最新人教版高中数学必修1知识点总结-
高一上学期数学知识点归纳
![高一上学期数学知识点归纳](https://img.taocdn.com/s3/m/d6a898af4793daef5ef7ba0d4a7302768e996f0f.png)
新人教版高中数学知识点总结 高中数学必修1知识点第一章集合与函数概念(1)集合的概念集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法表示自然数集,*或表示正整数集,表示整数集,表示有理数集,表示实数集.(3)集合与元素间的关系对象与集合的关系是,或者,两者必居其一.(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{|具有的性质},其中为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集().(6)子集、真子集、集合相等名称记号意义性质示意图子集(或)AB⊇A中的任一元素都属于B(1)A⊆A(2)A∅⊆(3)若BA⊆且B C⊆,则A C⊆(4)若BA⊆且B A⊆,则A B=A(B)或B A N N N+Z QRa M a M∈a M∉x x x∅真子集A ≠⊂B(或B ≠⊃A)B A ⊆,且B中至少有一元素不属于A (1)A ≠∅⊂(A 为非空子集)(2)若A B ≠⊂且B C ≠⊂,则A C≠⊂集合相等A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B (2)B ⊆A (7)已知集合有个元素,则它有个子集,它有个真子集,它有个非空子集,它有非空真子集.(8)交集、并集、补集名称记号意义性质示意图交集{|,x x A ∈且}x B ∈(1)A A A= (2)A ∅=∅ (3)A B A ⊆ 并集{|,x x A ∈或}x B ∈(1)A A A= (2)A A ∅= (3)A B A ⊇ 补集(1)∅=⋂A C AU (2)UA C AU =⋃【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集|x x a <-或}x a >A (1)n n ≥2n 21n -21n -22n -把ax b +看成一个整体,化成||x a <,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法〖〗函数及其表示(1)函数的概念①设、是两个非空的数集,如果按照某种对应法则,对于集合中任何一个数,在集合中都有唯一确定的数和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的一个函数,记作.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法A B f A x B ()f x A B A B f A B :f A B →①设是两个实数,且,满足的实数的集合叫做闭区间,记做;满足的实数的集合叫做开区间,记做;满足,或的实数的集合叫做半开半闭区间,分别记做,;满足的实数的集合分别记做.注意:对于集合与区间,前者可以大于或等于,而后者必须.(3)求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数.②是分式函数时,定义域是使分母不为零的一切实数.③是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数大于零且不等于1.⑤中,.⑥零(负)指数幂的底数不能为零.⑦若是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知的定义域为,其复合函数的定义域应由不等式解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.,a b a b <a x b ≤≤x [,]a b a x b <<x (,)a b a x b ≤<a x b <≤x [,)a b (,]a b ,,,x a x a x b x b ≥>≤<x [,),(,),(,],(,)a a b b +∞+∞-∞-∞{|}x a x b <<(,)a b a b a b <()f x ()f x ()f x tan y x =()2x k k Z ππ≠+∈()f x ()f x [,]a b [()]f g x ()a g x b ≤≤(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数可以化成一个系数含有的关于的二次方程,则在时,由于为实数,故必须有,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6)映射的概念()y f x =y x 2()()()0a y x b y x c y ++=()0a y ≠,x y 2()4()()0b y a y c y ∆=-⋅≥①设、是两个集合,如果按照某种对应法则,对于集合中任何一个元素,在集合中都有唯一的元素和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的映射,记作.②给定一个集合到集合的映射,且.如果元素和元素对应,那么我们把元素叫做元素的象,元素叫做元素的原象.〖〗函数的基本性质(1)函数的单调性①定义及判定方法函数的性质定义图象判定方法如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说f(x)在这个区间上是增函数.(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增)(4)利用复合函数函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f(x 1)>f(x 2),那么就说f(x)在这个区间上是减函数.(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.A B f A B A B A B f A B :f A B →A B ,a A b B ∈∈a b b a a byxo③对于复合函数,令,若为增,为增,则为增;若为减,为减,则为增;若为增,为减,则为减;若为减,为增,则为减.(2)打“√”函数的图象与性质分别在、上为增函数,分别在、上为减函数.(3)最大(小)值定义①一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有;(2)存在,使得.那么,我们称是函数的最大值,记作.②一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有;(2)存在,使得.那么,我们称是函数的最小值,记作.(4)函数的奇偶性①定义及判定方法函数的性质定义图象判定方法[()]y f g x =()u g x =()y f u =()u g x =[()]y f g x =()y f u =()u g x =[()]y f g x =()y f u =()u g x =[()]y f g x =()y f u =()u g x =[()]y f g x =()(0)af x x ax=+>()fx (,-∞)+∞[()y f x =I M x I ∈()f x M ≤0x I ∈0()f x M =M ()f x max ()f x M =()y f x =I m x I ∈()f x m ≥0x I ∈0()f x m =m ()f x max ()f x m =如果对于函数f(x)定义域内任意一个x ,都有f(-x)=-f(x),那么函数f(x)叫做奇函数.(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(-x)=f(x),那么函数f(x)叫做偶函数.(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称)②若函数为奇函数,且在处有定义,则.③奇函数在轴两侧相对称的区间增减性相同,偶函数在轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域;②化解函数解析式;③讨论函数的性质(奇偶性、单调性);④画出函数的图象.利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换②伸缩变换③对称变换(2)识图()f x 0x =(0)0f =y y对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.(3)用图第二章基本初等函数(Ⅰ)〖〗指数函数(1)根式的概念①如果,且,那么叫做的次方根.当是奇数时,的是偶数时,正数的正的次方次方根用符号的次方根是0;负数没有次方根.叫做根指数,叫做被开方数.当为奇数时,为任意实数;当为偶数时,.③根式的性质:;当;当为偶数时,.(2)分数指数幂的概念①正数的正分数指数幂的意义是:且.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:且.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①,,,1n x a a R x R n =∈∈>n N+∈x a n n a n n a n nn a n n a n a n 0a ≥n a =n a =n (0)|| (0) a a a a a ≥⎧==⎨-<⎩0,,,m na a m n N +=>∈1)n >1(0,,,mm n n aa m n N a -+==>∈1)n >(0,,)r s r s a a a a r s R +⋅=>∈②③(4)指数函数〖〗对数函数(1)对数的定义①若,则叫做以为底的对数,记作,其中叫做底数,叫做真数.②负数和零没有对数.③对数式与指数式的互化:.(2)几个重要的对数恒等式,,.()(0,,)r s rs a a a r s R =>∈()(0,0,)r r r ab a b a b r R =>>∈(0,1)x a N a a =>≠且x a N log a x N =a N log (0,1,0)x a x N a N a a N =⇔=>≠>log 10a =log 1a a =log b a a b =(3)常用对数与自然对数常用对数:,即;自然对数:,即(其中…).(4)对数的运算性质如果,那么①加法:②减法:③数乘:④⑤⑥换底公式:(5)对数函数(6)反函数的概念lg N 10log N ln N log e N 2.71828e =0,1,0,0a a M N >≠>>log log log ()a a a M N MN +=log log log a a a MM N N-=log log ()n a a n M M n R =∈log a N a N =log log (0,)b n a a nM M b n R b =≠∈log log (0,1)log b a b N N b b a=>≠且设函数的定义域为,值域为,从式子中解出,得式子.如果对于在中的任何一个值,通过式子,在中都有唯一确定的值和它对应,那么式子表示是的函数,函数叫做函数的反函数,记作,习惯上改写成.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式中反解出;③将改写成,并注明反函数的定义域.(8)反函数的性质①原函数与反函数的图象关于直线对称.②函数的定义域、值域分别是其反函数的值域、定义域.③若在原函数的图象上,则在反函数的图象上.④一般地,函数要有反函数则它必须为单调函数.〖〗幂函数(1)幂函数的定义一般地,函数叫做幂函数,其中为自变量,是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于轴对称);是奇函数时,图象分()y f x =A C ()y f x =x ()x y ϕ=y C ()x y ϕ=x A ()x y ϕ=x y ()x y ϕ=()y f x =1()x f y -=1()y f x -=()y f x =1()x f y -=1()x f y -=1()y f x -=()y f x =1()y f x -=y x =()y f x =1()y f x -=(,)P a b ()y f x ='(,)P b a 1()y f x -=()y f x =y x α=x αy布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在都有定义,并且图象都通过点.③单调性:如果,则幂函数的图象过原点,并且在上为增函数.如果,则幂函数的图象在上为减函数,在第一象限内,图象无限接近轴与轴.④奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数.当(其中互质,和),若为奇数为奇数时,则是奇函数,若为奇数为偶数时,则是偶函数,若为偶数为奇数时,则是非奇非偶函数.⑤图象特征:幂函数,当时,若,其图象在直线下方,若,其图象在直线上方,当时,若,其图象在直线上方,若,其图象在直线下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:②顶点式:③两根式:(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.(0,)+∞(1,1)0α>[0,)+∞0α<(0,)+∞x y ααqpα=,p q p q Z ∈p q qp y x =p q qp y x =p q q py x =,(0,)y x x α=∈+∞1α>01x <<y x =1x >y x =1α<01x <<y x =1x >y x =2()(0)f x ax bx c a =++≠2()()(0)f x a x h k a =-+≠12()()()(0)f x a x x x x a =--≠③若已知抛物线与轴有两个交点,且横线坐标已知时,选用两根式求更方便.(3)二次函数图象的性质①二次函数的图象是一条抛物线,对称轴方程为顶点坐标是.②当时,抛物线开口向上,函数在上递减,在上递增,当时,;当时,抛物线开口向下,函数在上递增,在上递减,当时,.③二次函数当时,图象与轴有两个交点(4)一元二次方程根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程的两实根为,且.令,从以下四个方面来分析此类问题:①开口方向:②对称轴位置:③判别式:④端点函数值符号.①k<x 1≤x 2x ()f x 2()(0)f x ax bx c a =++≠,2bx a=-24(,24b ac b a a--0a >(,2ba-∞-[,)2b a -+∞2b x a=-2min 4()4ac b f x a -=0a <(,]2ba -∞-[,)2b a -+∞2bx a=-2max 4()4ac b f x a -=2()(0)f x ax bx c a =++≠240b ac ∆=->x 11221212(,0),(,0),||||M x M x MM x x =-20(0)ax bx c a ++=≠20(0)ax bx c a ++=≠12,x x 12x x ≤2()f x ax bx c =++a 2bx a=-∆⇔②x1≤x2<k③x1<k<x2af(k)<0④k1<x1≤x2<k2⑤有且仅有一个根x1(或x2)满足k1<x1(或x2)<k2f(k1)f(k2)0,并同时考虑f(k1)=0或f(k2)=0这两种情况是否也符合⑥k1<x1<k2≤p1<x2<p2此结论可直接由⑤推出.(5)二次函数在闭区间上的最值设在区间上的最大值为,最小值为,令.(Ⅰ)当时(开口向上)①若,则②若,则③若,则x叫做函数))((Dxxfy∈=的零点。
人教版高一数学必修一知识点总结大全
![人教版高一数学必修一知识点总结大全](https://img.taocdn.com/s3/m/75c9ebf877eeaeaad1f34693daef5ef7ba0d120e.png)
人教版高一数学必修一知识点总结大全
一、直线与圆
1、直线:
(1)直线定义:两点在同一条直线上,两点之间连续,没有断点,没有重点,它是一种最简单的几何图形。
(2)直线性质:
①直线上任意两点间距离相等;
②平行直线:两条直线,它们的垂直距离等于0;
③垂直直线:两条直线,它们的平行距离等于0;
2、圆:
(1)圆的定义:由一点O以及与它恒定距离连续而不断的点组成的闭合曲线,它是一种特殊的椭圆形。
(2)圆的性质:
①圆的内角和=360°;
②弦分线段:当一条线段与圆相交时,线段两个端点所在的直线必定是对圆的切线。
③弧分线段:当一条线段与圆相交时,线段两个端点所在的直线必定是能够分开圆的弧的切线。
二、空间几何
1、空间几何定义:涉及到空间几何的几何图形指的是以空间上的点、线、面和体为元素进行几何图形绘制的几何图形。
2、空间几何性质:
(1)点:空间中的最小几何单位,它是一个无方向、无大小、只有
位置的几何实体;
(2)线:指空间中的直线,它是由无数点构成的直线段,也可以由
一点内接内垂线构成;
(3)面:由三维空间中的点、线、平面组成的形状,也可以由一线
及该线上的。
高一数学人教版知识点总结
![高一数学人教版知识点总结](https://img.taocdn.com/s3/m/5472a2a4fbb069dc5022aaea998fcc22bcd1432a.png)
高一数学人教版知识点总结一、集合1. 集合的概念- 集合是由一些确定的、不同的对象所组成的整体。
这些对象称为集合的元素。
例如,全体自然数组成一个集合,每一个自然数都是这个集合的元素。
- 集合元素的特性:确定性(给定一个集合,任何一个对象是不是这个集合的元素是确定的)、互异性(集合中的元素互不相同)、无序性(集合中的元素没有顺序之分)。
2. 集合的表示方法- 列举法:把集合中的元素一一列举出来,写在大括号内。
例如{1,2,3}表示由1、2、3这三个元素组成的集合。
- 描述法:用确定的条件表示某些对象是否属于这个集合。
一般形式为{x|p(x)},其中x是集合中的代表元素,p(x)是元素x所满足的条件。
例如{x|x > 0,x∈R}表示所有大于0的实数组成的集合。
- 韦恩图(Venn图):用平面上封闭曲线的内部代表集合。
3. 集合间的基本关系- 子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集,记作A⊂eq B(或B⊃eq A)。
如果A⊂eq B且B中至少有一个元素不属于A,则称A是B的真子集,记作A⊂neqq B。
- 相等:如果A⊂eq B且B⊂eq A,那么A = B。
- 空集varnothing:不含任何元素的集合,空集是任何集合的子集,是任何非空集合的真子集。
4. 集合的基本运算- 交集:由所有属于集合A且属于集合B的元素所组成的集合,记作A∩B={x|x∈ A且x∈ B}。
- 并集:由所有属于集合A或属于集合B的元素所组成的集合,记作A∪ B ={x|x∈ A或x∈ B}。
- 补集:设U是一个全集,A是U的一个子集,由U中所有不属于A的元素组成的集合称为A相对于U的补集,记作∁_U A={x|x∈ U且x∉ A}。
二、函数1. 函数的概念- 设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A 到集合B的一个函数,记作y = f(x),x∈ A。
必修1高一数学人教版最全知识点(必须珍藏)
![必修1高一数学人教版最全知识点(必须珍藏)](https://img.taocdn.com/s3/m/e4e9433bcaaedd3383c4d3cc.png)
高中数学必修1知识点总结目录高中数学必修1知识点总结............................. 错误!未定义书签。
第一章集合与函数概念............................... 错误!未定义书签。
〖〗集合 ............................................ 错误!未定义书签。
【】集合的含义与表示................................. 错误!未定义书签。
【】集合间的基本关系................................. 错误!未定义书签。
【】集合的基本运算................................... 错误!未定义书签。
〖〗函数及其表示 .................................... 错误!未定义书签。
【】函数的概念 ...................................... 错误!未定义书签。
【】函数的表示法 .................................... 错误!未定义书签。
〖〗函数的基本性质................................... 错误!未定义书签。
【】单调性与最大(小)值............................. 错误!未定义书签。
【】奇偶性 .......................................... 错误!未定义书签。
【】函数周期性和对称性............................... 错误!未定义书签。
〖补充知识〗函数的图象............................... 错误!未定义书签。
第二章基本初等函数(Ⅰ) ............................. 错误!未定义书签。
人教版高中数学必修1-第一章知识点知识点归纳[最新版]
![人教版高中数学必修1-第一章知识点知识点归纳[最新版]](https://img.taocdn.com/s3/m/dd7313645acfa1c7aa00cc5c.png)
知识点总结归纳【最新版】适用于老师、学生、家长一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性3、集合的表示:{ …} 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。
非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R3.关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作a∈A ,相反,a不属于集合A 记作a∉A•列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
•描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x∈R| x-3>2}或{x| x-3>2}•4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:二、集合间的基本关系• 1.“包含”关系—子集注意:有两种可能(1)A是B的一部分;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A ⊆B或B ⊇A•2.“相等”关系(5≥5,且5≤5,则5=5)实例:设A= B={-1,1} “元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B①子集:任何一个集合是它本身的子集。
A⊆A②真子集:如果A⊆B,且B⊄A那就说集合A是集合B的真子集,记作A⊈B(或B⊉A)③如果A⊆B, B⊆C ,那么A⊆C④如果A⊆B 同时B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
人教版高中数学必修一知识点归纳总结
![人教版高中数学必修一知识点归纳总结](https://img.taocdn.com/s3/m/1ad7fa26cbaedd3383c4bb4cf7ec4afe04a1b1c7.png)
人教版高中数学必修一知识点归纳总结
本文档总结了人教版高中数学必修一的重要知识点,旨在帮助学生复和梳理相关内容。
第一章:集合与常用数集
- 集合的表示和运算
- 常用数集:自然数集、整数集、有理数集、实数集
- 数集的划分和分类
第二章:集合的运算与应用
- 集合的运算:交集、并集、差集、补集
- 集合间关系的判定和表示
- 集合的应用:概率、分类、调查统计等
第三章:函数基本概念与性质
- 函数的定义和表示
- 函数的自变量、因变量和值域
- 函数的性质:奇偶性、周期性等
第四章:一元一次方程与不等式
- 一元一次方程的解法
- 一元一次不等式的解法
- 一次方程和一次不等式的应用
第五章:平面坐标系与直线的基本性质
- 平面直角坐标系的建立和使用
- 直线方程的表示和性质
- 直线的斜率和截距
第六章:平面向量的基本概念
- 向量的定义和表示
- 向量的运算:加法、数乘
- 向量的模、方向和单位向量
第七章:平面向量的数量积
- 向量的数量积定义和性质
- 向量之间的夹角
- 向量的投影和垂直
以上是人教版高中数学必修一的知识点归纳总结,希望对学生们进行知识回顾和复有所帮助。
更多详细内容请参考教材。
2023年新教材高中人教A版数学必修第一册知识点(8页)全文
![2023年新教材高中人教A版数学必修第一册知识点(8页)全文](https://img.taocdn.com/s3/m/723e555ecd1755270722192e453610661fd95a4d.png)
新教材高一数学必修第—册知识点第一章 集合与常用逻辑用语1元素:研究的对象统称为元素,用小写拉丁字母表示,元素三大性质:互异性,确定性,无 ,,,c b a 序性.2集合:一些元素组成的总体叫做集合,简称集,用大写拉丁字母表示. ,,,C B A 3集合相等:两个集合的元素一样,记作.B A ,B A =4元素与集合的关系:①属于:;②不属于:.A a ∈A a ∉5常用的数集及其记法:自然数集;正整数集;整数集;有理数集;实数集.N +N N 或*Z Q R 6集合的表示方法:①列举法:把集合中的全部元素一一列举出来,并用花括号括起来表示集合的方法;②描述法:把集合中全部具有共同特征的元素所组成的集合表示为的方法; )(x P x })(|{x P A x ∈③图示法(图):用平面上封闭曲线的内部代表集合的方法.Venn 7集合间的根本关系:子集:对于两个集合,如果集合中任意一个元素都是集合中的元素,就B A ,A B 称集合为集合的子集,记作,读作包含于;真子集:如果,但存在元素,且A A A B B A ⊆B x ∈A x ∉,就称集合是集合的真子集,记作,读作真包含于.A B A B A B 8空集:不含任何元素的集合,用表示,空集的性质,空集是任何集合的子集,是任何集合的真子∅集.9集合的根本运算:并集;交集; },|{B x A x x B A ∈∈=或 },|{B x A x x B A ∈∈=且 补集(为全集,全集是含有所研究问题中涉及的全部元素). },|{A x U x x A C U ∉∈=且U 运算性质:;;;;B A B B A ⊆⇔= B A A B A ⊆⇔= A A =∅ ∅=∅ A ,.∅==∅=U C U C A A C C U U U U ,,)()()()(),()()(B A C B C A C B A C B C A C U U U U U U ==10充分条件与必要条件:一般地,“假设p ,则q 〞为真命题,p 可以推出q ,记作,称p 是q 的q p ⇒充分条件,q 是p 的必要条件;p 是q 的条件的四种类型:假设,则p 是q 的充分不必要q q p ,⇒p 条件;假设,则p 是q 的必要充分不条件;假设,则p 是q 的充要条件;p p q ,⇒q q p ⇔假设,,则p 是q 的既不充分也不必要条件. pq q p 11全称量词及全称量词命题:短语“全部的〞,“任意一个〞在逻辑中叫做全称量词,并用符号表∀示,含有全称量词的命题成为全称量词命题.12存在量词及存在量词命题:短语“存在一个〞,“至少有一个〞在逻辑中叫做存在量词,并用符号∃表示,含有存在量词的命题成为存在量词命题.13全称量词命题与存在量词命题的否认:全称量词命题的否认是存在量词命题;存在量词命题的否认是全称量词命题.第二章一元二次函数、方程不等式1不等式的性质不等式的性质: ①对称性;②传递性;③可加性a b b a >⇔<,a b b c a c >>⇒>;④可乘性,;a b a c b c >⇒+>+,0a b c ac bc >>⇒>,0a b c ac bc ><⇒<⑤同向可加性;⑥同向可乘性; ,a b c d a c b d >>⇒+>+0,0a b c d ac bd >>>>⇒>⑦可乘方性;()0,1n n a b a b n n >>⇒>∈N >⑧可开方性.⑨可倒数性. )0,1a b n n >>⇒>∈N >ba b a 110<⇒>>2重要不等式:假设,则,当且仅当时等号成立.R b a ∈,ab b a 222≥+b a =3根本不等式:假设,,则,即,当且仅当时等号成立. 0a >0b >a b +≥2a b+≥b a =4不等式链:假设,,则,当且仅当时等号成立;一正0a >0b >ba ab b a b a 1122222+≥≥+≥+b a =二定三相等.5一元二次不等式:只含有一个未知数,并且未知数的最gao 次数是的不等式. 26第三章 函数的概念与性质1函数的概念:一般地,设是非空的实数集,如果对于集合中的任意一个数x ,按照某种确定的B A ,A 对应关系,在集合中都有唯—确定的数y 与它对应,那么就称为从集合到集合的一f B B A f →:A B 个函数,记作,其中,x 叫做自变量,x 的取值范围叫做函数的定义域,与x 的值相对A x x f y ∈=),(A 应的y 值叫做函数值,函数值的集合叫做函数的值域,值域是集合的子集. }|)({A x x f ∈B 2函数的三要素:定义域、对应关系、值域. 求函数定义域的原则:(1)假设为整式,则其定义域是;()f x R (2)假设为分式,则其定义域是使分母不为0的实数集合;()f x (3)假设是二次根式(偶次根式),则其定义域是使根号内的式子不小于0的实数集合; ()f x (4)假设,则其定义域是; ()0f x x =}{0x x ≠(5)假设,则其定义域是;()()0,1x f x a a a =>≠R (6)假设,则其定义域是; ()()log 0,1a f x x a a =>≠}{0x x >(7)假设,则其定义域是;x x f tan )(=},2|{Z k k x x ∈+≠ππ求函数值域的方法:配方法,换元法,图象法,单调性法等;求函数的解析式的方法:待定系数法,换元法,配凑法,方程组法等;3函数的表示方法:解析法(用函数表达式表示两个变量之间的对应关系)、图象法(用图象表达两个变量之间的对应关系)、列表法(列出表格表示两个变量之间的对应关系).4分段函数:在定义域内,对于自变量x 的不同取值区间,有不同对应关系的函数. 6函数的单调性:(1)单调递增:设任意(,I 是的定义域),当时,有.特别的,当D x x ∈21,I D ⊆()f x 12x x <12()()f x f x <函数在它的定义域上单调递增时,该函数称为增函数;(2)单调递减:设任意(,I 是的定义域),当时,有.特别的,当D x x ∈21,I D ⊆()f x 12x x <12()()f x f x >函数在它的定义域上单调递增时,该函数称为减函数.7单调区间:如果函数在区间上单调递增或单调递减,那么就说函数在这一区间有(严格的)单调性,区间就叫做函数的单调区间,单调区间分为单调增区间和单调减区间. 8复合函数的单调性:同增异减.9函数的最大值、最小值:一般地,设函数的定义域为,如果存在实数满足:,都有)(x f y =I M I x ∈∀;使得,那么称是函数的最大(小)值. ))(()(M x f M x f ≥≤I x ∈∃0M x f =)(0M10函数的奇偶性:偶函数:一般地,设函数的定义域为,如果,都有,且,那么函)(x f y =I I x ∈∀I x ∈-)()(x f x f =-数叫做偶函数;偶函数的图象关于y 轴对称;偶函数满足;)(x f y =|)(|)()(x f x f x f ==-奇函数:一般地,设函数的定义域为,如果,都有,且,那么)(x f y =I I x ∈∀I x ∈-)()(x f x f -=-函数叫做奇函数;奇函数的图象关于原点对称;假设奇函数的定义域中有零,则其函数图象必过原点,即)(x f y =.(0)0f =11幂函数:一般地,函数叫做幂函数,其中是自变量,是常数. αx y =x α12幂函数的性质:()f x x α=①全部的幂函数在都有定义,并且图象都通过点;()0,+∞()1,1②如果,则幂函数的图象过原点,并且在区间上是增函数;0α>[)0,+∞③如果,则幂函数的图象在区间上是减函数,在第—象限内,当从右边趋向于原点时,0α<()0,+∞x 图象在轴右方无限地逼近轴,当趋向于时,图象在轴上方无限地逼近轴; y y x +∞x x ④在直线的右侧,幂函数图象“指大图高〞; 1=x ⑤幂函数图象不出现于第四象限. 第四章 指数函数与对数函数1n 次方根与分数指数幂、指数幂运算性质(1)假设,则;; n x a =))n x n=⎪⎩为奇数为偶数()()a n a n ⎧⎪=⎨⎪⎩为奇数为偶数(3);(4);na =*0,,,1)m na a m n N n =>∈>且(5);*0,,1)m naa m n N n -=>∈>,且(6)的正分数指数幂为,的负分数指数幂没有意义.000(7);()0,,r s r sa a a a r s R +⋅=>∈(8);()()0,,r s rsa a a r s R =>∈(9).()()0,0,,rrrab a b a b r s R =⋅>>∈2对数、对数运算性质(1);(2); ()log 0,1xa a N x N a a =⇔=>≠()log 100,1a a a =>≠(3);(4);;()log 10,1a a a a =>≠()log 0,1a Na N a a =>≠(5);()log 0,1m a a m a a =>≠(6);()log ()log log 0,1,0,0a a a MN M N a a =+>≠M >N >(7); ()log log log 0,1,0,0aa a MM N a a N=->≠M >N >(8);()log log 0,1,0n a a M n M a a =⋅>≠M >(9)换底公式; ()log log 0,1,0,0,1log c a c bb a a bc c a=>≠>>≠(10); ()log log 0,1,,*m na a nb b a a n m N m =>≠∈(11);()1log log 0,1,0,aa M a a M n R n=>≠>∈(12). ()log log log 10,1,0,1,0,1a b c b c a a a b b c c ⋅⋅=>≠>≠>≠3指数函数及其性质:)1,0(≠>=a a a y x 且①定义域为; ②值域为;③过定点;(),-∞+∞()0,+∞()0,1④单调性:当时,函数在上是增函数;当时,函数在上是减函数; 1a >()f x R 01a <<()f x R ⑤在y 轴右侧,指数函数的图象“底大图高〞. 4对数函数及其性质:)1,0(log ≠>=a a x y a 且①定义域为;②值域为;③过定点;()0,+∞(),-∞+∞()1,0④单调性:当时,函数在上是增函数;当时,函数在上是减函1a >()f x ()0,+∞01a <<()f x ()0,+∞数;⑤在直线的右侧,对数函数的图象“底大图低〞.1=x 5指数函数与对数函数互为反函数,它们的图象关于直线对称. x a y =)1,0(log ≠>=a a x y a 且x y =6不同函数增长的差异:线性函数模型的增长特点是直线上升,其增长速度不变;指数)0(>+=k b kx y 函数模型的增长特点是随着自变量的增大,函数值增大的速度越来越快,呈“指数爆炸〞状)1(>=a a y x 态;对数函数模型的增长特点是随着自变量的增大,函数值增大速度越来越慢,即增长)1(log >=a x y a 速度平缓;幂函数模型的增长速度介于指数函数和对数函数之间.)0(>=n x y n 7函数的零点:在函数的定义域内,使得的实数叫做函数的零点.)(x f y =0)(=x f x 8零点存在性定理:如果函数在区间上的图象是连续不断的一条曲线,且有,()f x [],a b ()()0f a f b ⋅<那么函数在区间内至少有一个零点,即存在,使得,这个也就是方程()y f x =(),a b (),c a b ∈()0f c =c 的根.()0f x =9二分法:对于区间上图象连续不断且的函数,通过不断把它的零点所在],[b a ()()0f a f b ⋅<)(x f y =区间一分为二,使得区间的两个端点逐渐逼近零点,进而得到零点近似值的方法.10给定准确度,用二分法求函数零点近似值的步骤: ε)(x f y =0x ⑴确定零点的初始区间,验证; 0x [],a b ()()0f a f b ⋅<⑵求区间的中点;[],a b c ⑶计算,并进一步确定零点所在的区间; )(c f ①假设,则就是函数的零点;0)(=c f c ②假设(此时),则令; 0)()(<c f a f ),(0c a x ∈c b =③假设(此时),则令;0)()(<b f c f ),(0b c x ∈c a =⑷推断是否到达准确度:假设,则得到零点的近似值(或);否则重复上面的⑵至⑷. εa b ε-<a b 第五章 三角函数1任意角的分类:按终边的旋转方向分: ⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2象限角:角的顶点与原点重合,角的始边与轴的非负半轴重合,终边落在第几象限,则称为第αx α几象限角.第—象限角的集合为;{}36036090,k k k αα⋅<<⋅+∈Z 第二象限角的集合为;{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为; {}360180360270,k k k αα⋅+<<⋅+∈Z第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z角的终边不在任何一个象限,就称这个角不属于任何一个象限 α终边在轴非负半轴的角的集合; x },2|{Z k k ∈=παα终边在轴非正半轴的角的集合; x },2|{Z k k ∈+=ππαα终边在轴非负半轴的角的集合;y },22|{Z k k ∈+=ππαα终边在轴非正半轴的角的集合;y },22|{Z k k ∈+-=ππαα终边在轴的角的集合;x },|{Z k k ∈=παα终边在轴的角的集合;y },2|{Z k k ∈+=ππαα终边在坐标轴的角的集合; },2|{Z k k ∈=παα2终边相同的角:与角终边相同的角的集合为.α{}360,k k ββα=⋅+∈Z 3弧度制:长度等于半径长的弧所对的圆心角叫做弧度.14角度与弧度互化公式:,,.2360π=1180π=180157.3π⎛⎫=≈ ⎪⎝⎭5扇形公式:半径为的圆的圆心角所对弧的长为,则角的弧度数的绝对值是.假设扇形r αl αlrα=的圆心角为,半径为,弧长为,周长为,面积为,则,,()αα为弧度制r l C S l r α=2C r l =+.21122S lr r α==6三角函数的概念:设是一个任意大小的角,的终边上任意一点P 的坐标是,它与原点的距αα(),x y离是,则,,. ()0r r =>sin y r α=cos x r α=()tan 0yx xα=≠7三角函数的符号:一全正二正弦三正切四余弦. 8记忆特别角的三角函数值:α 15 30 45 60 75 90 120 135 150180 270 360 α 12π 6π 4π 3π 125π 2π 32π 43π 65π π 23ππ2 αsin 426- 21 22 23 426+ 1 23 22 210 1-0 αcos 426+ 23 22 21 426-0 21- 22- 23-1-01 αtan 32- 1 3 32+不存在 3- 1- 33-0 不存在9同角三角函数的根本关系:,;()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=- .()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫==⎪⎝⎭10诱导公式口诀:奇变偶不变,符号看象限.,,.()()1sin 2sin k παα+=()cos 2cos k παα+=()()tan 2tan k k παα+=∈Z ,,. ()()2sin sin παα+=-()cos cos παα+=-()tan tan παα+=,,.()()3sin sin αα-=-()cos cos αα-=()tan tan αα-=-,,. ()()4sin sin παα-=()cos cos παα-=-()tan tan παα-=-,.,. ()5sin cos 2παα⎛⎫-=⎪⎝⎭cos sin 2παα⎛⎫-= ⎪⎝⎭()6sin cos 2παα⎛⎫+= ⎪⎝⎭cos sin 2παα⎛⎫+=- ⎪⎝⎭11三角函数的图象与性质:sin y x = cos y x =tan y x =图象定义域RR,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R 函数性质12两角和差的正弦、余弦、正切公式:(1);(2); ()cos cos cos sin sin αβαβαβ-=+()cos cos cos sin sin αβαβαβ+=-(3);(4);()sin sin cos cos sin αβαβαβ-=-()sin sin cos cos sin αβαβαβ+=+(5);()tan tan tan 1tan tan αβαβαβ--=+()()tan tan tan 1tan tan αβαβαβ-=-+(6). ()tan tan tan 1tan tan αβαβαβ++=-()()tan tan tan 1tan tan αβαβαβ+=+-13二倍角公式:(1);(2);sin 22sin cos ααα=2222cos 2cos sin 2cos 112sin ααααα=-=-=-(,);(3);2cos 21cos 2αα+=21cos 2sin 2αα-=22tan tan 21tan ααα=-14半角公式:(1);(2);(3);(4)2cos 12sin αα-±=2cos 12cos αα+±=αααcos 1cos 12tan +-±=αααααcos 1sin sin cos 12tan +=-=15辅助角公式:.的终边上在角点其中ϕϕϕ),(,tan ),sin(cos sin 22b a abx b a x b x a =±+=±16函数的图象与性质:b x A y ++=)sin(ϕω图象变换:先平移后伸缩:函数的图象上全部点向左(右)平移个单位长度,得到函数sin y x =ϕ的图象;再将函数的图象上全部点的横坐标伸长(缩短)到原来的倍(纵坐()sin y x ϕ=+()sin y x ϕ=+1ω标不变),得到函数的图象;再将函数的图象上全部点的纵坐标伸长(缩()sin y x ωϕ=+()sin y x ωϕ=+短)到原来的倍(横坐标不变),得到函数的图象. A ()sin y x ωϕ=A +先伸缩后平移:函数的图象上全部点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函sin y x =1ω最值当时,22x k ππ=+()k ∈Z ;当max1y =22x k ππ=-时,.()k ∈Z min 1y =-当时,()2x k k π=∈Z ;当max 1y =2x k ππ=+时,.()k ∈Z min 1y =-既无最大值也无最小值周期性 2π 2ππ奇偶性奇函数 偶函数奇函数单调性在 2,222k k ππππ⎡⎤-+⎢⎥⎣⎦上是增函数;在()k ∈Z 32,222k k ππππ⎡⎤++⎢⎥⎣⎦上是减函数.()k ∈Z 在上是[]()2,2k k k πππ-∈Z 增函数;在[]2,2k k πππ+上是减函数.()k ∈Z 在,22k k ππππ⎛⎫-+ ⎪⎝⎭上是增函数.()k ∈Z 对称性对称中心()(),0k k π∈Z 对称轴()2x k k ππ=+∈Z 对称中心 (),02k k ππ⎛⎫+∈Z ⎪⎝⎭对称轴()x k k π=∈Z 对称中心 (),02k k π⎛⎫∈Z⎪⎝⎭无对称轴数的图象;再将函数的图象上全部点向左(右)平移个单位长度,得到函数sin y x ω=sin y x ω=ϕω的图象;再将函数的图象上全部点的纵坐标伸长(缩短)到原来的倍(横()sin y x ωϕ=+()sin y x ωϕ=+A 坐标不变),得到函数的图象. ()sin y x ωϕ=A +五点法画图函数的性质:()()sin 0,0y x ωϕω=A +A >>①定义域为R ;②值域为;③单调性:依据函数的单调区间求函数的单调区间; ],[A A -x y sin =④奇偶性:当时,函数是奇函数;当时,函数Z k k ∈=,πϕ()sin y x ωϕ=A +Z k k ∈+=,2ππϕ是偶函数;⑤周期:;⑥对称性:依据函数的对称性研究函数的对称()sin y x ωϕ=A +ωπ2=T x y sin =性12π17函数的应用B x A y ++=)sin(ϕω①振幅:A ;②周期:;③频率:;④相位:;⑤初相:.2πωT =12f ωπ==T x ωϕ+ϕ⑥最值:函数,当时,取得最小值为 ;当时,取得最大值为B x A y ++=)sin(ϕω1x x =min y 2x x =maxy ,则,,.()max min 12y y A =-()max min 12y y B =+()21122x x x x T=-<。
高中数学(新人教版)必修一知识点归纳
![高中数学(新人教版)必修一知识点归纳](https://img.taocdn.com/s3/m/eed9d244a7c30c22590102020740be1e640ecc5b.png)
高中数学(新人教版)必修一知识点归纳
本文将归纳高中数学(新人教版)必修一的主要知识点。
以下是
各个主题的简要概述:
1. 数与式
- 数的分类:自然数、整数、有理数、实数等。
- 代数式:基本概念、多项式、公式等。
- 幂与乘方:指数、乘方、幂等运算。
- 整式的加减法:同类项、整式的加减法规则。
- 分式:基本概念、分式的性质与化简等。
2. 一元一次方程与不等式
- 一元一次方程:基本概念、解方程的方法、应用问题等。
- 一元一次不等式:基本概念、解不等式的方法、应用问题等。
3. 函数及其图像
- 函数与自变量、函数与因变量的关系。
- 函数的表示与性质:映射、函数图像、奇偶性等。
- 一次函数:定义、性质、图像、方程等。
- 反函数与复合函数:定义、性质、求反函数、求复合函数等。
4. 等差数列
- 等差数列的定义与性质。
- 等差数列的前n项和与通项公式。
- 应用问题:等差数列应用于数学与生活中的实际问题。
5. 平面向量
- 向量的基本概念与表示法。
- 向量的运算:加法、数乘等。
- 向量共线与共面的判定。
- 向量的数量积与模的概念与性质。
6. 不等式与线性规划
- 不等式的基本性质与解法。
- 一元一次不等式组:基本概念、解法、应用问题等。
- 线性规划的基本概念与常见问题。
以上是高中数学(新人教版)必修一的主要知识点的简要归纳。
详细内容可以参考相关教材或课堂讲义。
希望这份归纳对你有帮助!。
人教版高中数学必修一知识点总结
![人教版高中数学必修一知识点总结](https://img.taocdn.com/s3/m/521311c8294ac850ad02de80d4d8d15abf23006c.png)
人教版高中数学必修一知识点总结一、知识概述1. 集合①基本定义:集合就像是一个装东西的袋子,把确定的、不同的东西放在一起。
比如咱班里的所有同学就可以看成一个集合。
②重要程度:在高中数学里那是相当重要的基础概念,很多后面的知识都会用到集合的思想。
③前置知识:初中就接触过一些数的概念,这是理解集合的铺垫。
④应用价值:在统计分类、计算机的数据结构方面都有用,像统计不同年龄段的人数,就可以用集合思想先把人按年龄分类成不同集合。
2. 函数①基本定义:简单说函数就是一个输入某个值会得到唯一输出值的东西。
像投篮,根据出手角度这个输入值,球进与否或者球的落点有一个对应的结果(输出值)。
②重要程度:函数贯穿整个高中数学,代数方面大部分研究都和函数有关。
③前置知识:掌握变量的概念比较重要,像小学初中知道的路程= 速度×时间,这里路程、速度、时间就是变量。
④应用价值:生活中根据体重计算健康指数、根据房子面积计算房价都是函数在生活中的体现。
二、知识体系1. 集合部分①知识图谱:集合是数学基础概念,为后面函数定义域等概念做准备。
②关联知识:和逻辑关系紧密,像子集的概念就和逻辑里的包含关系很类似。
像是班级女学生组成的集合是班级所有学生组成集合的子集。
③重难点分析:掌握集合的各种表示方法(列举法、描述法)有点难,而且要搞清元素和集合的关系、集合与集合的关系。
关键在于理解集合概念的本质。
④考点分析:考试里经常考集合的表示、集合间的运算(交并补),大多以选择题或者填空题形式出现。
2. 函数部分①知识图谱:函数处于高中数学核心位置,关联方程、不等式等知识。
②关联知识:函数和方程紧密相关,函数的零点就是方程的根。
比如y = x²- 1这个函数,当y = 0时,就是x²- 1 = 0这个方程,解得x 就叫函数的零点。
③重难点分析:函数的定义域、值域这是难点,还有函数单调性、奇偶性的理解。
关键点在于多画图去直观感受。
人教版高一数学必修一知识点难点总结分享(共5篇)
![人教版高一数学必修一知识点难点总结分享(共5篇)](https://img.taocdn.com/s3/m/6147bed2cd22bcd126fff705cc17552706225e5b.png)
人教版高一数学必修一知识点难点总结分享第1篇集合有以下性质若A包含于B,则A∩B=A,A∪B=B集合的表示方法集合常用大写拉丁字母来表示,如:A,B,C…而对于集合中的元素则用小写的拉丁字母来表示,如:a,b,c…拉丁字母只是相当于集合的名字,没有任何实际的意义。
将拉丁字母赋给集合的方法是用一个等式来表示的,例如:A={…}的形式。
等号左边是大写的拉丁字母,右边花括号括起来的,括号内部是具有某种共同性质的数学元素。
常用的有列举法和描述法。
1.列举法﹕常用于表示有限集合,把集合中的所有元素一一列举出来﹐写在大括号内﹐这种表示集合的方法叫做列举法。
{1,2,3,……}2.描述法﹕常用于表示无限集合,把集合中元素的公共属性用文字﹐符号或式子等描述出来﹐写在大括号内﹐这种表示集合的方法叫做描述法。
{x|P}(x为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于π的正实数组成的集合表示为:{x|0 4.自然语言常用数集的符号:(1)全体非负整数的集合通常简称非负整数集(或自然数集),记作N;不包括0的自然数集合,记作N_(2)非负整数集内排除0的集,也称正整数集,记作Z+;负整数集内也排除0的集,称负整数集,记作Z-(3)全体整数的集合通常称作整数集,记作Z(4)全体有理数的集合通常简称有理数集,记作Q。
Q={p/q|p∈Z,q∈N,且p,q互质}(正负有理数集合分别记作Q+Q-)(5)全体实数的集合通常简称实数集,记作R(正实数集合记作R+;负实数记作R-)(6)复数集合计作C集合的运算:集合交换律A∩B=B∩AA∪B=B∪A集合结合律(A∩B)∩C=A∩(B∩C)(A ∪B)∪C=A∪(B∪C)集合分配律A∩(B∪C)=(A∩B)∪(A∩C)A∪(B∩C)=(A∪B)∩(A∪C)集合德.摩根律集合Cu(A∩B)=CuA∪CuBCu(A∪B)=CuA∩CuB集合“容斥原理”在研究集合时,会遇到有关集合中的元素个数问题,我们把有限集合A的元素个数记为card(A)。
高一数学必修一知识点总结人教
![高一数学必修一知识点总结人教](https://img.taocdn.com/s3/m/b6174bddd5d8d15abe23482fb4daa58da0111c23.png)
高一数学必修一知识点总结人教高一数学必修一是数学课程的基础,是后续学习的重要基石。
本文将为你总结高一数学必修一的主要知识点,希望能够帮助你更好地学习和掌握这些内容。
第一章相似与全等1. 相似三角形的判定条件- AAA 相似判定法:两个三角形对应角相等。
- AA 相似判定法:两个三角形有两个对应角相等,且对应边成比例。
- SAS 相似判定法:两个三角形的对应两边成比例,且夹角相等。
2. 相似三角形的性质和应用- 长度比例关系:对应边比例相等,对应角相等。
- 面积比例关系:面积比例等于边长比例的平方。
- 重心、垂心、外心、内心等的位置关系。
- 相似三角形的几何应用。
3. 全等三角形的判定条件- SSS 全等判定法:两个三角形的三边对应相等。
- SAS 全等判定法:两个三角形有两边及其夹角对应相等。
- ASA 全等判定法:两个三角形有两个角及其夹边对应相等。
- AAS 全等判定法:两个三角形有两个角及其对边对应相等。
4. 全等三角形的性质和应用- 证明等腰三角形的性质。
- 证明直角三角形的性质。
- 证明等边三角形的性质。
第二章平面向量1. 向量的概念及运算- 平面向量的定义和表示。
- 向量的加法、减法和数乘。
- 向量的数量积和向量积。
2. 向量的应用- 向量几何问题的分析与处理。
- 判断向量共线和垂直的方法。
- 平行四边形和三角形的面积计算。
第三章二次函数1. 二次函数的图像特征- 平移变换和伸缩变换。
- 最值点和零点的性质。
- 对称轴和对称点的关系。
2. 二次函数的性质与应用- 二次函数的单调性与求解方程。
- 二次函数与一次函数的关系。
- 二次函数在几何中的应用。
3. 二次函数图像的绘制- 根据函数的参数绘制函数图像。
- 根据函数图像确定函数的参数。
第四章导数与微分1. 导数的概念和性质- 导数的定义与几何意义。
- 导数的四则运算法则。
- 导数与函数图像的关系。
2. 导数的应用- 导数表示函数的变化率。
高一数学必修一知识点总结人教(3篇)
![高一数学必修一知识点总结人教(3篇)](https://img.taocdn.com/s3/m/85b6503e77c66137ee06eff9aef8941ea76e4b27.png)
高一数学必修一知识点总结人教1.知识网络图复数知识点网络图2.复数中的难点(1)复数的向量表示法的运算.对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难.对此应认真体会复数向量运算的几何意义,对其灵活地加以证明.(2)复数三角形式的乘方和开方.有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练.(3)复数的辐角主值的求法.(4)利用复数的几何意义灵活地解决问题.复数可以用向量表示,同时复数的模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会.3.复数中的重点(1)理解好复数的概念,弄清实数、虚数、纯虚数的不同点.(2)熟练掌握复数三种表示法,以及它们间的互化,并能准确地求出复数的模和辐角.复数有代数,向量和三角三种表示法.特别是代数形式和三角形式的互化,以及求复数的模和辐角在解决具体问题时经常用到,是一个重点内容.(3)复数的三种表示法的各种运算,在运算中重视共轭复数以及模的有关性质.复数的运算是复数中的主要内容,掌握复数各种形式的运算,特别是复数运算的几何意义更是重点内容.(4)复数集中一元二次方程和二项方程的解法.数学教学心得如果以上的表述并不具有数学学科的特点的话,那么加上一个定语——让学生用数学的眼光进行数学思考。
比如,百货店的促销信息,人们不仅会关注哪个折扣低,还会关注标价的高低。
美国统计学家戴维穆尔的《统计学的世界》一书中有幅漫画,画的是一个人误以为平均水深就是每一个地方都是这样的水深而溺水死亡,从侧面反映了数学常识在现实生活中的作用。
数学地思考,是数学学习的更高目标。
数学学习过程中所倡导的思考方式是具有学科特点的。
看到一幅图画时,别的学科可能关注的是这幅图是多么的美观,但是对于数学学习来说,教师需要引导学生关注这个图形的组成与分解,引导学生思考的是多边形线的条数等。
这种量化、精确化的思考方式是数学教学最根本的目标价值所在。
新人教版高一数学知识点
![新人教版高一数学知识点](https://img.taocdn.com/s3/m/5618caed0d22590102020740be1e650e52eacf16.png)
新人教版高一数学知识点高一上册数学必修一知识点梳理函数的性质函数的单调性(局部性质)(1)增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质;(2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A)定义法:(1)任取x1,x2∈D,且x1(2)作差f(x1)-f(x2);或者做商(3)变形(通常是因式分解和配方);(4)定号(即判断差f(x1)-f(x2)的正负);(5)下结论(指出函数f(x)在给定的区间D上的单调性).(B)图象法(从图象上看升降)(C)复合函数的单调性复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.函数的奇偶性(整体性质)(1)偶函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2)奇函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.(3)具有奇偶性的函数的图象的特征:偶函数的图象关于y轴对称;奇函数的图象关于原点对称.9.利用定义判断函数奇偶性的步骤:1首先确定函数的定义域,并判断其是否关于原点对称;2确定f(-x)与f(x)的关系;3作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.高一数学必修五知识点总结⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.⑶若{a}、{b}为等差数列,则{a±b}与{ka+b}(k、b为非零常数)也是等差数列.⑷对任何m、n,在等差数列{a}中有:a=a+(n-m)d,特别地,当m=1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l+k+p+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等差数列时,有:a+a+a+…=a+a+a+….⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd(k为取出项数之差).⑺如果{a}是等差数列,公差为d,那么,a,a,…,a、a也是等差数列,其公差为-d;在等差数列{a}中,a-a=a-a=md.(其中m、k、)⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.⑽设a,a,a为等差数列中的三项,且a与a,a与a的项距差之比=(≠-1),则a=.⑴数列{a}为等差数列的充要条件是:数列{a}的前n项和S可以写成S=an+bn的形式(其中a、b为常数).⑵在等差数列{a}中,当项数为2n(nN)时,S-S=nd,=;当项数为(2n-1)(n)时,S-S=a,=.⑶若数列{a}为等差数列,则S,S-S,S-S,…仍然成等差数列,公差为.⑷若两个等差数列{a}、{b}的前n项和分别是S、T(n为奇数),则=.⑸在等差数列{a}中,S=a,S=b(n>m),则S=(a-b).⑹等差数列{a}中,是n的一次函数,且点(n,)均在直线y=x+(a-)上.⑺记等差数列{a}的前n项和为S.①若a>0,公差d<0,则当a≥0且a≤0时,S;②若a<0,公差d>0,则当a≤0且a≥0时,S 最小.高一数学学习方法参考基础是关键,课本是首选首先,新高一同学要明确的是:高一数学是高中数学的重点基础。
(完整)人教版数学必修1知识点总结及典型例题解析,推荐文档
![(完整)人教版数学必修1知识点总结及典型例题解析,推荐文档](https://img.taocdn.com/s3/m/1506590fdd3383c4ba4cd203.png)
人教版数学必修1知识点总结及典型例题解析第一章 集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY 的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
◆注意:常用数集及其记法:非负整数集(即自然数集) 记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x ∈R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn 图:4、集合的分类:(1)有限集 含有有限个元素的集合(2)无限集 含有无限个元素的集合(3)空集 不含任何元素的集合 例:{x|x 2=-5}二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A 是B 的一部分,;(2)A 与B 是同一集B A ⊆合。
反之: 集合A 不包含于集合B,或集合B 不包含集合A,记作A B 或B A ⊆/⊇/2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x 2-1=0} B={-1,1} “元素相同则两集合相等”即:① 任何一个集合是它本身的子集。
A ⊆A ②真子集:如果A ⊆B,且A ≠ B 那就说集合A 是集合B 的真子集,记作A B(或B A)③如果 A ⊆B, B ⊆C ,那么 A ⊆C ④ 如果A ⊆B 同时 B ⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
(人教版)高一数学必修一知识点总结
![(人教版)高一数学必修一知识点总结](https://img.taocdn.com/s3/m/c44d5c9677eeaeaad1f34693daef5ef7ba0d12a4.png)
(人教版)高一数学必修一知识点总结
一、函数与方程
1. 函数的概念:函数是一种特殊的关系,它将一个元素与另一个唯一确定的元素相对应。
2. 函数的表示方式:函数可以通过图像、表格、公式等方式来表示。
3. 方程的概念:方程是含有未知数的等式,通过求解方程可以确定未知数的值。
4. 一次函数:一次函数的形式为y = kx + b,其中k和b为常数。
二、三角函数
1. 弧度制与角度制:弧度制是一种角度的度量单位,角度制是另一种度量单位。
2. 正弦、余弦和正切:正弦函数表示一个角的对边与斜边之间的比值,余弦函数表示一个角的邻边与斜边之间的比值,正切函数表示一个角的对边与邻边之间的比值。
三、平面向量
1. 平面向量的表示:平面向量可以用坐标表示,如向量AB可以表示为AB = (x₁, y₁)。
2. 向量的运算:向量可以进行加法和数乘运算,如两个向量的和可以表示为R = A + B。
3. 向量的模长:向量的模长表示向量的长度,可以通过坐标计算得到。
四、三角形与三角比
1. 三角形的分类:根据边长和角度的不同,三角形可以分为等边三角形、等腰三角形和普通三角形。
2. 三角比的定义:三角比是指在特定角度下,三角函数值的比例关系,如正弦比、余弦比和正切比。
以上是(人教版)高一数学必修一的知识点总结,希望对你的学习有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ …} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x∈R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
注意:B反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A⊆A②真子集:如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A)③如果A⊆B, B⊆C ,那么A⊆C④如果A⊆B 同时B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集,2n-2个非空真子集二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x 叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)(见课本21页相关例2)2.值域: 先考虑其定义域(1)观察法(2)配方法(3)代换法3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .(2) 画法A、描点法:B、图象变换法常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.5.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。
记作“f(对应关系):A (原象)→B(象)”对于映射f:A→B来说,则应满足:(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象。
6.分段函数(1)在定义域的不同部分上有不同的解析表达式的函数。
(2)各部分的自变量的取值情况.(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.补充:复合函数如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A) 称为f、g的复合函数。
二.函数的性质1.函数的单调性(局部性质)(1)增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间.如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2 时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质;(2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A) 定义法:任取x1,x2∈D,且x1<x2;作差f(x1)-f(x2);变形(通常是因式分解和配方);定号(即判断差f(x1)-f(x2)的正负);下结论(指出函数f(x)在给定的区间D上的单调性).(B)图象法(从图象上看升降)(C)复合函数的单调性复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.8.函数的奇偶性(整体性质)(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2).奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.利用定义判断函数奇偶性的步骤:○1首先确定函数的定义域,并判断其是否关于原点对称;○2确定f(-x)与f(x)的关系;○3作出相应结论:若f(-x) = f(x) 或f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或f(-x)+f(x) = 0,则f(x)是奇函数.注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .9、函数的解析表达式(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)求函数的解析式的主要方法有:1)凑配法2)待定系数法3)换元法4)消参法10.函数最大(小)值(定义见课本p36页)○1利用二次函数的性质(配方法)求函数的最大(小)值○2利用图象求函数的最大(小)值○3利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);第二章 基本初等函数一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果a x n=,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.◆ 负数没有偶次方根;0的任何次方根都是0,记作00=n 。
当n 是奇数时,a a n n =,当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a n n2.分数指数幂正数的分数指数幂的意义,规定:)1,,,0(*>∈>=n N n m a a an m nm ,)1,,,0(11*>∈>==-n N n m a a aanmnm nm◆ 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)ra ·sr ra a +=),,0(R s r a ∈>; (2)rs s r a a =)(),,0(R s r a ∈>; (3)s r r a a ab =)(),,0(R s r a ∈>.(二)指数函数及其性质1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x且叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2(1)在[a ,b]上,)1a 0a (a )x (f x≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [;(3)对于指数函数x≠>=且,总有a )1(f =;二、对数函数(一)对数1.对数的概念:一般地,如果N a x=)1,0(≠>a a ,那么数x 叫做以.a 为底..N的对数,记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 说明:○1 注意底数的限制0>a ,且1≠a ;○2 x N N a a x =⇔=log ;○3 注意对数的书写格式. 两个重要对数:○1 常用对数:以10为底的对数N lg ; ○2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . ◆◆ 指数式与对数式的互化幂值 真数N = b指数 对数(二)对数的运算性质如果0>a ,且1≠a ,0>M ,0>N ,那么: ○1 M a (log ·=)N M a log +N a log ; ○2 =NMa log M a log -N a log ;○3 n a M log n =M a log )(R n ∈. 注意:换底公式abb c c a log log log =(0>a ,且1≠a ;0>c ,且1≠c ;0>b ).利用换底公式推导下面的结论 (1)b m nb a n a m log log =;(2)a b ba log 1log =. (二)对数函数1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。