0
2 6 n 0 3 n代 02 入 2, 2k'e令 ke3 0
TaTmdd2n 2tTmd dn tnk1'eua
24 线性系统的传递函数 一 复习拉氏变换及其性质
方程数与变量数相等 5) 联立上述方程,消去中间变量,得到只包含输入 输出的方程式。 6) 将方程式化成标准形。
与输出有关的放在左边,与输入有关的放在右边,导数项按 降阶排列,系数化为有物理意义的形式。
2 2.2 机械平移系统举例
三个基本的无源元件:质量m,弹簧k,阻尼器f 对应三种阻碍运动的力:惯性力ma;弹性力ky;阻尼力fv
2微分定理
Lddx(tt)sX(s)x(0)
Ld2 dx2 (tt)s2X(s)sx (0)x (0)
若 x ( 0 ) x ( 0 ) 0 ,则
Lddx(tt) sX(s)
d2x(t)
L
dt2
s2X(s)
…
dnx(t)
L
dtn
snX(s)
3积分定律
Lx (t)d t1X (s)1x ( 1 )(0 )
系统处于平衡状态。
K m y(t)
3按牛顿第二定律列写原始方程;即
d2y FF(t)F k(t)F f(t)md2t
X (s)b 0s (s m p b 1 1) sm s ( 1 p 2) b (s m 1s p n)b m
3) 随动系统中,取θ为输出
d
dt
Tmd d22td d tk 1euaT JmM L
4 在实际使用中;转速常用nr/min表示,设 ML=0
2 6 n 0 3 n代 02 入 2, 2k'e令 ke3 0
TaTmdd2n 2tTmd dn tnk1'eua
24 线性系统的传递函数 一 复习拉氏变换及其性质
方程数与变量数相等 5) 联立上述方程,消去中间变量,得到只包含输入 输出的方程式。 6) 将方程式化成标准形。
与输出有关的放在左边,与输入有关的放在右边,导数项按 降阶排列,系数化为有物理意义的形式。
2 2.2 机械平移系统举例
三个基本的无源元件:质量m,弹簧k,阻尼器f 对应三种阻碍运动的力:惯性力ma;弹性力ky;阻尼力fv
2微分定理
Lddx(tt)sX(s)x(0)
Ld2 dx2 (tt)s2X(s)sx (0)x (0)
若 x ( 0 ) x ( 0 ) 0 ,则
Lddx(tt) sX(s)
d2x(t)
L
dt2
s2X(s)
…
dnx(t)
L
dtn
snX(s)
3积分定律
Lx (t)d t1X (s)1x ( 1 )(0 )
系统处于平衡状态。
K m y(t)
3按牛顿第二定律列写原始方程;即
d2y FF(t)F k(t)F f(t)md2t
东南大学成贤学院自动控制原理ppt程鹏主编第二版

(4)当0.25<Kg<∞时,s1,2 =-0.5±j0.5 4Kg 1, 两个闭环极点变为一对共轭复数极点。s1、s2旳实 部不随Kg变化,其位于过(-1,0)点且平行于虚 轴旳直线上。
(5)当Kg→∞时, s1 = -0.5+ j∞、s2 = -0.5- j∞,此时s1、s2将趋于无限远处。
EXIT
EXIT
第4章第28页
m
n
(s zi ) (s p j ) 180 (2k 1) , k 0,1,2,
i 1
j 1
②位于s1右边旳实数零、极点: 每个零、极点提供180°相角。
③位于s1左边旳实数零、极点:(s1 z1)、(s1 p4 ) 向量引起旳 相角为0°
∴ 判断 s1是否落在根轨迹上,位于s1左边旳零、极点不 考虑。
m
s zi
i 1
n
s pj j 1
1
Kg
1. 起点:Kg=0,等式右边→∞,仅当
nm
s p j ( j 1, 2, , n)
成立,∴n条根轨迹起始于系统旳n个开环极点。
EXIT
第4章第23页
2.终点:Kg →∞ ,等式右边=0 ①当
s zi (i 1, 2, , m)
m
s zi
闭环特征方程为: D(s) = s2 +s + Kg = 0 解得闭环特征根(亦即闭环极点)
s1 0.5 0.5 1 4Kg , s2 0.5 0.5 1 4Kg
可见,当Kg 变化,两个闭环极点也随之连续变化。 当Kg 从0→∞变化时,直接描点作出两个闭环极点旳变 化轨迹。
EXIT
第4章第8页
3
1
60 180
300
k 0 k 1 k 2
(5)当Kg→∞时, s1 = -0.5+ j∞、s2 = -0.5- j∞,此时s1、s2将趋于无限远处。
EXIT
EXIT
第4章第28页
m
n
(s zi ) (s p j ) 180 (2k 1) , k 0,1,2,
i 1
j 1
②位于s1右边旳实数零、极点: 每个零、极点提供180°相角。
③位于s1左边旳实数零、极点:(s1 z1)、(s1 p4 ) 向量引起旳 相角为0°
∴ 判断 s1是否落在根轨迹上,位于s1左边旳零、极点不 考虑。
m
s zi
i 1
n
s pj j 1
1
Kg
1. 起点:Kg=0,等式右边→∞,仅当
nm
s p j ( j 1, 2, , n)
成立,∴n条根轨迹起始于系统旳n个开环极点。
EXIT
第4章第23页
2.终点:Kg →∞ ,等式右边=0 ①当
s zi (i 1, 2, , m)
m
s zi
闭环特征方程为: D(s) = s2 +s + Kg = 0 解得闭环特征根(亦即闭环极点)
s1 0.5 0.5 1 4Kg , s2 0.5 0.5 1 4Kg
可见,当Kg 变化,两个闭环极点也随之连续变化。 当Kg 从0→∞变化时,直接描点作出两个闭环极点旳变 化轨迹。
EXIT
第4章第8页
3
1
60 180
300
k 0 k 1 k 2
《自动控制原理》课件

集成化:智能控制技术将更加集 成化,能够实现多种控制技术的 融合和应用。
添加标题
添加标题
添加标题
添加标题
网络化:智能控制技术将更加网 络化,能够实现远程控制和信息 共享。
绿色化:智能控制技术将更加绿 色化,能够实现节能减排和环保 要求。
控制系统的网络化与信息化融合
网络化控制:通过互联网实现远程控制和监控
现代控制理论设计方法
状态空间法:通过建立状态空间模型,进行系统分析和设计 频率响应法:通过分析系统的频率响应特性,进行系统分析和设计 极点配置法:通过配置系统的极点,进行系统分析和设计 线性矩阵不等式法:通过求解线性矩阵不等式,进行系统分析和设计
最优控制理论设计方法
基本概念:最优控制、状态方程、控制方程等 设计步骤:建立模型、求解最优控制问题、设计控制器等 控制策略:线性二次型最优控制、非线性最优控制等 应用领域:航空航天、机器人、汽车电子等
动态性能指标
稳定性:系统在受到扰动后能否恢复到平衡状态 快速性:系统在受到扰动后恢复到平衡状态的速度 准确性:系统在受到扰动后恢复到平衡状态的精度 稳定性:系统在受到扰动后能否保持稳定状态
抗干扰性能指标
稳定性:系统在受到干扰后能够 恢复到原来的状态
准确性:系统在受到干扰后能够 保持原有的精度和准确性
信息化控制:利用大数据、云计算等技术实现智能化控制
融合趋势:网络化与信息化的融合将成为未来控制系统的发展方向 应用领域:工业自动化、智能家居、智能交通等领域都将受益于网络化与 信息化的融合
控制系统的模块化与集成化发展
模块化:将复杂的控制系统分解为多个模块,每个模块负责特定的功能,便于设计和维护 集成化:将多个模块集成为一个整体,提高系统的性能和可靠性 发展趋势:模块化和集成化是未来控制系统发展的重要方向 应用领域:广泛应用于工业自动化、智能家居、智能交通等领域
《自动控制原理》全书总结PPT课件

3
开环控制系统的特点: 闭环控制系统的特点: 自动控制系统的本质特征: 闭环控制系统的基本组成,每个环节的作用。
4
闭环控制系统的组成和基本环节
闭环控制系统的结构(示意)图
控制器
要求精 度要高
1-给定环节;2-比较环节;3-校正环节;4-放大环节; 5-执行机构;6-被控对象;7-检测装置
5
题1-9、图为液位自动控制系统示意图。在任何情况 下,希望液面高度维持不变。试说明系统工 作原理,并画出系统结构图。
24
自动控制系统的时域分析
对控制性能的要求
稳定性
稳态特性
三性
(1)系统应是稳定的; 暂态特性
(2)系统达到稳定时,应满足给定的稳态误差
的要求;
(3)系统在暂态过程中应满足暂态品质的要求。
25
1、系统的响应过程及稳定性
一阶系统的单位阶跃响应
WB
(s)
1 Ts 1
1 t
单 位 阶 越 响 应 : x c (t) 1 eT, (t 0 )
11
◆传递函数第一种形式:
传递函数的表达形式有三种: 标准形式、有理分式形
式或多项式形式
W s X X c rs s b a 0 0 s s m n b a 1 1 s s m n 1 1
b m 1 s b m n m a n 1 s a n
m
K (Tis 1)
W s
14
1、熟悉典型环节传递函数 2、控制系统的传递函数的求取
动态结构图的编写、变换、化简 3、误差传递函数的求取 3、信号流图,梅逊公式求控制系统传函。 4、例题
15
结构图变换技巧
• 变换技巧一:向同类移动 分支点向分支点移动,综合点向综合点移动。
开环控制系统的特点: 闭环控制系统的特点: 自动控制系统的本质特征: 闭环控制系统的基本组成,每个环节的作用。
4
闭环控制系统的组成和基本环节
闭环控制系统的结构(示意)图
控制器
要求精 度要高
1-给定环节;2-比较环节;3-校正环节;4-放大环节; 5-执行机构;6-被控对象;7-检测装置
5
题1-9、图为液位自动控制系统示意图。在任何情况 下,希望液面高度维持不变。试说明系统工 作原理,并画出系统结构图。
24
自动控制系统的时域分析
对控制性能的要求
稳定性
稳态特性
三性
(1)系统应是稳定的; 暂态特性
(2)系统达到稳定时,应满足给定的稳态误差
的要求;
(3)系统在暂态过程中应满足暂态品质的要求。
25
1、系统的响应过程及稳定性
一阶系统的单位阶跃响应
WB
(s)
1 Ts 1
1 t
单 位 阶 越 响 应 : x c (t) 1 eT, (t 0 )
11
◆传递函数第一种形式:
传递函数的表达形式有三种: 标准形式、有理分式形
式或多项式形式
W s X X c rs s b a 0 0 s s m n b a 1 1 s s m n 1 1
b m 1 s b m n m a n 1 s a n
m
K (Tis 1)
W s
14
1、熟悉典型环节传递函数 2、控制系统的传递函数的求取
动态结构图的编写、变换、化简 3、误差传递函数的求取 3、信号流图,梅逊公式求控制系统传函。 4、例题
15
结构图变换技巧
• 变换技巧一:向同类移动 分支点向分支点移动,综合点向综合点移动。
《自动控制原理》PPT课件

pi)
0
即K*=0时:闭环极点 si=开环极点pi
当K*→∞时,闭环特征方程 :
m
(s
i 1
zi )
1 K*
n
(s
i 1
pi)
0
K*→∞
m
(s
i 1
zi
)
0
即K*→∞时,闭环极点 si=开环零点zi
当m 时n, 有n-m 条的终点在无穷远点
n
n
K*
s
i 1 m
pi
i 1
s
zi
K*
lim
s
s
i 1
m
s
i 1
pi zi
lim snm s
12
说明:
1)有限开环零、极点:zi,pi 无限开环零、极点:∞
根轨迹起于开环极点,终于开环零点
2)在绘制其他参数根轨迹时,可能会出现 m>n 的情况,
H(s)
其中:Mi (s) (s zi1 )( s zi2 ); Ni (s) (s pi1 )( s pi2 ) i 1,2
开环零点:M1(s)M2(s) 0 开环极点:N1(s)N2(s) 0
闭环传递函数:s
K1 M1 ( s) N 2 s
K*M1(s)M2(s) N1(s)N2(s)
1 绘制依据 ——根轨迹方程
R(s) _
C(s) G(s)
闭环的特征方程:1 G(s)H(s) 0
H(s)
即:G(s)H(s) 1 ——根轨迹方程(向量方程)
用幅值、幅角的形式表示:
G(s)H(s) 1
自动控制原理(经典控制论)课程ppT

自动控制原理
第二章 线性系统的数学模型
单摆(非线性)
是未知函数 的非线性函数,
所以是非线性模型。
浙江省精品课程
自动控制原理
第二章 线性系统的数学模型
液面系统(非线性)
是未知函数h的非线性函数,所以是非线性模型。
浙江省精品课程
自动控制原理
第二章 线性系统的数学模型
2.2.2 线性化问题的提出 线性系统优点:
浙江省精品课程
自动控制原理
第二章 线性系统的数学模型
单变量函数泰勒级数法
函数y=f(x)在其平衡点(x0, y0)附近的泰勒级数展开式为:
略去含有高于一次的增量∆x=x-x0的项,则:
注:非线性系统的线性化 模型,称为增量方程。
注:y = f (x0)称为系统的 静态方程
浙江省精品课程
自动控制原理
增量方程 增量方程的数学含义
将参考坐标的原点移到系统或元件的平衡工作点上, 对于实际系统就是以正常工作状态为研究系统运动的起始 点,这时,系统所有的初始条件均为零。
注:导数根据其定义是一线性映射,满足叠加原理。
浙江省精品课程
自动控制原理
第二章 线性系统的数学模型
多变量函数泰勒级数法
增量方程 静态方程
第二章 线性系统的数学模型
微分定理
浙江省精品课程
自动控制原理
第二章 线性系统的数学模型
多重微分
原函数的高阶导数 像函数中s的高次代数式
浙江省精品课程
自动控制原理
第二章 线性系统的数学模型
积分定理
浙江省精品课程
自动控制原理
第二章 线性系统的数学模型
多重积分
原函数的n重积分像函数中除以sn
自动控制原理课件ppt

03
非线性控制系统
非线性控制系统的特点
非线性特性
01
非线性控制系统的输出与输入之间存在非线性关系,
如放大器、继电器等。
复杂的动力学行为
02 非线性控制系统具有复杂的动力学行为,如混沌、分
叉、稳定和不稳定等。
参数变化范围广
03
非线性控制系统的参数变化范围很广,如电阻、电容
、电感等。
非线性控制系统的数学模型
线性控制系统的性能指标与评价
性能指标
衡量一个控制系统性能的好坏,需要使用一些性能指标,如响应时间、超调量、稳态误差等。
性能分析
通过分析系统的性能指标,可以评价一个控制系统的优劣。例如,响应时间短、超调量小、稳态误差小的系统性能较 好。
系统优化
根据性能分析的结果,可以对控制系统进行优化设计,提高控制系统的性能指标。例如,可以通过调整 控制器的参数,减小超调量;或者通过改变系统的结构,减小稳态误差。
。
采样控制系统的数学模型
描述函数法
描述函数法是一种分析采样控制系统的常用方法,通过将连续时间 函数离散化,用差分方程来描述系统的动态特性。
z变换法
z变换法是一种将离散时间信号变换为复平面上的函数的方法,可 用于分析采样控制系统的稳定性和性能。
状态空间法
状态空间法是一种基于系统状态变量的方法,可以用于分析复杂的采 样控制系统。
航空航天领域中的应用
总结词
高精度、高可靠性、高安全性
详细描述
自动控制原理在航空航天领域中的应用至关重要。例如 ,在飞机系统中,通过使用自动控制原理,可以实现飞 机的自动驾驶和自动着陆等功能,从而提高飞行的精度 和安全性。在火箭和卫星中,通过使用自动控制原理, 可以实现推进系统的精确控制和姿态调整等功能,从而 保证火箭和卫星能够准确地进行轨道变换和定点着陆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
优点:可以自动调节由于干扰和内部参数的变化 而引起的变动。
干扰
给定值
计算比较
-
E
执行
测量
被控对象
被控量
按偏差调节的系统原理方块图
14
如上图,反馈回来的信号与给定值相减,即 根据偏差进行控制,称为负反馈,反之称为 正反馈。 这种控制方式控制精度较高,因为无论是干 扰的作用,还是系统结构参数的变化,只要 被控量偏离给定值,系统就会自行纠偏。但 是闭环控制系统如果参数匹配得不好,会造 成被控量的较大摆动,甚至系统无法正常工 作。
10
按给定值操纵的开环控制
特点:控制装置只接受给定值来控制 受控对象的被控量。 优点:控制系统结构简单,相对来 说成本低。
缺点:对可能出现的被控量偏离给定值
的偏差没有任何修正能力,抗干扰能力 差,控制精度不高。
11
二、按干扰补偿的开环控制
定义:利用干扰信号产生控制作用,以 及时补偿干扰对被控量的直接影响。
• 开环控制 – 按给定值操纵的开环控制; – 按干扰补偿的开环控制; • 按偏差调节的闭环控制
8
一、按给定值操纵的开环控制
•开环控制——系统的输出端与输入端之间不存
在反馈回路,输出量对系统的控制作用没有影 响。
干扰 给定值
计算
执行
受控对象
被控量
按给定值操纵的系统原理方块图
9
炉温控制系统
炉温控制系统原理方框图
测量
计算 执行
干扰
受控对象
被控量
特点:只能对可测干扰进行补偿,不可测干扰以及受控对象、 各功能部件内部参数变化对被控量的影响,系统自身无法控 制。
适用于:存在强干扰且变化比较剧烈的场合。
12
水位高度控制系统原理图
水位高度控制系统原理方框图
13
三、按偏差调节的闭式控制
特点:通过计算被控量和给定值的差值来控制 被控对象。
19
稳
指动态过程的平稳性
控制系统动态过程曲线
如上图,系统在外作用作用下,输出逐渐与期望值一 致,则系统稳定的,如曲线1所示;反之,输出如曲 线2所示,则系统是不稳定的。20来自 快指动态过程的快速性
快速性即动态过程进行的时间的长短。过程时间越短,说明系 统快速性越好,反之说明系统响应迟钝。如曲线2所示。 稳和快反映了系统过渡过程的性能的好坏。既快又稳,表明系 统的动态精度高;
R 控制装置
被控对象
C
—
a.按输入作用补偿
补偿装置
R 控制装置
n C
被控对象
—
b.按扰动作用补偿
18
1-3对控制系统的性能要求
定义:通常将系统受到给定值或干扰信号作用后, 控制被控量变化的全过程称为系统的动态过程。
工程上常从稳、快、准三个方面来评价控制系统。 稳 快 准 指动态过程的平稳性 指动态过程的快速性 指动态过程的最终精度
被控对象
6
在上图中,除被控对象外的其余部分统称为控制装置,其必须 具备以下三种职能部件。
测量元件:用以测量被控量或干扰量。 比较元件:将被控量与给定值进行比较。 执行元件:根据比较后的偏差,产生执行作用,去操 纵被控对象 参与控制的信号来自三条通道,即给定值、干扰量、被控量。
7
下面根据不同的信号源来分析自动控制的几种基本控制方式
4
由此可见: 自动控制即没有人直接参与的控制,其基本任务是: 在无人直接参与情况下,只利用控制装置操纵被控对 象,使被控制量等于给定值。 自动控制系统:指能够完成自动控制任务的设备,一 般由控制装置和被控对象组成。
5
1-2自动控制的基本方式
测量
给定值H 干扰
被控量H’
比较
实测值
执行
测量
自动控制方框图
1-1 自动控制的任务
通常,在自动控制技术中,把工作的机 器的设备称为被控对象,把表征这些机 器设备工作状态的物理参量称为被控量, 而对这些物理参量的要求值称为给定值 或希望值(或参考输入)。则控制的任 务可概括为:使被控对象的被控量等于 给定值。
1
下面通过具体例子来说明自动控制和自动控制系统 的概念
15
飞机自动驾驶仪系统原理图
16
控制任务:系统在任何扰动作用下,保持飞机俯仰角不变。
被控对象:飞机。
被控量: 飞机的俯仰角
俯仰角控制系统原理方框图
17
四、复合控制
复合控制就是开环控制和闭环控制相结合的一种控制。实质 上,它是在闭环控制回路的基础上,附加了一个输入信号或 扰动作用的顺馈通路,来提高系统的控制精度。 补偿装置
21
准 是指系统在动态过程结束后,其被控量(或反馈量) 对给定值的偏差而言,这一偏差称为稳态误差,是衡量稳态 精度的指标,反映了系统后期稳态的性能。
以上分析的稳、快、准三方面的性能指标由于被控对象的具 体情况不同,各系统要求有所侧重。而且同一个系统的稳、 快、准的要求是相互制约的。
22
控制器 气动阀门 流入 Q1 浮子 水箱 H 流出 Q2
水位自动控制系统
2
•控制任务:
维持水箱内水位恒定;
•控制装置:
气动阀门、控制器;
•受控对象: 水箱、供水系统; •被控量: 水箱内水位的高度;
3
•给定值: 控制器刻度盘指针标定 的预定水位高度; •测量装置:
浮子;
•比较装置: 控制器刻度盘; •干扰: 水的流出量和流入量的 变化都将破坏水位保持 恒定;