高中数学_线性规划知识复习

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中必修5线性规划

最快的方法

简单的线性规划问题

一、知识梳理

1. 目标函数: P=2x+y是一个含有两个变量x和y的函数,称为目标函数.

2.可行域:约束条件所表示的平面区域称为可行域.

3. 整点:坐标为整数的点叫做整点.

4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决.

5. 整数线性规划:要求量取整数的线性规划称为整数线性规划.

二、疑难知识导析

线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科.主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定的条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务.

1.对于不含边界的区域,要将边界画成虚线.

2.确定二元一次不等式所表示的平面区域有多种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一侧为所求的平面区域.若直线不过原点,通常选择原点代入检验.

3. 平移直线y=-kx+P时,直线必须经过可行域.

4.对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点.

5.简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.

积储知识:

一. 1.点P(x0,y0)在直线Ax+By+C=0上,则点P坐标适合方程,即Ax0+By0+C=0

2. 点P(x0,y0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax0+By0+C>0;当B<0时,Ax0+By0+C<0

3. 点P(x0,y0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax0+By0+C<0;当B<0时,Ax0+By0+C>0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同, (2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反, 即:1.点P(x1,y1)和点Q(x2,y2)在直线 Ax+By+C=0的同侧,则有(Ax1+By1+C)(Ax2+By2+C)>0

2.点P(x1,y1)和点Q(x2,y2)在直线 Ax+By+C=0的两侧,则有(Ax1+By1+C)( Ax2+By2+C)<0

二.二元一次不等式表示平面区域:

①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的

平面区域. 不.包括边界;

②二元一次不等式Ax+By+C≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成

的平面区域且包括边界;

注意:作图时,不包括边界画成虚线;包括边界画成实线.

三、判断二元一次不等式表示哪一侧平面区域的方法:

方法一:取特殊点检验; “直线定界、特殊点定域

原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x0,y0),从Ax0+By0+C的正负即可判断

Ax+By+C>0表示直线哪一侧的平面区域.特殊地,当C≠0时,常把原点作为特殊点,当C=0时,可用

(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。

方法二:利用规律:

1.Ax+By+C>0,当B>0时表示直线Ax+By+C=0上方(左上或右上),

当B<0时表示直线Ax+By+C=0下方(左下或右下);

2.Ax+By+C<0,当B>0时表示直线Ax+By+C=0下方(左下或右下)

当B<0时表示直线Ax+By+C=0上方(左上或右上)。

四、线性规划的有关概念:

①线性约束条件: ②线性目标函数:

③线性规划问题: ④可行解、可行域和最优解:

典型例题一--------画区域

1. 用不等式表示以)4,1(A ,)0,3(-B ,)2,2(--C 为顶点的三角形内部的平面区域.

分析:首先要将三点中的任意两点所确定的直线方程写出,然后结合图形考虑三角形内部区域应怎样表示。 解:直线AB 的斜率为:1)3(104=---=AB k ,其方程为3+=x y . 可求得直线BC 的方程为62--=x y .直线AC 的方程为22+=x y .

ABC ∆的内部在不等式03>+-y x 所表示平面区域内,同时在不等式

062>++y x 所表示的平面区域内,同时又在不等式022<+-y x 所表

示的平面区域内(如图).

所以已知三角形内部的平面区域可由不等式组⎪⎩

⎪⎨⎧<+->++>+-022,062,

03y x y x y x 表示.

说明:用不等式组可以用来平面内的一定区域,注意三角形区域内部不包括边界线.

2 画出332≤<-y x 表示的区域,并求所有的正整数解),(y x .

解:原不等式等价于⎩⎨⎧≤->.3,32y x y 而求正整数解则意味着x ,y 还有限制条件,即求⎪⎪⎩⎪⎪⎨⎧≤->∈∈>>.

3,

32,,,0,0y x y z y z x y x . 依照二元一次不等式表示的平面区域,

知332≤<-y x 表示的区域如下图:

对于332≤<-y x 的正整数解,容易求

得,在其区域内的整数解为

)1,1(、)2,1(、)3,1(、)2,2(、)3,2(.

3设0≥x ,0≥y ,0≥z ;z y x p 23++-=,

z y x q 42+-=,1=++z y x ,用图表示出点

),(q p 的范围.

分析:题目中的p ,q 与x ,y ,z 是线性关系.

可借助于x ,y ,z 的范围确定),(q p 的范围.

解:由⎪⎩⎪⎨⎧=++=+--=--,1,42,23z y x q z y x p z y x 得⎪⎪⎪⎩

⎪⎪⎪⎨⎧++=+-=-+=),345(271),3514(271),68(271q p z p q y p q x

相关文档
最新文档