最新七年级上册数学数轴动点问题压轴题专题练习3
2023-2024年人教版七年级上册数学期末动点问题压轴题专题训练(含答案)
2023-2024年人教版七年级上册数学期末动点问题压轴题专题训练(1) ______, ______(1)若点P 到A 、B 两点的距离都相等,请直接写出点P 对应的数(2)数轴上是否存在点P ,使点P 到点A ,点B 的距离之和为10=a b =(1)___________,___________.(2)若在数轴上有两动点、分别从同时出发向右运动,点的速度为2个单位长度/秒,点的速度为1个单位长度秒,当点在点追上了点,求点对应的数为多少?=a c =P Q A B ,P Q P D Q D(1)写出数轴上点B 表示的数 ;(2)表示5与3之差的绝对值,实际上也可理解为(1)求出线段的长度;(1)点表示的数为________,点|53|-AB A(1)请直接写出a 、b 、c 的值. ______,设点P 运动时间为t 秒.(1)若M ,N ,P 三点同时出发,=a(1)数轴上点B 表示的数是 ;当点P 运动到(1)则______,______. A =a b =(1)A 点所表示的数是___________,C 点所表示的数是___________;(2)若动点P 从点C 出发,以每秒3个单位长度的速度沿数轴向左移动,同时另一动点Q 恰好从点A 出发,以每秒2个单位长度的速度沿数轴向右移动,设点P 和点Q 在数轴上的点M 相遇,求点M所表示的数是多少?(3)若动点P 从C 点出发,以每秒3个单位长度的速度沿数轴向左运动,另一动点Q 恰好从A 点出发,以每秒2个单位长度的速度沿数轴也向左运动,是否存在时间t ,使得P ,Q 到原点的距离相等,并求出此时点P 和点Q 所表示的数.13.如图,点在线段上,,,动点从点出发,沿线段以每秒个单位长度的速度向终点匀速运动;同时,动点从点出发,沿线段以每秒个单位长度的速度向终点匀速运动.当点到达终点时,点也随之停止运动.设点的运动时间为秒.(1)线段的长为______.(2)当点与点相遇时,求的值.(3)当点与点之间的距离为个单位长度时,求的值.(4)当时,直接写出的值.14.如图,在数轴上点A 、C 、B 表示的数分别是、1、12.动点P 从点A 出发,沿数轴以每秒3个单位长度的速度向终点B 匀速运动;同时,点Q 从点B 出发,沿数轴以每秒2个单位长度的速度向终点A 匀速运动,设点Q 的运动时间为t 秒.C AB 3AC =11BC =P A AB 3B Q B BA 2A P Q P t AB P Q t P Q 9t 2.5PC QB +=t 8-(1)的长为________;AB(2)当点P与点Q相遇时,求t的值;(1)点A表示的数为___________,点B表示的数为(1)OA=__________cm,OB=__________cm参考答案:。
七年级数学上册1.2.2 数轴-数轴上的动点问题 填空题专项练习三(人教版,含解析)
2021-2022学年度人教版七年级数学上册练习三1.2.2 数轴-数轴上的动点问题1.如图,在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A向左移动2个单位长度到达点 A1,第二次将点A1,向右移动4个单位长度到达点A2,第三次将点A2向左移动6个单位长度到达点A3,按照这种移动规律移动下去,第n次移动到点An,如果点An与原点的距离等于19,那么n的值是__.2.整数,a b在数轴上的位置如图所示,已知a的绝对值是b的绝对值的3倍,则此数轴的原点是图中,,,A B C D的点________.3.已知P是数轴上的一点,且点P到原点的距离为3,把点P沿数轴向左移动5个单位长度后得到点Q,则点Q表示的有理数是__________.4.等边三角形ABC(三条边都相等的三角形是等边三角形)在数轴上的位置如图所示,点A,B对应的数分别为0和1-,若ABC绕着顶点顺时针方向在数轴上翻转1次后,点C所对应的数为1,则再翻转3次后,点C所对应的数是________.5.点A到原点的距离为4,且位于原点的左侧,若一个点从A处向右移动2个单位长度,再向左移动7个单位长度,此时终点所表示的数为__.6.点A在数轴上距原点3个单位长度,若将点A向右移动4个单位长度,再向左移动1个单位长度,此时点A所表示的数是________.7.数轴上点A表示的数是3-,将点A在数轴上平移7个单位长度得到点B.则点B表示的数是___________.8.一个点从数轴上的原点开始,先向右移动1个单位长度,再向左移动2个单位长度,再向右移动3个单位长度,再向左移动4个单位长度,……,移动2020次后,该点所对应的数是_______________________.9.长方形ABCD 在数轴上的位置如图所示,点,B C 对应的数分别为2-和1,2CD -=.若长方形ABCD 绕着点C 顺时针方向在数轴上翻转,翻转第1次后,点D 所对应的数为1;绕点D 翻转第2次后点4对应的数为2;以此类推继续翻转,则翻转2020次后,落在数轴上的两点所对应的数中较大的是_______________________.10.一质点P 从距原点1个单位的A 点处向原点方向跳动,第一次跳动到OA 的中点1A 处,第二次从1A 点跳动到1OA 的中点2A 处,第三次从2A 点跳动到2OA 的中点3A 处,如此不断跳动下去,则第7次跳动后,该7A A 的长度为__________.11.点M 表示的有理数是-1,点M 在数轴上移动5个单位长度后得到点N ,则点N 表示的有理数是________.12.如图,将一个半径为1个单位长度的圆片上的点A 放在原点,并把圆片沿数轴滚动1周,点A 到达点A '的位置,则点A '表示的数是 _______;若起点A 开始时是与—1重合的,则滚动2周后点A '表示的数是______.13.一把刻度尺如图所示放在数轴上(单位长度为1 cm),数轴的原点对应刻度尺上的3.6 cm ,点A 和点B 分别对应刻度尺上的“15 cm”和“0 cm”,则点A 与点B 在数轴上分别表示数________和________.14.一个点从数轴上的原点开始,先向右移动1个单位长度,再向左移动2个单位长度,再向右移动3个单位长度,再向左移动4个单位长度,……,移动2019次后,该点所对应的数是_____.15.数轴上的点A 表示-5,从点A 出发沿数轴向右移动6个单位到达点B ,则B 表示的数是_________16.如图,在数轴上,点A 表示1,现将点A 沿轴做如下移动,第一次点A 向左移动3个单位长度到达点,第二次将点向右移动6个单位长度到达点,第三次将点向左移动9个单位长度到达点,按照这种移动规律移动下去,第次移动到点,如果点与原点的距离不小于20,那么的最小值是_____.17.如图,求直径为2 的半圆图形从原点出发向右不滑动翻转2016 周后落在数轴上的点所对应的有理数是_____________________.18.一个小球落在数轴上的某点0P ,第一次从点0P 向左跳1个单位长度到点1P ,第二次从点1P 向右跳2个单位长度到点2P ,第三次从点2P 向左跳3个单位长度到点3P,第四次从点3P 向右跳4个单位长度到点4P ,...,按以上规律跳了100次时,它落在数轴上的点100P 所表示的数恰好是2018,则这个小球的初始位置点0P 所表示的数是_____.19.一只蚂蚁从数轴上点 A 出发,爬了 4 个单位长度到了原点,则 A 所表示的数是_____。
七年级数学上册1.2.2 数轴-数轴上的动点问题 解答题专项练习三(人教版,含解析)
2021-2022学年度人教版七年级数学上册练习三1.2.2 数轴-数轴上的动点问题1.阅读下列材料:我们知道|x|的几何意义:在数轴上,数x对应的点与原点的距离,即|x|=|x-0|.也就是说,|x|表示在数轴上数x与数0对应的点之间的距离.这个结论可以推广为|x1-x2|表示在数轴上数x1与数x2对应的点之间的距离.已知|x-1|=2,求x的值.解:在数轴上,与1对应的点的距离为2的点表示的数为3和-1,即x的值为3或-1.依照阅读材料的解法,求式子中x的值:|x+2|=4.2.A、B两个动点在数轴上做匀速运动,它们的运动时间以及位置记录如下.(1)根据题意,填写下列表格;说明理由;(3) A、B两点能否相距9个单位长度,如果能,求相距9个单位长度的时刻;如不能,请说明理由.3.根据给出的数轴,回答下列问题:(1)写出点A表示的数的相反数和点B表示的数的绝对值;(2)将点A先向右移动1.5个单位长度,再向左移动5个单位长度,得到点C,在数轴上表示出点C,并写出点C表示的数.4.如图,已知点O是原点,点A在数轴上,点A表示的数为-6,点B在原点的右侧,且OB=43 OA,(1)点B对应的数是_________,在数轴上标出点B。
(2)已知点P、点Q是数轴上的两个动点,点P从点A出发,以1个单位/秒的速度向右运动,同时点Q从点B出发,以3个单位/秒的速度向左运动;①用含t的式子分别表示P、Q两点表示的数:P是__________;Q是____________;②若点P和点Q经过t秒后在数轴上的点D处相遇,求出t的值和点D所表示的数;③求经过几秒,点P与点Q分别到原点的距离相等?5.对数轴上的点P进行如下操作:先把点P表示的数乘以3,再把所得数对应的点向左平移1个单位,得到点P的对应点P'.比如,点P表示3,3乘以3得9,表示9的点向左平移1个单位为8,因此点P的对应点P'表示的数为8.⑴点A,B在数轴上,对线段AB上的每个点进行上述操作后得到线段'A B',其中点A,B的对应点分别为'A,'B.如图,若点A表示的数是1,则点'A表示的数是__________;若点'B表示的数是4-,则点B表示的数是__________.⑵若数轴上的点M经过上述操作后,位置不变,则点M表示的数是__________.6.我国上海的“磁悬浮”列车,依靠“磁悬浮”技术使列车悬浮在轨道上行驶,从而减小阻力,因此列车时速可超过400千米,现在一个轨道长180cm的“磁悬浮”轨道架上做钢球碰撞实验,如图所示,轨道架上安置了三个大小、质量完全相同的钢球A、B、C,左右各有一个钢制挡板D和E,其中C到左挡板D的距离为40cm,B到右挡板E的距离为50cm,A、B两球相距30cm.(1)在数轴上,A球在坐标原点,B球代表的数为30,找出C球及右挡板E代表的数,填在图中的括号内;(2)碰撞实验中(钢球大小、相撞时间不计),钢球的运动都是匀速的,当一钢球以一速度撞向另一静止的钢球时,这个钢球停留在被撞钢球的位置,被撞钢球则以同样的速度向前运动;钢球撞到左右挡板则以相同的速度反向运动,现A球以每秒10cm的速度向右匀速运动,问多少秒后B球第二次撞向右挡板E ?(3)在前面的条件下,当3个钢球运动的路程和为6米时,哪个球正在运动?此时A、B、C三个钢球在数轴上代表的数分别是、、?7.结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示7和1的两点之间的距离是_______.②数轴上表示﹣2和﹣9的两点之间的距离是________.(2)归纳:一般的,数轴上表示数m和数n的两点之间的距离等于_______.(3)应用:①若数轴上表示数a的点位于﹣5与4之间,则|a+5|+|a﹣4|的值=________.②若a表示数轴上的一个有理数,且|a-3|=| a+1|,则a =______.③若a表示数轴上的一个有理数,且|a+5|+|a﹣4|>9,则有理数a的取值范围是______. (4)拓展:已知,如图A、B分别为数轴上的两点,A点对应的数为-10,B点对应的数为70.若当电子蚂蚁P从A点出发,以3个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以2单位/秒的速度向左运动,求经过多长时间两只电子蚂蚁在数轴上相距35个单位长度,并写出此时点P所表示的数.8.已知数轴上,一动点Q从原点O出发,沿数轴以每秒2个单位长度的速度来回移动,其移动的方式是:先向右移动1个单位,再向左移动2个单位长度,又向右移动3个单位长度,再向左移动4个单位长度…,(1)求出3秒钟时,动点Q所在的位置;(2)若5秒时,动点Q激活所在位置P点,P点立即以0.1个单位长度/秒的速度沿数轴运动,试求点P激活后第一次与继续运动的点Q相遇时所在的位置;(3)如图,在数轴上的A1、A2、A3、A4,这4个点所表示的数分别为a1、a2、a3、a4,若A1A2=A2A3=A3A4,且a1=20,|a1﹣a4|=12,|a1﹣x|=a2+a4①求x值;②在(2)的条件下,若P点激活后仍以0.1个单位长度/秒向右运动,当Q点到达数x的点处,则P点所对应的数是.9.点A、B在数轴上表示的数如图所示,动点P从点A出发,沿数轴向右以每秒1个单位长度的速度向点B运动到点B停止运动;同时,动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动设点P运动的时间为t秒,P、Q两点的距离为d (d≥0)个单位长度.(1)当t=1时,d=;(2)当P、Q两点中有一个点恰好运动到线段AB的中点时,求d的值;(3)当点P运动到线段AB的3等分点时,直接写出d的值;(4)当d=5时,直接写出t的值.10.如图,已知数轴上点A表示的数为﹣7,点B表示的数为5,点C到点A,点B的距离相等,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动的时间为t(t>0)秒.(1)点C表示的数是;(2)求当t等于多少秒时,点P到达点B处;(3)点P表示的数是(用含有t的代数式表示);(4)求当t等于多少秒时,PC之间的距离为2个单位长度.11.在数轴上,点A,B,C表示的数分别是-6,10,12.点A以每秒3个单位长度的速度向右运动,同时线段BC以每秒1个单位长度的速度也向右运动.(1)运动前线段AB的长度为________;(2)当运动时间为多长时,点A 和线段BC 的中点重合?(3)试探究是否存在运动到某一时刻,线段AB=12AC ?若存在,求出所有符合条件的点A 表示的数;若不存在,请说明理由.12.已知数轴上的点A ,B ,C ,D 所表示的数分别是a ,b ,c ,d ,且()()22141268+++=----a b c d .(1)求a ,b ,c ,d 的值;(2)点A ,C 沿数轴同时出发相向匀速运动,103秒后两点相遇,点A 的速度为每秒4个单位长度,求点C 的运动速度;(3)A ,C 两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,D 点以每秒1个单位长度的速度向数轴正方向开始运动,在t 秒时有2BD AC =,求t 的值; (4)A ,C 两点以(2)中的速度从起始位置同时出发相向匀速运动,当点A 运动到点C 起始位置时,迅速以原来速度的2倍返回;到达出发点后,保持改后的速度又折返向点C 起始位置方向运动;当点C 运动到点A 起始位置时马上停止运动.当点C 停止运动时,点A 也停止运动.在此运动过程中,A ,C 两点相遇,求点A ,C 相遇时在数轴上对应的数(请直接写出答案).13.(阅读理解)点A 、B 、C 为数轴上三点,如果点C 在A 、B 之间且到A 的距离是点C 到B 的距离3倍,那么我们就称点C 是A ,B}的奇点.例如,如图1,点A 表示的数为﹣3,点B 表示的数为1.表示0的点C 到点A 的距离是3,到点B 的距离是1,那么点C 是A ,B}的奇点;又如,表示﹣2的点D 到点A 的距离是1,到点B 的距离是3,那么点D 就不是A ,B}的奇点,但点D 是B ,A}的奇点. (知识运用)如图2,M 、N 为数轴上两点,点M 所表示的数为﹣3,点N 所表示的数为5.(1)数所表示的点是M,N}的奇点;数所表示的点是N,M}的奇点;(2)如图3,A、B为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30.现有一动点P从点B出发向左运动,当P点运动到数轴上的什么位置时,P、A和B中恰有一个点为其余两点的奇点?14.已知数轴上点A在原点的左边,到原点的距离为4,点B在原点右边,从点A走到点B,要经过16个单位长度.(1)写出A、B两点所对应的数;(2)若点C也是数轴上的点,点C到点B的距离是点C到原点距离的3倍,求C对应的数;(3)已知点M从点A开始向右出发,速度每秒1个单位长度,同时N从B点开始向右出发,速度每秒2个单位长度,设线段NO的中点为P,线段PO AM-的值是否会发生变化?若会,请说明理由,若不会,请求出求其值.15.点,A B为数轴上的两点,点A对应的数为a,点B对应的数为3,38a=-.(1)求,A B两点之间的距离;(2)若点C为数轴上的一个动点,其对应的数记为x,试猜想当x满足什么条件时,点C到A 点的距离与点C到B点的距离之和最小.请写出你的猜想,并说明理由:(3)若,P Q为数轴上的两个动点(Q点在P点右侧),,P Q两点之间的距离为,m Q,当点P到A 点的距离与点Q到B点的距离之和有最小值4时,m的值为_________.参考答案1.x的值为2或-6.解析:解:在数轴上,与-2对应的点的距离为4的点表示的数为2和-6,即x的值为2或-6.2.(1)A:-9 ; B:-8;(2)能在第3秒时相遇,此时在数轴上7的位置;(3)A、B 能在第2或4秒时相距9个单位.解析:试题分析:(1)由表格得到点B的运动速度为(27-17)÷(7-5)=5个单位长度,根据匀速运动则可得0秒时点B的位置,同理可得A点的位置;(2)根据(1)中的运算可知是相向而行,用A、B两点0秒时的距离除以两个点运动的速度和即可得相遇时刻,从而可得位置;(3)分相遇前和相遇后两种情况进行计算即可得.试题解析:(1)[(19-(-1))÷(5-0)=4,19-4×7=-9,(27-17)÷(7-5)=5,17-5×5=-8,A:-9 ; B:-8;(2)[19-(-8)]÷(4+5)=2793÷=(秒),19347-⨯=答:能在第3秒时相遇,此时在数轴上7的位置;(3)第一种:A、B相遇前相距9个单位)(秒),-÷+=(279)(452第二种:A、B相遇后相距9个单位)(秒),+÷+=(279)(454答:A、B能在第2或4秒时相距9个单位.点睛:本题主要是利用数轴来解决行程问题,能从表格中得到信息,并判断出A、B两点的运动是解题的关键.3.(1)点A表示的数的相反数是﹣2.5,点B表示的数的绝对值是2;(2)点C表示的数是﹣1.解析:试题分析:(1)根据数轴可以得到点A表示的数和点B表示的数,从而可以得到点A 表示的数的相反数和点B表示的数的绝对值;(2)根据点A先向右移动1.5个单位长度,再向左移动5个单位长度,得到点C,可以得到点C表示的数,从而可以在数轴上表示出点C,并得到点C表示的数.解:(1)∵由数轴可得,点A表示的数是2.5,点B表示的数是﹣2,∴点A表示的数的相反数是﹣2.5,点B表示的数的绝对值是2;(2)∵点A先向右移动1.5个单位长度,再向左移动5个单位长度,得到点C,点A表示的数是2.5,∴点C表示的数是:2.5+1.5﹣5=﹣1,∴点C表示的数是﹣1,在数轴上表示出点C,如下图所示,点C表示的数是﹣1.考点:数轴.4.(1)8;数轴表示见解析;(2)①-6+t; 8-3t;②t=72;点D所表示的数是-2.5;③72秒或1秒.解析:(1)求出OB的长度即可;(2)①表示出P的路程和Q的路程,根据左减右加即可表示出P、 Q的数;②令P、 Q的数相等即可列出方程,解方程即可;③表示出OP、OQ的长度,根据相等列出绝对值方程,解出即可.详解:(1)∵点A表示的数为-6∴OA=6∵OB=43OA∴OB=8∵点B在原点的右侧∴点B 对应的数是8,数轴表示如图所示(2)①∵P 的路程为t ,Q 的路程为3t ∴P 是-6+t ;Q 是8-3t②∵点P 和点Q 经过t 秒后在数轴上的点D 处相遇 ∴-6+t=8-3t ∴t=72∴点D 所表示的数=-6+72=-2.5 ③∵P 是-6+t ;Q 是8-3t ∴OP=6t -+,OQ=83t -∵点P 与点Q 分别到原点的距离相等 ∴6t -+=83t -∴-6+t=8-3t 或-6+t=3t-8 ∴t=72或t=1.∴经过72秒或1秒,点P 与点Q 分别到原点的距离相等. 点睛:本题考查了数轴上两点间的距离公式,熟知距离公式和点平移的规律是解题关键.5.(1)2 (2)−1 (3)12解析:(1)根据操作步骤可得出A'表示的数,设点B 表示的数为x ,则3x-1=-4,得出点B 表示的数;(2)设点M 表示的数为y ,则3y-1=y ,解出即可得出M 表示的数. 详解:(1)点A′表示的数是:1×3−1=2;设点B 表示的数为x ,则3x −1=−4,解得:x=−1,若点B′表示的数是:−4,则点B表示的数是−1;(2)设点M表示的数为y,则3y−1=y,解得:y=12,即点M表示的数是:12.点睛:本题考查数轴上表示的有理数,解题的关键是掌握数轴上表示的有理数.6.(1) C代表−60,E代表+80;(2) 44(秒).(3) A. B. C三个钢球在数轴上代表的数分别是−60,30,−80.解析:(1)首先可以计算出AC的距离AC=180-40-30-50=60,再根据它在负半轴上说出它表示的数是60.AE=80,再根据它在正半轴上,则表示的数是80.(2)根据题意,显然此时总路程是180×2+80,再根据时间=路程÷速度进行计算.(3)根据总路程分析得到运动的球是C球,此时正向前又运动了20厘米.则A球在C球的位置,B球在A球的位置.详解:(1)依题意得:AC=180−40−30−50=60,AE=80,又∵C在负半轴,∴C代表−60,E代表+80.(1) 依题意得T=(180×2+80)÷10=44(秒).(3)当3个钢球运动的路程和为6米时,C球正在运动,此时A. B. C三个钢球在数轴上代表的数分别是−60,30,−80.点睛:本题考查数轴的性质,涉及求数轴上两点的距离,关键是掌握两点距离公式,体现数形结合的思想.7.(1)①6;②7;(2)|m﹣n|;(3)①9;②1;③a<-5或a>4;(4)经过9秒或23秒时,两只蚂蚁相距35个单位长度,P点表示的数为17或59.解析:(1)①根据绝对值的定义解答即可;②根据绝对值的定义解答即可;(2)根据绝对值的定义解答即可;(3)①根据两点间的距离公式解答即可;②根据两点间的距离公式解答即可;③根据两点间的距离公式解答即可;(4)分情况讨论,①相遇前,两只蚂蚁相距35个单位长度;②相遇后,两只蚂蚁相距35个单位长度;根据距离÷速度=时间即可得答案.详解:(1)①71-=6,②2(9)---=7,故答案为:①6;②7(2)数轴上表示数m和数n的两点之间的距离等于m n-,故答案为:m n-(3)①∵数a位于﹣5与4之间,|a+5|+|a﹣4|表示a到-5与a到4的距离的和,∴|a+5|+|a﹣4|=4-(-5)=9,故答案为:9②∵|a-3|=|a+1|表示a到3的距离与a到-1的距离相等,∴a=3(1)2--=2,故答案为:2③∵|a+5|+|a﹣4|表示a到-5的距离与a到4的距离的和,且|a+5|+|a﹣4|>9,∴a>4,或a<-5.故答案为:a>4,或a<-5.(4)分两种情况:①相遇前,两只蚂蚁相距35个单位长度,[70-(-10)-35]÷(3+2)=9(秒),-10+3×9=17,②相遇后,两只蚂蚁相距35个单位长度,[70-(-10)+35]÷(3+2)=23(秒),-10+3×23=59,∴经过9秒或23秒时,两只蚂蚁相距35个单位长度,P点表示的数为17或59.点睛:本题考查绝对值的定义及数轴上点的运动,熟知数轴上两点间的距离的定义是解题关键.8.(1)3秒动点Q所在的位置为2;(2)﹣4919或﹣2221;(3)① x=﹣36或76,②128.9或571.3解析:(1)先找到0.5秒时的位置,根据每秒2个单位和移动方向,即可得到3秒时的位置. (2)先找到5秒时Q点所在的位置,然后分为①P点向左运动,②P点向右运动进行讨论得出答案;(3)①由数轴可得,a4与a1相距3格,则每格长度为4,然后即可得a1、a2、a3、a4表示的数,最后解绝对值方程即可;②计算出Q点到达数x处走过的路程,除以速度得到运动时间,再求P点的运动路程即可得到P点对应的数.详解:解:(1)∵数轴上,一动点Q从原点O出发,沿数轴以每秒2个单位长度的速度来回移动,其移动的方式是:先向右移动1个单位,再向左移动2个单位长度,又向右移动3个单位长度,再向右移动4个单位长度…,∴0.5秒动点Q所在的位置为1,1.5秒动点Q所在的位置为﹣1,3秒动点Q所在的位置为2;(2)∵3秒动点Q所在的位置为2,∴5秒时,动点Q所在位置为﹣2,①若P点向左运动,动点Q先向右运动5个单位长度到数轴3的位置,再向左运动6个单位长度,Q在数轴3位置向左运动时,PQ=5+52×0.1=214,设点P激活后第一次与继续运动的点Q相遇时用的时间为t,则(2﹣0.1)t=214,解得:t=105 38,∴点P激活后第一次与继续运动的点Q相遇时所在的位置为:﹣(2+52×0.1+10538×0.1)=﹣4919;②若P点向右运动,动点Q先向右运动5个单位长度到数轴3的位置,再向左运动6个单位长度,Q在数轴3位置向左运动时,PQ=5﹣52×0.1=194,设点P激活后第一次与继续运动的点Q相遇时用的时间为t,则(2+0.1)t=194,解得:t=9542,∴点P激活后第一次与继续运动的点Q相遇时所在的位置为:﹣(2﹣52×0.1﹣9542×0.1)=﹣2221;(3)①∵|a1﹣a4|=12,∴a4﹣a1=12,∴a4=12+a1=12+20=32,∵A1A2=A2A3=A3A4,∴a2=24,a3=28,∵|a1﹣x|=a2+a4,∴|a1﹣x|=24+32=56,∴x=﹣36或76②若5秒时,动点Q激活所在位置P点,当Q点到达数﹣36的点处时所走的路程为:5+6+7+…+71+72=(172)722+⨯﹣(14)42+⨯=2628﹣10=2618(单位长度),∴用的时间为:26182=1309(s),此时P点所对应的数是:1309×0.1﹣2=128.9;当Q点到达数76的点处时所走的路程为:5+6+7+…+150+151=(1151)1512+⨯﹣(14)42+⨯=11476﹣10=11466(单位长度),∴用的时间为:114662=5733(s),此时P点所对应的数是:5733×0.1﹣2=571.3;故答案为:128.9或571.3点睛:本题考查数轴上的动点问题,关键是正确理解Q点的运动方式,找到Q点运动路程是解决本题的关键.9.(1)d=3;(2)d的值为3或32;(3)所求d的值为0或4;(4)所求t的值为13或5.解析:(1)当t=1时,求出AP=1,BQ=2,根据PQ=AB﹣AP﹣BQ即可求解;(2)分①P点恰好运动到线段AB的中点;②Q点恰好运动到线段AB的中点两种情况进行讨论;(3)当点P运动到线段AB的3等分点时,分①AP=13AB;②AP=23AB两种情况进行讨论;(4)当d=5时,分①P与Q相遇之前;②P与Q相遇之后两种情况进行讨论.详解:(1)当t=1时,AP=1,BQ=2,∵AB=4﹣(﹣2)=6,∴PQ=AB﹣AP﹣BQ=3,即d=3.故答案为3;(2)线段AB的中点表示的数是:-2+42=1.①如果P点恰好运动到线段AB的中点,那么AP=12AB=3,t=31=3,BQ=2×3=6,即Q运动到A点,此时d=PQ=PA=3;②如果Q点恰好运动到线段AB的中点,那么BQ=12AB=3,t=32,AP=1×32=32,则d=PQ=AB﹣AP﹣BQ=6﹣32﹣3=32.故d的值为3或32;(3)当点P运动到线段AB的3等分点时,分两种情况:①如果AP=13AB=2,那么t=21=2,此时BQ=2×2=4,P、Q重合于原点,则d=PQ=0;②如果AP=23AB=4,那么t=41=4,∵动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动,∴此时BQ=6,即Q运动到A点,∴d=PQ=AP=4.故所求d的值为0或4;(4)当d=5时,分两种情况:①P与Q相遇之前,∵PQ=AB﹣AP﹣BQ,∴6﹣t﹣2t=5,解得t=13;②P与Q相遇之后,∵P点运动到线段AB的中点时,t=3,此时Q运动到A点,停止运动,∴d=AP=t=5.故所求t的值为13或5.点睛:本题考查了一元一次方程的应用,数轴,两点间的距离,理解题意,分清动点P与动点Q的运动方向、运动速度与运动时间,从而正确进行分类讨论是解题的关键.10.(1) -1;(2)6;(3)﹣7+2t;(4)t=2 或t=4.解析:(1)根据线段中点坐标公式可求点C表示的数;(2)根据时间=路程÷速度,可求t的值;(3)根据两点之间的距离公式可求点P表示的数;(4)分P在点C左边和点C右边两种情况讨论求解.详解:(1)(﹣7+5)÷2=﹣2÷2=﹣1.故点C表示的数是﹣1.故答案为﹣1;(2)()572--=6;(3)﹣7+2t;故答案为﹣7+2t;(4)因为PC之间的距离为2个单位长度,所以点P运动到﹣3或1,即﹣7+2t=﹣3或﹣7+2t=1,即t =2 或t =4. 点睛:此题考查了数轴,一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.注意分类思想的应用.11.(1)16;(2)172;(3)15或19. 解析:(1)根据两点间的距离公式即可求解;(2)先根据中点坐标公式求得B 、C 的中点,再设当运动时间为x 秒长时,点A 和线段BC 的中点重合,根据路程差的等量关系列出方程求解即可;(3)设运动时间为y 秒,分两种情况:①当点A 在点B 的左侧时,②当点A 在线段AC 上时,列出方程求解即可. 详解:(1)运动前线段AB 的长度为10﹣(﹣6)=16;(2)设当运动时间为x 秒长时,点A 和线段BC 的中点重合,依题意有 ﹣6+3t=11+t , 解得t=故当运动时间为秒长时,点A 和线段BC 的中点重合(3)存在,理由如下:设运动时间为y 秒,①当点A 在点B 的左侧时,依题意有(10+y)﹣(3y ﹣6)=2,解得y=7, ﹣6+3×7=15;②当点A 在线段BC 上时,依题意有(3y-6)-(10+y )= 解得y=综上所述,符合条件的点A 表示的数为15或19. 点睛:本题考查了实数与数轴的知识点,解题的关键是熟练的掌握实数与数轴的相关知识点.12.(1)14a =-,12b =-,6c =,8d =;(2)点C 的运动速度为每秒2个单位;(3)4t =或20;(4)23-,223-,10-. 解析:(1)根据平方数和绝对值的非负性计算即可; (2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==,即可得解; (3)根据题意分别表示出AC ,BD ,在进行分类讨论计算即可; (4)根据点A ,C 相遇的时间不同进行分类讨论并计算即可; 详解:(1)∵()()22141268+++=----a b c d , ∴()()221412+6+80+++--=a b c d , ∴14a =-,12b =-,6c =,8d =; (2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==, 解得:2x =,∴点C 的运动速度为每秒2个单位;(3)t 秒时,点A 数为144t -+,点B 数为-12,点C 数为62t +,点D 数为8t +, ∴()62144202AC t t t =+--+=-,()81220BD t t =+--=+, ∵2BD AC =,∴①2020t -≥时,()2022202t t +=-,解得:4t =; ②20-2t <0时,即t >10,()202220t t +=-,解得:20t =; ∴4t =或20.(4)C 点运动到A 点所需时间为()614102s --=,所以A ,C 相遇时间10t ≤,由(2)得103t =时,A ,C 相遇点为102144-33-+⨯=,A 到C 再从C 返回到A ,用时()()()6146147.548s ----+=;①第一次从点C 出发时,若与C 相遇,根据题意得()852t t ⨯-=,203t =<10,此时相遇数为20226233-⨯=-;②第二次与C 点相遇,得()()87.52614t t ⨯-+=--,解得8t =<10,此时相遇点为68210-⨯=-;∴A,C相遇时对应的数为:23-,223-,10-.点睛:本题主要考查了数轴的动点问题,准确分析计算是解题的关键.13.(1)3,-1;(2)-30,10、2303-、-290.解析:(1)根据定义发现:奇点表示的数到 M,N}中,前面的点M是到后面的数N的距离的3倍,从而得出结论;根据定义发现:奇点表示的数到N,M}中,前面的点N是到后面的数M 的距离的3倍,从而得出结论;(2)点A到点B的距离为6,由奇点的定义可知:分两种情况列式:①PB=3PA;②PA=3PB;③AB=3PA;④PA=3AB;可以得出结论.详解:(1)5-(-3)=8,8÷(3+1)=2,5-2=3,-3+2=-1;故表示数3的点是M,N}的奇点;表示数-1的点是N,M}的奇点;故答案为3;-1;(2)由题意得:AB=30-(-50)=80,80÷(3+1)=20,①当PA=3PB,则点P表示的数为:30-20=10;②当PB=3PA,则点P表示的数为:-50+20=-30;③当AB=3PA,则18033PA AB==,所以点P表示的数为:802305033--=-;④当PA=3AB时,则PA=240,所以P表示的数为:50240290--=-;故点P运动到数轴上表示-30、10、2303-、-290的点的位置时,P,A,B中恰有一个点为其余两点的奇点.点睛:本题考查数轴及数轴上两点的距离、动点问题,解题的关键是认真理解新定义:奇点表示的数是与前面的点A的距离是到后面的数B的距离的3倍,列式可得结果.14.(1)-4,12;(2)-6或3;(3)不变化,6解析:(1)直接根据实数与数轴上各点的对应关系求出A,B表示的数即可;(2)设点C表示的数为c,再根据点C到点B的距离是点C到原点的距离的3倍列出关于c的方程,求出c的值即可;(3)设运动时间为t秒,则AM=t,NO=12+2t,再根据点P是NO的中点用t表示出PO的长,再求出PO-AM的值即可.详解:(1)∵数轴上点A在原点左边,到原点的距离为4个单位长度,点B在原点的右边,从点A走到点B,要经过16个单位长度,∴点A表示-4,点B表示12;(2)设点C表示的数为c,∵点C到点B的距离是点C到原点的距离的3倍,∴|c-12|=3|c|,∴c-12=3c或c-12=-3c,解得c=-6或c=3;(3)不变化.设运动时间为t秒,则AM=t,NO=12+2t,∵点P是NO的中点,∴PO=6+t,∴PO-AM=6+t-t=6,∴PO-AM的值没有变化.点睛:本题考查的是数轴,熟知数轴上各点与全体实数是一一对应关系是解答此题的关键.15.(1) 2.3,5=-==;(2)当23a b AB+有最小值5,理由见解析;(3)见解析x-≤≤时, AC BC解析:(1)根据38a=-,可得出A对应的数为-2 ,再根据数轴上两点间的距离即可得出答案;(2)当点C位于A,B之间或A,B点上时,点C到A点的距离与点C到B点的距离之和最小,即A,B点间的距离;(3)通过分析当点,P Q位于A,B之间时,符合点P到A点的距离与点Q到B点的距离之和有最小值4,此时541m=-=.详解:解:(1)∵38a=-∴ 2.3,5=-==;a b AB(2)当23-≤≤时, AC BC+有最小值.x理由如下:x<时,252+=+>;AC BC AC ABx-≤≤时,523+==;AC BC ABx>时,253+=+>;AC BC BC AB综上, 23-≤≤时,AC BC+有最小值5;x(3)通过分析当点,P Q位于A,B之间时,符合点P到A点的距离与点Q到B点的距离之和有最小值4,此时541m=-=.点睛:本题考查的知识点是数轴,读懂题意,理解动点的运动轨迹是解此题的关键.。
【压轴必考】2023学年七年级数学上册压轴题攻略(人教版)-线段上动点问题的三种考法(解析版)
线段上动点问题的三种考法类型一、求值问题例.数轴上有A B C 三点 A B 表示的数分别为m n ()m n < 点C 在B 的右侧2AC AB -=.(1)如图1 若多项式()371231mn x x x +--+-是关于x 的二次三项式 请直接写出m n 的值:(2)如图2 在(1)的条件下 长度为1的线段EF (E 在F 的左侧)在A B 之间沿数轴水平滑动(不与A B 重合) 点M 是EC 的中点 N 是BF 的中点 在EF 滑动过程中 线段MN 的长度是否发生变化 请判断并说明理由;(3)若点D 是AC 的中点.①直接写出点D 表示的数____________(用含m n 的式子表示); ②若24AD BD += 试求线段AB 的长.【答案】(1)5m =- 1n =;(2)不变化 理由见解析;(3)①12m n++;②103【解析】(1)解:由题可知 n -1=0 7+m =2 ∴1n = 5m =-故答案为:5m =- 1n =(2)解:MN 的长不发生变化 理由如下: 由题意 得点C 表示的数为3设点E 表示的数为x 则点F 表示的数为1x +∴6AB = 2BC = 5AE x =+ 6AF x =+ 3EC x =- BF x =- ∴点M 是EC 的中点 N 是BF 的中点 ∴32x MC ME -==2x NF -= 即311222x x MN ME EF FN --=--=--=(3)解:①∴A B 表示的数分别为m n ()m n < 又点C 在B 的右侧 ∴AB =n -m ∴2AC AB -= ∴AC = n -m +2∴点D 是AC 的中点 ∴AD =12AC = 12(n -m +2)∴D 表示的数为:m +12(n -m +2)=12m n ++ ②依题意 点C 表示的数分别为2n + ∴AB n m =- 1122m n n mAD m +-=+-=+ ∴1122m n m n BD n +-=+-=+ 22122m nBD m n -=+=-+ ∴24AD BD += 即1242n mm n -++-+= 当20m n -+>时.()1242n mm n -++-+= 2m n -= ∴m n < ∴2m n -=不符合题意 舍去 当20m n -+<时.()1242n m m n -+--+= 103n m -= 综上所述 线段AB 的长为103.【变式训练1】如图1 点C 在线段AB 上 图中共有三条线段AB AC 和BC 若其中有一条线段的长度是另外一条线段长度的2倍 则称点C 是线段AB 的“巧点”. (1)线段的中点__这条线段的“巧点”;(填“是”或“不是”);(2)如图2 已知AB =15cm .动点P 从点A 出发 以2cm /s 的速度沿AB 向点B 匀速运动;点Q 从点B 出发 以1cm /s 的速度沿BA 向点A 匀速运动 点P Q 同时出发 当其中一点到达终点时 运动停止.设移动的时间为t (s ) 当t =__s 时 Q 为A P 的“巧点”.【答案】是 7.5或457【解析】(1)若线段中点为C 点 AB =2AC 所以中点是这条线段“巧点”(2)设A 点为数轴原点 作数轴 设运动时间为t 秒;t 最大=7.5 A :0 P :0+2t =2t Q :15﹣t①Q为AP中点20152tt+-=∴t=7.5;②AQ=2PQ AQ=15﹣t﹣0=15﹣t PQ=2t﹣(15﹣t)=3t﹣15∴AQ=2PQ∴15﹣t=2(3t﹣15)∴457t=;③PQ=2AQ得3t﹣15=2(15﹣t)∴t=9>7.5(舍去).综上所述:t=7.5或457.故答案为:(1)是;(2)7.5或457.【变式训练2】已知:如图1 M是定长线段AB上一定点C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿直线BA向左运动运动方向如箭头所示(C在线段AM上D在线段BM上)(1)若AB=11cm 当点C、D运动了1s 求AC+MD的值.(2)若点C、D运动时总有MD=3AC直接填空:AM=BM.(3)在(2)的条件下N是直线AB上一点且AN﹣BN=MN求2MN3AB的值.【答案】(1)7cm;(2)13;(3)13或23【解析】(1)解:当点C、D运动了1s时CM=1cm BD=3cm ∴AB=11cm CM=1cm BD=3cm∴AC+MD=AB﹣CM﹣BD=11﹣1﹣3=7cm.(2)解:设运动时间为t则CM=t BD=3t∴AC=AM﹣t MD=BM﹣3t又MD=3AC∴BM﹣3t=3AM﹣3t即BM=3AM∴AM=13 BM故答案为:13.(3)解:由(2)可得:∴BM=AB﹣AM∴AB﹣AM=3AM∴AM=14 AB①当点N 在线段AB 上时 如图∴AN ﹣BN =MN又∴AN ﹣AM =MN ∴BN =AM =14AB ∴MN =12AB 即2MN 3AB =13. ②当点N 在线段AB 的延长线上时 如图∴AN ﹣BN =MN又∴AN ﹣BN =AB ∴MN =AB ∴MNAB=1,即2MN 3AB =23.综上所述2MN 3AB =13或23【变式训练3】如图 数轴上有两点,A B 点C 从原点O 出发 以每秒1cm 的速度在线段OA 上运动 点D 从点B 出发 以每秒4cm 的速度在线段OB 上运动.在运动过程中满足4OD AC = 若点M 为直线OA 上一点 且AM BM OM -= 则ABOM的值为_______.【答案】1或53【解析】设运动的时间为t 秒 点M 表示的数为m则OC=t BD=4t 即点C 在数轴上表示的数为-t 点D 在数轴上表示的数为b -4t ∴AC=-t -a OD=b -4t由OD=4AC 得 b -4t=4(-t -a ) 即:b=-4a ①若点M 在点B 的右侧时 如图1所示:由AM -BM=OM 得 m -a -(m -b )=m 即:m=b -a ; ∴=1b a B O mA m M m-== ②若点M 在线段BO 上时 如图2所示:由AM -BM=OM 得 m -a -(b -m )=m 即:m=a+b ; ∴=4543b a b a a a m a AB b a a OM ----===+- ③若点M 在线段OA 上时 如图3所示:由AM -BM=OM 得 m -a -(b -m )=-m 即:433a b a am a +-===- ∴此时m <0 a <0 ∴此种情况不符合题意舍去; ④若点M 在点A 的左侧时 如图4所示:由AM -BM=OM 得 a -m -(b -m )=-m 即:m=b -a=-5a ;而m <0 b -a >0 因此 不符合题意舍去 综上所述AB OM 的值为1或53. 类型二、证明定值问题例.如图 已知线段AB m = CD n = 线段CD 在直线AB 上运动(点A 在点B 的左侧点C 在点D 的左侧) 若()21260m n -+-=. (1)求线段AB CD 的长;(2)若点M N 分别为线段AC BD 的中点 4BC = 求线段MN 的长;(3)当CD 运动到某一时刻时 点D 与点B 重合 点P 是线段AB 的延长线上任意一点 下列两个结论:①PA PB PC -是定值 ②PA PBPC+是定值 请选择你认为正确的一个并加以说明.【答案】(1)12AB = 6CD =;(2)9;(3)②正确2PA PBPC+= 见解析 【解析】(1)由()21260m n -+-= ()212600m n ≥--≥, 12=06=0m n --, 得12m = 6n = 所以12AB = 6CD =; (2)当点C 在点B 的右侧时 如图因为点M N 分别为线段AC BD 的中点 4BC = 所以()()1124118222AM AC AB BC ==+⨯+== ()()111645222DN BD CD BC ===++= 又因为124622AD AB BC CD =++=++= 所以22859MN AD AM DN =--=--= 当点C 在点B 的左侧时 如图因为点M N 分别为线段AC BD 的中点 所以()()1111244222AM MC AC AB BC ===--== ()()111641222BN ND BD CD BC ===--== 所以126414AD AB CD BC =+-=+-= 所以14419MN AD AM DN =--=--=. 综上 线段MN 的长为9; (3)②正确 且2PA PBPC+=.理由如下: 因为点D 与点B 重合 所以BC DC =所以6AC AB BC AB DC =-=-= 所以AC BC = 所以()()222PC AC PC BC PA PB PC AC BC PCPC PC PC PC++-++-====.【变式训练1】已知线段AB =m CD =n 线段CD 在直线AB 上运动(A 在B 的左侧 C 在D 的左侧) 且m n 满足|m -12|+(n -4)2=0. (1)m = n = ;(2)点D 与点B 重合时 线段CD 以2个单位长度/秒的速度向左运动.①如图1 点C 在线段AB 上 若M 是线段AC 的中点 N 是线段BD 的中点 求线段MN的长;②P是直线AB上A点左侧一点线段CD运动的同时点F从点P出发以3个单位/秒的向右运动点E是线段BC的中点若点F与点C相遇1秒后与点E相遇.试探索整个运动过程中FC-5DE是否为定值若是请求出该定值;若不是请说明理由.【解析】(1)∴|m-12|+(n-4)2=0 ∴m-12=0 n-4=0 ∴m=12 n=4;故答案为:12;4.(2)由题意①∴AB=12 CD=4∴M是线段AC的中点N是线段BD的中点∴AM=CM=12AC DN=BN=12BD∴MN=CM+CD+DN=12AC +CD+12BD=12AC +12CD+12BD+12CD=12(AC +CD+BD)+12CD=12(AB +CD)=8;②如图设PA=a 则PC=8+a PE=10+a依题意有:81013231a a解得:a=2 在整个运动的过程中:BD=2t BC=4+2t∴E是线段BC的中点∴CE= BE=12BC=2+t;∴.如图1 F C相遇即t=2时F C重合 D E重合则FC=0 DE=0 ∴FC-5 DE =0;∴.如图2 F C相遇前即t<2时FC =10-5t DE =BE-BD=2+t-2t=2-t ∴FC-5 DE =10-5t -5(2-t)=0;∴.如图3 F C相遇后即t>2时FC =5t-10 DE = BD - BE=2t –(2+t)= t-2 ∴FC-5 DE =5t-10 -5(t-2)=0;综合上述:在整个运动的过程中FC-5 DE的值为定值且定值为0.【变式训练2】如图数轴上点A B表示的有理数分别为63 点P是射线AB上的一个动点(不与点A B重合)M是线段AP靠近点A的三等分点N是线段BP靠近点B的三等分点.(1)若点P表示的有理数是0 那么MN的长为________;若点P表示的有理数是6 那么MN的长为________;(2)点P在射线AB上运动(不与点A B重合)的过程中MN的长是否发生改变?若不改变请写出求MN的长的过程;若改变请说明理由.【答案】(1)6;6;(2)不发生改变MN为定值6 过程见解析【详解】解:(1)若点P表示的有理数是0(如图1)则AP=6 BP=3.∴M是线段AP靠近点A的三等分点N是线段BP靠近点B的三等分点.∴MP=23AP=4 NP=23BP=2 ∴MN=MP+NP=6;若点P表示的有理数是6(如图2)则AP=12 BP=3.∴M是线段AP靠近点A的三等分点N是线段BP靠近点B的三等分点.∴MP=23AP=8 NP=23BP=2 ∴MN=MP-NP=6.故答案为:6;6.(2)MN的长不会发生改变理由如下:设点P表示的有理数是a(a>-6且a≠3).当-6<a<3时(如图1)AP=a+6 BP=3-a.∴M是线段AP靠近点A的三等分点N是线段BP靠近点B的三等分点.∴MP=23AP=23(a+6)NP=23BP=23(3-a)∴MN=MP+NP=6;当a>3时(如图2)AP=a+6 BP=a-3.∴M是线段AP靠近点A的三等分点N是线段BP靠近点B的三等分点.∴MP=23AP=23(a+6) NP=23BP=23(a -3) ∴MN=MP -NP=6.综上所述:点P 在射线AB 上运动(不与点A B 重合)的过程中 MN 的长为定值6.【变式训练3】(1)如图1 在直线AB 上 点P 在A 、B 两点之间 点M 为线段PB 的中点点N 为线段AP 的中点 若AB n = 且使关于x 的方程()46n x n -=-无解. ①求线段AB 的长;②线段MN 的长与点P 在线段AB 上的位置有关吗?请说明理由; (2)如图2 点C 为线段AB 的中点 点P 在线段CB 的延长线上 试说明PA PBPC+的值不变.【答案】(1)①AB=4;②线段MN 的长与点P 在线段AB 上的位置无关 理由见解析;(2)见解析.【详解】解:(1)①∴关于x 的方程()46n x n -=-无解.∴4n -=0 解得:n=4.故AB=4. ②线段MN 的长与点P 在线段AB 上的位置无关 理由如下: ∴M 为线段PB 的中点 ∴PM= 12PB .同理:PN=12AP ..∴MN=PN+PM= 12(PB+AP )=12AB=12×4=2.∴线段MN 的长与点P 在线段AB 上的位置无关. (2)设AB=a BP=b 则PA+PB=a+b+b=a+2b . ∴C 是AB 的中点 1122BC AB a ∴== 12PC PB BC a b ∴=+=+2212PA PB a bPC a b ++∴==+ 所以PA PBPC+的值不变.类型三、数量关系 例.数轴上A B 、两点对应的数分别是4,12- 线段CE 在数轴上运动 点C 在点E 的左边且8,CE =点F 是AE 的中点.(1)如图1 当线段CE 运动到点,C E 均在,A B 之间时 若1CF = 则AB =_________ 点C 对应的数为________BE =________;(2)如图2 当线段CE 运动到点A 在C E 、之间时 画出草图并求BE 与CF 的数量关系.【答案】(1)16;2;2;(2)2BE CF = 画图见解析. 【解析】(1)数轴上A B 、两点对应的数分别是4,12- 12(4)16AB ∴=--=8,1CE CF ==7EF CE CF ∴=-=点F 是AE 的中点 7AF EF ∴== 6AC AF CF ∴=-=6AC AO CO =+= 2CO ∴= C ∴对应的数是2 2BE AB AF EF ∴=--=故答案为:16;2;2; (2),BE AB AE CF CE EF =-=-点F 是AE 的中点 2AE EF ∴=162,8BE AB AE EF CF CE EF EF ∴=-=-=-=- 2BE CF ∴=故答案为:(1)16;2;2;(2)2BE CF = 画图见解析.【变式训练1】如图 已知线段AB 延长线段BA 至C 使CB =43AB .(1)请根据题意将图形补充完整.直接写出ACAB= _______; (2)设AB = 9cm 点D 从点B 出发 点E 从点A 出发 分别以3cm/s 1cm/s 的速度沿直线AB 向左运动.①当点D在线段AB 上运动 求ADCE的值; ②在点D E 沿直线AB 向左运动的过程中 M N 分别是线段DE 、AB 的中点.当点C 恰好为线段BD 的三等分点时 求MN 的长. 【答案】(1)13(2)3 (3)12cm 或24cm .【详解】解:(1)图形补充完整如图∵CB =43AB ∴CA =13BC AB AB -=13AC AB = 故答案为:13; (2)①AB = 9cm 由(1)得 133CA AB ==(cm ) 设运动的时间为t 秒 (93)DA t =-cm (3)CE t =-cm93=33AD tCE t-=-②当3BD CD =时 ∴AB = 9cm 3CA =cm ∴212CB CD ==cm ∴6CD =cm 318BD CD ==cm运动时间为:18÷3=6(秒) 则6AE =cm15BE BA AE =+=cm 3ED BD BE =-=cm∴M N 分别是线段DE 、AB 的中点.∴ 1.5DM =cm 4.5BN =cm12MN BD DM BN =--=cm当3BD CB =时 ∴AB = 9cm 3CA =cm ∴12CB =cm ∴336BD CB ==cm运动时间为:36÷3=12(秒) 则12AE =cm 21BE BA AE =+=cm 15ED BD BE =-=cm ∴M N 分别是线段DE 、AB 的中点.∴7.5DM =cm 4.5BN =cm24MN BD DM BN =--=cm综上 MN 的长是12cm 或24cm .【变式训练2】已知点C 在线段AB 上 AC =2BC 点D 、E 在直线AB 上 点D 在点E 的左侧(1)若AB =18 DE =8 线段DE 在线段AB 上移动 ①如图1 当E 为BC 中点时 求AD 的长; ②当点C 是线段DE 的三等分点时 求AD 的长;(2)若AB=2DE线段DE在直线上移动且满足关系式32AD ECBE+=则CDAB=.【答案】(1)①AD=7;②AD=203或283;(2)1742或116【详解】解:(1)∴AC=2BC AB=18 ∴BC=6 AC=12 ①∴E为BC中点∴CE=3∴DE=8 ∴CD=5 ∴AD=AC﹣CD=12﹣5=7;②∴点C是线段DE的三等分点DE=8∴CE=13DE=83或CE=23DE=163∴CD=163或CD=83∴AD=AC﹣CD=12﹣163=203或12-83=283;(2)当点E在线段BC之间时如图设BC=x则AC=2BC=2x∴AB=3x ∴AB=2DE∴DE=1.5x设CE=y∴AE=2x+y BE=x﹣y∴AD=AE﹣DE=2x+y﹣1.5x=0.5x+y∴32AD ECBE+=∴0.532x y yx y++=-∴y=27x∴CD=1.5x﹣27x=1714x∴171714342==xCDAB x;当点E在点A的左侧如图设BC=x则DE=1.5x设CE=y∴DC=EC+DE=y+1.5x∴AD=DC﹣AC=y+1.5x﹣2x=y﹣0.5x∴32AD ECBE+=BE=EC+BC=x+y∴0.532y x yx y-+=+∴y=4x∴CD=y+1.5x=4x+1.5x=5.5x BD=DC+BC=y+1.5x+x=6.5x ∴AB=BD﹣AD=6.5x﹣y+0.5x=6.5x﹣4x+0.5x=3x∴5.51136==CD x AB x 当点E 在线段AC 上及点E 在点B 右侧时 无解 综上所述CD AB 的值为1742或116.故答案为:1742或116. 课后作业1.已知有理数a b c 在数轴上对应的点从左到右顺次为A B C 其中b 是最小的正整数 a 在最大的负整数左侧1个单位长度 BC=2AB . (1)填空:a= b= c=(2)点D 从点A 开始 点E 从点B 开始 点F 从点C 开始 分别以每秒1个单位长度、1个单位长度、4个单位长度的速度在数轴上同时向左运动 点F 追上点D 时停止动 设运动时间为t 秒.试问:①当三点开始运动以后 t 为何值时 这三个点中恰好有一点为另外两点的中点? ②F 在追上E 点前 是否存在常数k 使得DF k EF +⋅的值与它们的运动时间无关 为定值.若存在 请求出k 和这个定值;若不存在 请说明理由. 【答案】(1)-2 1 7;(2)①t=1或t=52;②k=-1 【解析】(1)∴最小正数为1.最大的负整数为小-1 a 在最大的负整数左侧1个单位长度 ∴点A 表示的数a 为-1-1=-2 点B 表示的数b 为1 ∴AB=1-(-2)=3∴223=6BC AB ==⨯ ∴点C 表示的数为c=1+6=7 故答案为:-2 1 7;(2)①依题意 点F 的运动距离为4t 点D 、E 运动的距离为t,∴点D 、E 、F 分别表示的数为-2-t 1-t 7-4t,当点F 追上点D 时 必将超过点B ∴存在两种情况 即DE=EF 和DF=EF 如图 当DE=EF 即E 为DF 的中点时()21=274t t t ----+ 解得 t=1如图 当EF=DF 即F 为DE 中点时()74=21t t t ---+-2 解得t=52综上所述 当t=1秒和t=52时 满足题意. ②存在 理由:点D 、E 、F 分别表示的数为-2-t 1-t 7-4t,如图 F 在追上E 点前 ()74-2=93DF t t t =---- ()74-1=63EF t t t =---()()93639633DF k EF t k t k k t +⋅=-+-=+-+ 当DF k EF +⋅与t 无关时 需满足3+3k=0 即k=-1时 满足条件.故答案为:(1)-2 1 7;(2)①t=1或t=52;②k=-1 2.已知点C 在线段AB 上 2AC BC = 点D 、E 在直线AB 上 点D 在点E 的左侧.若18AB = 8DE = 线段DE 在线段AB 上移动.(1)如图1 当E 为BC 中点时 求AD 的长;(2)点F (异于A B C 点)在线段AB 上 3AF AD = 3CE EF += 求AD 的长. 【答案】(1)7;(2)3或5【解析】(1)2AC BC = 18AB = 6BC ∴= 12AC = 如图1E 为BC 中点 3CE BE ∴==8DE = ∴8311BD DE BE =+=+= ∴18117AD AB DB =-=-=(2)Ⅰ、当点E 在点F 的左侧 如图2或∵3CE EF += 6BC = ∴点F 是BC 的中点 ∴3CF BF == ∴18315AF AB BF =-=-= ∴153AD AF ==∵3CE EF += 故图2(b )这种情况求不出; Ⅱ、如图3 当点E 在点F 的右侧或12AC 3CE EF CF +== ∴9AF AC CF =-=∴39AF AD ==3AD ∴=.∵3CE EF += 故图3(b )这种情况求不出; 综上所述:AD 的长为3或5.3.已知线段AB 点C 在直线AB 上 D 为线段BC 的中点.(1)若8AB = 2AC = 求线段CD 的长.(2)若点E 是线段AC 的中点 请写出线段DE 和AB 的数量关系并说明理由. 【答案】(1)3或5(2)2AB DE = 理由见解析【解析】(1)解:如图1 当C 在点A 右侧时∴8AB = 2AC = ∴6C AB C B A =-= ∴D 是线段BC 的中点 :∴132CD BC ==; 如图2 当C 在点A 左侧时∴8AB = 2AC = ∴10BC AB AC =+= ∴D 是线段BC 的中点 ∴152CD BC ==;综上所述 3CD =或5; (2)解:2AB DE =.理由是:如图3 当C 在点A 和点B 之间时∴E 是AC 的中点 D 是BC 的中点 ∴2AC EC = 2BC CD = ∴222AB AC BC EC CD DE =+=+=; 如图4 当C 在点A 左侧时同理可得:()2222AB BC AC CD CE CD CE DE =-=-=-=; 如图5 当C 在点B 右侧时同理可得:()2222AB AC BC EC CD EC CD DE =-=-=-=.4.已知:如图1 M 是定长线段AB 上一定点 C 、D 两点分别从M 、B 出发以1cm/s 、3cm/s 的速度沿直线BA 向左运动 运动方向如箭头所示(C 在线段AM 上 D 在线段BM 上)(1)若AB =11cm 当点C 、D 运动了1s 求AC +MD 的值. (2)若点C 、D 运动时 总有MD =3AC 直接填空:AM = BM . (3)在(2)的条件下 N 是直线AB 上一点 且AN ﹣BN =MN 求2MN3AB的值. 【答案】(1)7cm ;(2)13;(3)13或23【解析】(1)解:当点C 、D 运动了1s 时 CM =1cm BD =3cm ∴AB =11cm CM =1cm BD =3cm∴AC +MD =AB ﹣CM ﹣BD =11﹣1﹣3=7cm .(2)解:设运动时间为t 则CM =t BD =3t ∴AC =AM ﹣t MD =BM ﹣3t 又MD =3AC ∴BM ﹣3t =3AM ﹣3t 即BM =3AM ∴AM =13BM 故答案为:13.(3)解:由(2)可得:∴BM =AB ﹣AM ∴AB ﹣AM =3AM ∴AM =14AB①当点N 在线段AB 上时 如图∴AN ﹣BN =MN又∴AN ﹣AM =MN ∴BN =AM =14AB ∴MN =12AB 即2MN 3AB =13. ②当点N 在线段AB 的延长线上时 如图∴AN ﹣BN =MN又∴AN ﹣BN =AB ∴MN =AB ∴MNAB=1,即2MN 3AB =23.综上所述2MN 3AB =13或235.如图 在数轴上A 点表示的数为a B 点表示的数为b C 点表示的数为c b 是最大的负整数 且a c 满足()2390a c ++-=.点P 从点B 出发以每秒3个单位长度的速度向左运动 到达点A 后立刻返回到点C 到达点C 后再返回到点A 并停止.(1)=a ________ b =________ c =________.(2)点P 从点B 离开后 在点P 第二次到达点B 的过程中 经过x 秒钟 13PA PB PC ++= 求x 的值.(3)点P 从点B 出发的同时 数轴上的动点M N 分别从点A 和点C 同时出发 相向而行 速度分别为每秒4个单位长度和每秒5个单位长度 假设t 秒钟时 P 、M 、N 三点中恰好有一个点是另外两个点的中点 请直接写出所有满足条件的t 的值.【答案】(1)3- 1- 9;(2)13x =或1x =或53x =或233x =;(3)167t = 12617 8 12 【详解】解:(1)∴b 是最大的负整数 且a c 满足()2390a c ++-=∴b=-1 a+3=0 c -9=0 ∴a=-3 c=9.故答案为:-3;-1;9.(2)由题意知 此过程中 当点P 在AB 上时. ∴PA+PB=AB=b -a=-1-(-3)=2. ∴()13-=13-2=11PC PA PB =+. 又∴BC=c -b=9-(-1)=10.∴PB=PC-BC=11-10=1.当P从B到A时如图所示:∴PB=1 可以列方程为:3x=1解得:x=1;当P从A到C时分两种情况讨论:①当P在线段AB之间时如图所示:可以列方程为:3x=3,解得:x=1②当P在线段BC之间时如图所示:∴PA+PB+PC=13 AB=2 BC=10∴PB+PC=10∴PA=13-10=3∴PB=PA-AB=3-2=1可列方程为:3x=5解得:53x=.当P从C到B时如图所示:可列方程为:3x=23 解得:233x=.综上所述13x=或1x=或53x=或233x=.(3)当点从为PN中点时当0<t<23时点P向A运动.此时P=-1-3t M=-3+4t N=9-5t.(-1-3t)+(9-5t)=2(-3+4t)解得t=78(舍去).当23≤t≤43时点P从A返回向B运动.此时P=-3+3(t-23)=3t-5.3t-5+9-5t=2(-3+4t)解得t=1.当P为MN中点时t>43.(9-5t)+(-3+4t)=2(3t-5)解得t=167.当点N为PM中点时t>43.(-3+4t)+(3t-5)=2(9-5t),解得t=2617.综上所述t的值为1167或2617.6.七(1)班的学习小组学习“线段中点”内容时得到一个很有意思的结论请跟随他们一起思考.(1)发现:如图1 线段12AB=点,,C E F在线段AB上当点,E F是线段AC和线段BC的中点时线段EF的长为_________;若点C在线段AB的延长线上其他条件不变(请在图2中按题目要求将图补充完整)得到的线段EF与线段AB之间的数量关系为_________.(2)应用:如图3 现有长为40米的拔河比赛专用绳AB其左右两端各有一段(AC和BD)磨损了磨损后的麻绳不再符合比赛要求. 已知磨损的麻绳总长度不足20米. 小明认为只利用麻绳AB和一把剪刀(剪刀只用于剪断麻绳)就可以得到一条长20米的拔河比赛专用绳EF. 小明所在学习小组认为此法可行于是他们应用“线段中点”的结论很快做出了符合要求的专用绳EF请你尝试着“复原”他们的做法:①在图中标出点E、点F的位置并简述画图方法;②请说明①题中所标示,E F点的理由.【答案】(1)6;补图见解析12EF AB=(2)①见解析(答案不唯一)②见解析.【详解】解:(1)点,,C E F在线段AB上时因为点E是线段AC的中点所以CE=12AC因为点F是线段BC的中点所以CF=12BC所以EF=CE+CF=12AC+12BC=12AB又AB=12 所以EF=6.当点C 在线段AB 的延长线上时 如图2此时 EF=EC -FC∴12AC -12BC=12AB. 答案为:6;EF=12AB. (2)①图3如图 在CD 上取一点M 使CM CA = F 为BM 的中点 点E 与点C 重合. (答案不唯一) ②因为F 为BM 的中点 所以MF BF =. 因为,AB AC CM MF BF CM CA =+++= 所以222()2AB CM MF CM MF EF =+=+=. 因为40AB =米 所以20EF =米.因为20AC BD +<米 40AB AC BD CD =++=米 所以20CD >米.因为点E 与点C 重合 20EF =米 所以20CF =米 所以点F 落在线段CD 上. 所以EF 满足条件. 7.问题背景整体思想就是从问题的整体性质出发 突出对问题的整体结构的分析 把握它们之间的关联 进行有目的、有意识的整体处理 整体思想在代数和几何中都有很广泛的应用.(1)如图1 A、B、O三点在同一直线上射线OD和射线OE分别平分∴AOC和∴BOC则∴DOE的度数为(直接写出答案).(2)当x=1时代数式a3x+bx+2021的值为2020 当x=﹣1时求代数式a3x+bx+2021的值.(3)①如图2 点C是线段AB上一定点点D从点A、点E从点B同时出发分别沿直线AB 向左、向右匀速运动若点E的运动速度是点D运动速度的3倍且整个运动过程中始终满足CE=3CD求ACAB的值;②如图3 在①的条件下若点E沿直线AB向左运动其它条件均不变.在点D、E运动过程中点P、Q分别是AE、CE的中点若运动到某一时刻恰好CE=4PQ求此时AD AB的值.【答案】(1)90°;(2)2022;(3)①14;②112或512【解析】(1)解:如图1 ∴射线OD和射线OE分别平分∴AOC和∴BOC∴∴DOC =12∴AOC∴COE=12∴BOC∴∴DOE=∴DOC+∴COE∴∴DOE=12∴AOC+12∴BOC=12(∴AOC+∴BOC)∴∴AOC+∴BOC=180° ∴∴DOE=12×180°=90°故答案为:90°.(2)∴当x=1时代数式a3x+bx+2021的值为2020∴a +b+2021=2020 ∴a+b=-1 ∴-a-b=1当x=﹣1时a3x+bx+2021= -a-b+2021=1+2021=2022.(3)①如图2设点D运动的路程为x则点E运动的路程为3x∴CE=BC+BE=BC+3x CD=CA+AD=CA+x∴CE=3CD∴BC+3x= 3CA+3x∴CB=3AC∴AB=CB+AC=4AC∴ACAB=14.②根据① 设AC=m则CB=3m AB=4m设点D运动的路程为AD=x则点E运动的路程为EB=3x当点E在C点的右侧时如图3∴CE =BC -BE =3m -3x CD =CA +AD =m +x ∴点P 、Q 分别是AE 、CE 的中点 ∴PE =12AE QE =12CE ∴PQ =PE -QE =12AE -12CE =11()222mAE CE AC -== ∴CE =4PQ ∴3m -3x =4×2m 解得x =3m故AD =3m∴AD AB=13412mm =. 当点E 在C 点的左侧 且在点A 的右侧时 如图4∴CE =BE -BC =3x -3m CD =CA +AD =m +x ∴点P 、Q 分别是AE 、CE 的中点 ∴PE =12AE QE =12CE ∴PQ =PE +QE =12AE +12CE =11()222mAE CE AC +== ∴CE =4PQ ∴3x -3m =4×2m解得x =53m 故AD =53m ∴AD AB =53412mm =. 当点E 在A 点的左侧时 如图5∴CE =BE -BC =3x -3m CD =CA +AD =m +x ∴点P 、Q 分别是AE 、CE 的中点 ∴PE =12AE QE =12CE ∴PQ =PE +QE =12AE +12CE =11()222mAE CE AC +== ∴CE =4PQ ∴3x -3m =4×2m解得x =53m 故AD =53m ∴ADAB =553412mm =. 综上所述ADAB 的值为112或512. 8.已知:如图1 点M 是线段AB 上一定点 AB =12cm C 、D 两点分别从M 、B出发以1cm /s 、2cm /s 的速度沿直线BA 向左运动 运动方向如箭头所示(C 在线段AM 上 D 在线段BM 上)(1)若AM =4cm 当点C 、D 运动了2s 此时AC = DM = ;(直接填空) (2)当点C 、D 运动了2s 求AC +MD 的值.(3)若点C 、D 运动时 总有MD =2AC 则AM = (填空) (4)在(3)的条件下 N 是直线AB 上一点 且AN ﹣BN =MN 求MNAB的值. 【答案】(1)2 4;(2)6 cm ;(3)4;(4)13MN AB =或1. 【详解】(1)根据题意知 CM =2cm BD =4cm ∴AB =12cm AM =4cm ∴BM =8cm∴AC =AM ﹣CM =2cm DM =BM ﹣BD =4cm 故答案为:2cm 4cm ; (2)当点C 、D 运动了2 s 时 CM =2 cm BD =4 cm ∴AB =12 cm CM =2 cm BD =4 cm∴AC +MD =AM ﹣CM +BM ﹣BD =AB ﹣CM ﹣BD =12﹣2﹣4=6 cm ; (3)根据C 、D 的运动速度知:BD =2MC∴MD =2AC ∴BD +MD =2(MC +AC ) 即MB =2AM∴AM +BM =AB ∴AM +2AM =AB ∴AM =13AB =4 故答案为:4;(4)①当点N 在线段AB 上时 如图1∴AN ﹣BN =MN又∴AN ﹣AM =MN ∴BN =AM =4 ∴MN =AB ﹣AM ﹣BN =12﹣4﹣4=4 ∴13MN AB =; ②当点N 在线段AB 的延长线上时 如图2∴AN ﹣BN =MN又∴AN ﹣BN =AB ∴MN =AB =12 ∴1MNAB=; 综上所述13MN AB =或1故答案为13MN AB =或1. 9.如图 数轴正半轴上的A B 两点分别表示有理数a b O 为原点 若3a = 线段5OB OA =.(1)=a ______ b =______;(2)若点P 从点A 出发 以每秒2个单位长度向x 轴正半轴运动 求运动时间为多少时;点P 到点A 的距离是点P 到点B 距离的3倍;(3)数轴上还有一点C 表示的数为32 若点P 和点Q 同时从点A 和点B 出发 分别以每秒2个单位长度和每秒1个单位长度的速度向C 点运动 P 点到达C 点后 再立刻以同样的速度返回 运动到终点A 求点P 和点Q 运动多少秒时 P 、Q 两点之间的距离为4. 【答案】(1)3a = 15b =;(2)9或92;(3)8或503【详解】解:(1)∴数轴正半轴上的A B 两点分别表示有理数a b |a|=3 线段OB=5OA ∴a=3 b=15 故答案为:3 15;(2)设运动时间为t 秒时 点P 到点A 的距离是点P 到点B 距离的3倍. 由题意得:AB=15-3=12 当点P 在A 、B 之间时 有 2t=3(12-2t ) 解得:t=92;当点P 在B 的右边时 有 2t=3(2t -12) 解得t=9;即运动时间为92或9秒时 点P 到点A 的距离是点P 到点B 的距离的3倍;(3)根据题意 由点C 为32 则 AC=32-3=29 BC=32-15=17 ∴点P 运动到点C 所需要的时间为:2914.52t ==秒 点Q 运动到点C 所需要的时间为:17171t ==秒 则可分为两种情况进行分析: ①当点P 还没有追上点Q 时 有:1224t t +-=解得:8t =;②当点P 运动到点C 返回时 与点Q 相遇后 与点Q 相距4 则有:2124292t t ++-=⨯解得:503t =. 10.已知数轴上三点M O N 对应的数分别为-3 0 1 点P 为数轴上任意一点 其对应的数为x .(1)如果点P 到点M 点N 的距离相等 那么x 的值是______;(2)数轴上是否存在点P 使点P 到点M 点N 的距离之和是5?若存在 请直接写出x 的值;若不存在 请说明理由.(3)如果点P 以每分钟3个单位长度的速度从点O 向左运动时 点M 和点N 分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动 且三点同时出发 那么几分钟时点P 到点M 点N 的距离相等.(直接写出答案) 【答案】(1)1-;(2)x= 3.5-或1.5;(3)4t 3=分钟或t=2分钟时点P 到点M 点N 的距离相等.【详解】解:(1)∴M O N 对应的数分别为-3 0 1 点P 到点M 点N 的距离相等 ∴x 的值是1-.故答案为1-; (2)存在符合题意的点P ;∴点M 为-3 点N 为1 则点P 分为两种情况 ①点P 在N 点右侧 则(1)(3)5x x -++= 解得: 1.5x =; ②点P 在M 点左侧 则(3)(1)5x x --+-= 解得: 3.5x =-; ∴ 3.5 1.5x =-或=.(3)设运动t 分钟时 点P 对应的数是-3t 点M 对应的数是-3-t 点N 对应的数是1-4t . ①当点M 和点N 在点P 同侧时 因为PM=PN 所以点M 和点N 重合 所以:-3-t=1-4t解得t =43符合题意.②当点M 和点N 在点P 两侧时 有两种情况.情况1:如果点M 在点N 左侧 PM=-3t -(-3-t )=3-2t .PN=(1-4t )-(-3t )=1-t . 因为PM=PN 所以3-2t=1-t 解得t=2.此时点M 对应的数是-5 点N 对应的数是-7 点M 在点N 右侧 不符合题意 舍去.情况2:如果点M在点N右侧PM=3t-t-3=2t-3.PN=-3t-(1-4t)=t-1.因为PM=PN 所以2t-3=t-1解得t=2.此时点M对应的数是-5 点N对应的数是-7 点M在点N右侧符合题意.综上所述三点同时出发43分钟或2分钟时点P到点M 点N的距离相等.11.如图P是定长线段AB上一点C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上D在线段BP上)(1)若C、D运动到任一时刻时总有PD=2AC请说明P点在线段AB上的位置:(2)在(1)的条件下Q是直线AB上一点且AQ﹣BQ=PQ求PQAB的值.(3)在(1)的条件下若C、D运动5秒后恰好有1CD AB2=此时C点停止运动D点继续运动(D点在线段PB上)M、N分别是CD、PD的中点下列结论:①PM﹣PN的值不变;②MNAB的值不变可以说明只有一个结论是正确的请你找出正确的结论并求值.【答案】(1)点P在线段AB上的13处;(2)13;(3)②MNAB的值不变.【详解】解:(1)由题意:BD=2PC∴PD=2AC ∴BD+PD=2(PC+AC)即PB=2AP ∴点P在线段AB上的13处;(2)如图:∴AQ-BQ=PQ ∴AQ=PQ+BQ∴AQ=AP+PQ ∴AP=BQ ∴PQ=13AB ∴13PQAB=(3)②MNAB的值不变.理由:如图当点C停止运动时有CD=12 AB∴CM=14AB ∴PM=CM-CP=14AB-5∴PD=23AB-10 ∴PN=1223(AB-10)=13AB-5∴MN=PN-PM=112AB当点C停止运动D点继续运动时MN的值不变所以111212ABMNAB AB==.。
七年级数学上册-难点探究:数轴上的动点问题压轴题六种模型全攻略(解析版)
专题08难点探究专题:数轴上的动点问题压轴题六种模型全攻略【考点导航】目录【典型例题】 (1)【考点一数轴上的动点中求运动的时间问题】 (1)【考点二数轴上的动点中求定值问题】 (7)【考点三数轴上的动点中找点的位置问题】 (14)【考点四数轴上的动点中几何意义最值问题】 (18)【考点五数轴上的动点规律探究问题】 (21)【考点六数轴上的动点新定义型问题】 (24)【典型例题】【考点一数轴上的动点中求运动的时间问题】(1)数轴上点A表示的数为,点-+,在数轴上点P表示的数是104t【变式训练】1.(2023春·安徽安庆·七年级统考期末)已知如图,数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运t t>秒.动时间为()0(1)数轴上点B表示的数是___________;当点P运动到AB的中点时,它所表示的数是__________.(2)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P,Q同时出发.求:①当点P运动多少秒时,点P追上点Q?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?【答案】(1)−4,1;(2)①当点P运动5秒时,点P追上点Q;②当点P运动1或9秒时,点P与点Q 间的距离为8个单位长度.【分析】(1)由已知得OA=6,则OB=AB−OA=4,因为点B在原点左边,从而写出数轴上点B所表示的数;动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,所以可得出点P所表示的数为6−4t,当点P运动到AB的中点时,它的运动时间t=5÷4=1.25秒,即可求出点P所表示的数是1;(2)①点P运动t秒时追上点Q,由于点P要多运动10个单位才能追上点Q,则4t=10+2t,然后解方程得到t=5;②分两种情况:当点P运动a秒时,不超过Q,则10+2a−4a=8;超过Q,则10+2a+8=4a;由此求解即可.【详解】解:(1)∵数轴上点A表示的数为6,∴OA=6,则OB=AB−OA=4,∵点B在原点左边,∴数轴上点B所表示的数为−4;点P运动t秒的长度为4t,∵动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,∴P所表示的数为:6−4t,当点P运动到AB的中点时,它的运动时间为t=5÷4=1.25秒,∴它所表示的数是6−4t=6−4×1.25=1;故答案为:−4,1;(2)①点P运动t秒时追上点Q,根据题意得4t=10+2t,解得t=5,答:当点P运动5秒时,点P追上点Q;②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,当P 不超过Q ,则10+2a −4a =8,解得a =1;当P 超过Q ,则10+2a +8=4a ,解得a =9;答:当点P 运动1或9秒时,点P 与点Q 间的距离为8个单位长度.【点睛】此题考查了数轴上的动点问题,根据已知得出各线段之间的关系等量关系是解题关键.2.(2023秋·湖北武汉·七年级统考期末)如图,将一条数轴在原点O 和点B 处各折一下,得到一条“折线数轴”.图中点A 表示12-,点B 表示12,点C 表示20,我们称点A 和点C 在数轴上相距32个长度单位,记为32AC L =.动点M 从点A 出发,沿着“折线数轴”的正方向运动,同时,动点N 从点C 出发,沿着“折线数轴”的负方向运动,它们在水平轴AO ,BC 上的速度都是2单位/秒,在O ,B 之间的上行速度为1单位/秒,下行速度为3单位秒.设运动的时间为t 秒.(1)当4t =秒时,M ,N 两点在数轴上相距多少个单位长度?(2)当M ,N 两点相遇时,求运动时间t 的值.(3)若“折线数轴”上定点P 与O ,B 两点相距的长度相等,且存在某一时刻t ,使得两点M ,N 与点P 相距的长度之和等于6,请直接写出t 的值为____________.【答案】(1)M ,N 两点在数轴上相距16个单位长度(2)8.5t =(3)3t =或10t =【分析】(1)先计算出AO ,BC 的长度,再计算出经过4秒,点M 和点N 运动的路程,即可求解;(2)根据相遇时,两点的路程和等于总路程,即可求解;(3)根据题意,进行分类讨论即可.【详解】(1)解:根据题意可得:()01212AO =--=,20128BC =-=,当4t =秒时,点M 的运动路程:2812t =<,点N 的运动路程:28t =,∴经过4秒,点M 在AO 上,点N 和点B 重合,∴点M 表示的数为:1284-+=-,点N 表示的数为:20812-=,∴M 、N 两点距离为:()12416--=.【考点二数轴上的动点中求定值问题】(1)点B在数轴上表示的数是,点C在数轴上表示的数是【变式训练】(1)=a___________,b=___________;(1)填空:线段AB的长度AB=______;=,点D在点A的右侧,又∵OD AC【考点三数轴上的动点中找点的位置问题】(1)操作一:折叠纸面,使表示数1的点与表示数﹣1的点重合,则此时表示数(2)操作二:折叠纸面,使表示数6的点与表示数﹣2的点重合,回答下列问题:【答案】(1)-4(2)①-5;②A、B两点表示的数分别是-3,7;③x的值为-4或8.【分析】(1)先求出中心点,再求出对应的数即可;(2)①求出中心点是表示2的点,再根据对称求出即可;②求出中心点是表示2的点,求出A、B到表示2的点的距离是5,即可求出答案;③根据点P在数轴上的位置,分类讨论,当点P在点A的左侧时,当点P在点A、B之间时,当点P在点A的右侧时,根据各种情形求解即可.【详解】(1)解:∵折叠纸面,使数字1表示的点与-1表示的点重合,可确定中心点是表示0的点,∴4表示的点与-4表示的点重合,故答案为∶-4;(2)解:①∵折叠纸面,使表示数6的点与表示数﹣2的点重合,可确定中心点是表示2的点,∴表示数9的点与表示数-5的点重合;故答案为∶-5;②∵折叠后,数轴上的A,B两点也重合,且A,B两点之间的距离为10(点A在点B的左侧),∴A、B两点距离中心点的距离为10÷2=5,∵中心点是表示2的点,∴A、B两点表示的数分别是-3,7;③当点P在点A的左侧时,∵PA+PB=12,∴-3-x+7-x=12,解得x=-4;当点P在点A、B之间时,此时PA+PB=12不成立,故不存在点P在点A、B之间的情形;当点P在点A的右侧时,∵PA+PB=12,∴x-(-3)+x-7=12,解得x=8,综上x的值为-4或8.【点睛】本题考查了数轴的应用,能求出折叠后的中心点的位置是解此题的关键.【变式训练】1.已知在数轴上A,B两点对应数分别为﹣2,6.(2)解:①MP=2t+2-t=t+2.当点P在点N NP=5t-6(1)直接写出线段AB的中点C对应的数;(4)①追及前相距20,设行驶的时间为t s ,由题意得,3012+90+8=20t t -,解得25t =,此时李明所在位置点F 对应的数为90825290--⨯=-;②追及后相距20,设行驶的时间为t s ,由题意得,908301220t t ---+=,解得35t =,此时李明所在位置点F 对应的数为90835370--⨯=-;答:李明所在位置点F 对应的数为290-或370-.【点睛】题目主要考查数轴上两点之间的距离及一元一次方程的应用,理解题意,进行分情况讨论分析是解题关键.【考点四数轴上的动点中几何意义最值问题】填空:因为12x x ++-的几何意义是线段PA 与PB 的长度之和,而当点点P 在线段AB 上,6PA PB +=,当点在3-和1之间时,距离之和为4,不满足题意;【变式训练】图图图图【考点五数轴上的动点规律探究问题】例题:(2022秋·北京朝阳·九年级校考阶段练习)一个动点P 从数轴上的原点O 出发开始移动,第1次向右移动1个单位长度到达点P 1,第2次向右移动2个单位长度到达点P 2,第3次向左移动3个单位长度到达点P 3,第4次向左移动4个单位长度到达点P 4,第5次向右移动5个单位长度到达点P 5…,点P 按此规律移动,则移动第158次后到达的点在数轴上表示的数为()A .159B .-156C .158D .1【答案】A【分析】根据数轴,按题目叙述的移动方法即可得到点前五次移动后在数轴上表示的数;根据移动的规律即可得移动第158次后到达的点在数轴上表示的数.【详解】解:设向右为正,向左为负,则1P 表示的数为+1,2P 表示的数为+33P 表示的数为04P 表示的数为-45P 表示的数为+1……由以上规律可得,每移动四次相当于向左移动4个单位长度.所以当移动156次时,156=39×4相当于向左移动了39次四个单位长度.此时表示的数为()39-4156⨯=-.则第157次向右移动157个单位长度,1571P =;P=.第158次还是向右,移动了158个单位长度,所以1581+158=159P在数轴上表示的数为159.故158故选A.【点睛】本题考查了数轴上点的运动规律,正确理解题意,找出点在数轴上的运动次数与对应点所表示的数的规律是解题的关键.【变式训练】离.【详解】(1)∵A点在数轴上表示的数为﹣17,A、B两点相距54米,﹣17+54=37或-17-54=-71答:B点在数轴上表示的数为37或-71;(2)M点到A点的距离与N点到A点的距离相等.理由如下:根据题意,得前进第一次与点A距离1米,前进第二次与点A距离2米,后退第一次与点A距离1米,后退第二次与点A距离2米,…第六次行进(即前进3次,后退3次)后,点N到A的距离为3米,点M到A的距离为3米,答:M点到A点的距离与N点到A点的距离相等.(3)∵B点在原点的左侧∴B点在点A的左侧经过10次行进后,小乌龟在点A的右侧且与点A的距离是5米,小乌龟到达的点与B点之间的距离是54+5=59(米);答:经过10次行进后,小乌龟到达的点与B点之间的距离是59米.【点睛】此题考查有理数的计算,正确理解点与点间的位置关系是解题的关键,(1)中注意点B可能在两侧的情况;(2)中找到乌龟爬行的规律为(3)做基础.【考点六数轴上的动点新定义型问题】例题:(2022秋·江苏·七年级期末)定义:若A,B,C为数轴上三点,若点C到点A的距离是点C到点B 的距离2倍,我们就称点C是【A,B】的美好点.例如:如图1,点A表示的数为-1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的美好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D 就不是【A,B】的美好点,但点D是【B,A】的美好点.(1)点E,F,G表示的数分别是-3,6.5,11,其中是【M,N】美好点的是H所表示的数是.【答案】(1)G;-4或-16(2)1.5,2.25,3,6.75,9,13.5【分析】(1)根据美好点的定义,结合图2,直观考察点E,F,G到点M,N的距离,当MP=2PN时,PN=3,点P对应的数为当2PM=PN时,NP=6,点P对应的数为2-6=-4,因此t=3秒;第三种情况,P为【N,M】的美好点,点P在M左侧,如图3,当PN=2MN时,NP=18,点P对应的数为2-18=-16,因此t=9秒;第四种情况,M为【P,N】的美好点,点P在M左侧,如图4,当MP=2MN时,NP=27,点P对应的数为2-27=-25,因此t=13.5秒;第五种情况,M为【N,P】的美好点,点P在M左侧,如图5,当MN=2MP时,NP=13.5,点P对应的数为2-13.5=-11.5,因此t=6.75秒;第六种情况,M为【N,P】的美好点,点P在M,N左侧,如图6,当MN=2MP时,NP=4.5,因此t=2.25秒;第七种情况,N为【P,M】的美好点,点P在M左侧,当PN=2MN时,NP=18,因此t=9秒,第八种情况,N为【M,P】的美好点,点P在M右侧,当MN=2PN时,NP=4.5,因此t=2.25秒,综上所述,t的值为:1.5,2.25,3,6.75,9,13.5.【点睛】本题考查实数与数轴、点是【M,N】的美好点的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.【变式训练】如图②,M ,N 为数轴上两点,点M 表示数(1)①求(),M N 的美好点表示的数为__________.②求(),N M 的美好点表示的数为_____________.(2)数轴上有一个动点P 从点M 出发,沿数轴以每秒2个单位长度的速度向右运动.设点为t 秒,当点P ,M 和N 中恰有一个点为其余两点的美好点时,求【答案】(1)①-1;②-4;(2)t的值1.5,2.25,3,6.75,9,13.5【分析】(1)根据美好点的定义,结合图2,直观考察点E,F,G到点M,N的距离,只有点G符合条件.结合图2,根据美好点的定义,在数轴上寻找到点N的距离是到点M的距离2倍的点,在点的移动过程中注意到两个点的距离的变化.(2)根据美好点的定义,P,M和N中恰有一个点为其余两点的美好点分6种情况,须区分各种情况分别确定P点的位置,进而可确定t的值.【详解】解:(1)已知点M表示数-7,点N表示数2,由题意可设N到美好点的距离为x,则(M,N)的美好点为2x+x=2-(-7),3x=9,x=3∴①(M,N)的美好点为-7+2×3=-1;②(N,M)的美好点为-7+3=-4;(2)根据美好点的定义,P,M和N中恰有一个点为其余两点的美好点分6种情况,第一情况:当P为【M,N】的美好点,点P在M,N之间,如图1,当MP=2PN时,PN=3,点P对应的数为2-3=-1,因此t=1.5秒;第二种情况,当P为【N,M】的美好点,点P在M,N之间,如图2,当2PM=PN时,NP=6,点P对应的数为2-6=-4,因此t=3秒;第三种情况,P为【N,M】的美好点,点P在M左侧,如图3,当PN=2MN时,NP=18,点P对应的数为2-18=-16,因此t=9秒;第四种情况,M为【P,N】的美好点,点P在M左侧,如图4,当MP=2MN时,NP=27,点P对应的数为2-27=-25,因此t=13.5秒;第五种情况,M为【N,P】的美好点,点P在M左侧,如图5,当MN=2MP时,NP=13.5,点P对应的数为2-13.5=-11.5,因此t=6.75秒;第六种情况,M为【N,P】的美好点,点P在M,N左侧,如图6,当MN=2MP时,NP=4.5,因此t=2.25秒;第七种情况,N为【P,M】的美好点,点P在M左侧,当PN=2MN时,NP=18,因此t=9秒,第八种情况,N为【M,P】的美好点,点P在M右侧,当MN=2PN时,NP=4.5,因此t=2.25秒,综上所述,t的值为:1.5,2.25,3,6.75,9,13.5.【点睛】本题考查了实数与数轴、点是【M,N】的美好点的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.。
专题03数轴上的动点问题压轴题真题分类(解析版)—七年级数学上册重难点题型分类高分必刷题(人教版)
专题03数轴上的动点问题压轴题真题分类(解析版)专题简介:本份资料包含《有理数》这一章中动点问题压轴题常考的主流题型,所选题目源自各名校月考试题、期中试题中的典型考题,按难度逐渐递增的情况分成三类题型:简易型求运动时间、定值问题、新定义类动点问题。
适合于培训机构的老师给优等生作动点问题专题培训时使用或者想冲击满分的尖子生考前刷题时使用。
【解题方法总结】第一步:用含t 的式子表示动点,往左运动:可以表示为“起点t ⋅-速度”,往右运动:“起点t ⋅+速度”;第二步:表示距离:数轴上A 、B 两点表示的数为分别为a 、b ,则A 与B 间的距离AB=|a -b|;第三步:列式化简或者列方程后再解方程。
题型一简易型求运动时间1.如图数轴上有A 、B 两点,分别表示的数为-50和70,点A 以每秒3个单位长度的速度沿数轴向右匀速运动,同时点B 以每秒2个单位长度向左匀速运动.设运动时间为t 秒(t >0).(1)运动开始前,A 、B 两点的距离为;(2)它们按上述方式运动,t 秒后A 点表示的数为;B 点所表示的数为;(用含t 的式子表示)(3)它们按上述方式运动至两点相遇,则相遇点所表示的数为.【详解】解:(1)∵A 、B 两点,分别表示的数为-50和70,∴运动开始前,A 、B 两点的距离为()7050120--=故答案为:120;(2) 点A 以每秒3个单位长度的速度沿数轴向右匀速运动,同时点B 以每秒2个单位长度向左匀速运动,∴t 秒后A 点表示的数为503t -+;B 点所表示的数为702t -,故答案为:503t -+,702t -;(3)根据题意,503t -+=702t -,解得24t =,50+32422-⨯=,故答案为:22。
2.(立信)点A 、B 在单位长度为1的数轴上,点A 表示的数是﹣2,点A 和点B 表示的数互为相反数,若点A 以每秒3个单位长度向右运动,点B 以每秒1个单位长度向右运动.(1)在数轴上标出原点O ,并求出点B 表示的数;(2)当点A 与点B 重合于点C 时,求运动时间?(3)若点A 运动到点M ,点B 运动到点N 时,线段MN =100时,求线段MN 盖住数轴上的整数点的个数是多少?【解答】解:(1)∵点A 表示的数是﹣2,点A 和点B 表示的数互为相反数,∴点B 表示的数是2.(2)设运动时间为x 秒时点A 与点B 重合于点C ,3t =4+t ,解得t =2.(3)设运动时间为y 秒时线段MN =100,3y =4+y +100,解得y =52,∴﹣2+52×3=154,2+52=54,∴M 、N 表示的数分别为154和54,∴线段MN 盖住数轴上的整数点的个数是101个.3.(青竹湖)已知在数轴上有A ,B 两点,点A 表示的数为8,点B 在A 点的左边,且AB =12.若有一动点P 从数轴上点A 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,动点O 从点B 出发,以每秒2个单位长度的速度沿着数轴向右匀速运动,设运动时间为t 秒.(1)当t =1秒时,写出数轴上点B 、P 、Q 所表示的数分别为、、;(2)若点P ,Q 分别从A ,B 两点同时出发,当点P 与点Q 重合时,求t 的值;(3)若M 为线段AQ 的中点,点N 为线段BP 的中点.当点M 到原点的距离和点N 到原点的距离相等时,求t 的值.【解答】解:(1)由题知,B 点表示的数为8﹣12=﹣4,P 点表示的数为8﹣3=5,Q 点表示的数为﹣4+2=﹣2,故答案为:﹣4,5,﹣2;(2)根据题意得,2t +3t =12,解得t =,即t 的值为;(3)根据题意知,|﹣4+2t +8|=|8﹣3t ﹣4|,解得t =0(舍去)或t =8,∴当点M 到原点的距离和点N 到原点的距离相等时,t 的值为8.4.已知数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为10.动点P 从点A 出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为(0)t t >秒.(1)数轴上点B 表示的数是______,点P 表示的数是______(用含t 的代数式表示);(2)动点Q 从点B 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发.求:当点P 运动多少秒时,点P 与点Q 间的距离为8个单位长度?(3)若点M 为AP 中点,点N 为BP 中点,在点P 运动过程中,求出线段MN 的长.【详解】(1)解:点B 表示的数是6104-=-,点P 表示的数是66t -,故答案为:4-,66t -;(2)解:Q 表示的数是44t --,点P 表示的数是66t -,根据题意得:()44668t t ----=,即2108t -=或2108t -=-,解得9t =或1t =,答:当点P 运动9秒或1秒时,点P 与点Q 间的距离为8个单位长度;(3)解:线段MN 的长度不发生变化,理由如下:A 表示的数为6,点P 表示的数是66t -,表示的数是5.(长雅)如图,在数轴上A点表示数a,B点表示示数b,点A与点B之间的距离表示为AB.若点A与点O之间的距离OA=2,点B与点O之间的距离OB=6.(1)a=,b=;(2)如图①,请在数轴上找一点C,使AC=2BC,则C点表示的数为;(3)如图①,若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒).①分别表示出甲、乙两小球到原点的距离(用t表示);②求甲、乙两小球到原点的距离相等时经历的时间.【解答】解:(1)∵OA=2,A在O的左侧,∴a=﹣2,∵OB=6,B在O的右侧,∴a=6,故答案为:﹣2,6;(2)设C表示的数是c,当点C在AB之间时有:c﹣(﹣2)=2(6﹣c),解得:c=,当点C在B的右侧时有:c﹣(﹣2)=2(c﹣6),解得:c=14,故答案为:或14;(3)①甲距原点的距离为:2+t,乙距原点的距离为:当0≤t≤3时,6﹣2t,当t>3时,2(t﹣3)=2t﹣6,②当0≤t≤3时,2+t=6﹣2t,解得:t=,当t>3时,2+t=2t﹣6,解得:t=8,答:甲、乙两小球到原点的距离相等时经历的时间为秒或8秒.题型二定值问题6.(麓山)数轴上两点A 、B ,A 在B 左边,原点O 是线段AB 上的一点,已知AB =4,且OB =3OA .点A 、B 对应的数分别是a 、b ,点P 为数轴上的一动点,其对应的数为x .(1)a =,b =,并在数轴上面标出A 、B 两点;(2)若PA =2PB ,求x 的值;(3)若点P 以每秒2个单位长度的速度从原点O 向右运动,同时点A 以每秒1个单位长度的速度向左运动,点B 以每秒3个单位长度的速度向右运动,设运动时间为t 秒.请问在运动过程中,3PB ﹣PA 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.【解答】解:(1)因为AB =4,且OB =3OA .A ,B 对应的数分别是a 、b ,所以a =﹣1,b =3.故答案为:﹣1,3.(2)①当P 点在A 点左侧时,PA <PB ,不合题意,舍去.②当P 点位于A 、B 两点之间时,因为PA =2PB ,所以x +1=2(3﹣x ),所以x =.②当P 点位于B 点右侧时,因为PA =2PB ,所以x +1=2(x ﹣3),所以x =7.故x 的值为或7.(3)t 秒后,A 点的值为(﹣1t ),P 点的值为2t ,B 点的值为(3+3t ),所以3PB ﹣PA=3(3+3t ﹣2t )﹣[2t ﹣(﹣1﹣t )]=9+3t ﹣(2t +1+t )=9+3t ﹣3t ﹣1=8.所以3PB ﹣PA 的值为定值,不随时间变化而变化.7.已知a 、b 满足()25|1|0a b -++=.请回管问题:(1)请直接写出a 、b 的值,a =______,b =_______.(2)当x 的取值范围是_________时,||||x a x b -+-有最小值,这个最小值是_____.(3)数轴a 、b 上两个数所对应的分别为A 、B ,AB 的中点为点C ,点A 、B 、C 同时开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,点B 和点C 分别以每秒1个单位长度和3个单位长度的速度向右运动,当A 、B 两点重合时,运动停止.①经过2秒后,求出点A 与点B 之间的距离AB .②经过t 秒后,请问:BC AB +的值是否随着时间t 的变化而变化?若变化,请说明理由;若不变,请求其值.【解答】解:()15,1-;()215x -≤≤,6;()3:5213,1211312A B AB -⨯==-+⨯==-=①,()()515,1,323223115=3+226A tB tC t t BC AB t t t t t t -=-=-+=+=++=+--++-+--+-②,A B 重合时,()()51113t =+÷+= ,A B 重合时,运动停止,03,t ∴≤≤3+20,260.t t ∴-≤>32(26)9BC AB t t +=+--=.所以()()238262738124720AP OB OP t t t t t t +-=+++-=+++-=.9.(长郡)如图,在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,b 是最小的正整数,且a ,b ,c 满足(c ﹣5)2+|a +b |=0.回答问题:(1)点P 为一动点,其对应的数为x ,若PA =2PC ,求x 的值;(2)点A ,B ,C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和每秒5个单位长度的速度向右运动,设运动时间为t 1秒.请问在运动过程中,BC ﹣AB 的值是否随着时间t 1的变化而改变?若变化,请说明理由;若不变,请求其值.(3)在(2)的条件下,若点C 从第2秒开始掉头向左继续运动,速度不变;A 、B 保持原来运动方向,速度不变继续运动,设继续运动时间为t 2秒.请问在运动过程中,是否存在某个时刻,A ,B ,C 中某一点是另外两点的中点?如果有,请求出t 2的值;如果没有,请说明理由.【解答】解:(1)依题意得b =﹣1,c ﹣5=0,a +b =0,解得a =﹣1,b =1,c =5;∵点P 为一动点,其对应的数为x ,∴PA =|x +1|,PC =|x ﹣5|,∴|x +1|=2|x ﹣5|,解得x =11或x =3;(2)BC ﹣AB 的值不变.根据题意可知,BC ﹣AB =[5+5t 1﹣(1+2t 1)]﹣[1+2t 1﹣(﹣1﹣t 1)]=5+5t 1﹣1﹣2t 1﹣1﹣2t 1﹣1﹣t 1=2,故BC ﹣AB 的值不会随着时间t 的变化而改变;(3)存在,理由如下:第2A 对应的数为:﹣1﹣2=﹣3,点B 对应的数为:1+2×2=5,点C 对应的数为:5+2×5=15.∵继续运动时间为t 2秒,∴点A 对应的数为:﹣3﹣t 2,点B 对应的数为:5+2t 2,点C 对应的数为:15﹣5t 2.若A ,B ,C 中某一点是另外两点的中点,则分三种情况:①当点B 为AC 的中点,则BA =BC ,∴5+2t 2﹣(﹣3﹣t 2)=(15﹣5t 2)﹣(5+2t 2),解得t 2=,②当点C 为AB 的中点,则CA =CB ,∴15﹣5t 2﹣(﹣3﹣t 2)=(5+2t 2)﹣(15﹣5t 2),解得tt 2=,③当点A 为BC 的中点,则AB =AC ,∴(5+2t 2)﹣(﹣3﹣t 2)=﹣3﹣t 2﹣(15﹣5t 2),解得t 2=26,综上,若A ,B ,C 中某一点是另外两点的中点,则t 2的值为或或26.题型三新定义类动点问题10.(中雅)阅读下列材料:我们给出如下定义:数轴上给定不重合两点A,B,若数轴上存在一点M,使得点M到点A的距离等于点M到点B的距离,则称点M为点A与点B的“雅中点”.解答下列问题:(1)若点A表示的数为﹣5,点B表示的数为1,点M为点A与点B的“雅中点”,则点M表示的数为;(2)若A、B两点的“雅中点M”表示的数为2,且A、B两点的距离为9(A在B的左侧),则点A 表示的数为,点B表示的数为;(3)点A表示的数为﹣6,点C,D表示的数分别是﹣4,﹣2,点O为数轴原点,点B为线段CD上一点(点B可与C、D两点重合).①设点M表示的数为m,若点M可以为点A与点B的“雅中点”,则m可取得整数有;②若点A和点D同时以每秒2个单位长度的速度向数轴正半轴方向移动.设移动的时间为t(t>0)秒,求t的所有整数值,使得点O可以为点A与点B的“雅中点”.【解答】解:(1)(﹣5+1)=﹣2,故答案为:﹣2;(2)2﹣4.5=﹣2.5,2+4.5=6.5,故答案为:﹣2.5,6.5;(3)设B表示的数为x(﹣4≤x2),①m=(﹣6+x),所以整数m的值为:﹣4,﹣5,故答案为:﹣4,﹣5;②由题意得:A表示的数为:﹣6+2t,D表示的数为:﹣2+2t,∵O可以为点A与点B的“雅中点”,∴B表示的数为:6﹣2t,∵点B为线段CD上一点(点B可与C、D两点重合),∴﹣4≤6﹣2t≤﹣2+2t,解得:2≤t≤5,∵t的所有整数值为:2,3,4,5.t=3不符合题意,舍去.故满足条件的t的值为2,4,5.11.(广益点)已知数轴上两点A,B对应的数分别为﹣8和4,点P为数轴上一动点,若规定:点P 到A的距离是点P到B的距离的3倍时,我们就称点P是关于A→B的“广益点”.(1)若点P到点A的距离等于点P到点B的距离时,求点P表示的数是多少;(2)若点P以每秒1个单位的速度从原点O开始向右运动,当点P是关于A→B的“广益点”时,求点P的运动时间;(3)若点P在原点的左边(即点P对应的数为负数),且点P,A,B中,其中有一个点是关于其它任意两个点的“广益点”,请直接写出所有符合条件的点P表示的数.【解答】解:(1)∵数轴上两点A,B对应的数分别为﹣8和4,∴AB=4﹣(﹣8)=12,∵点P到点A的距离等于点P到点B的距离,∴点P是AB的中点,∴BP=AP=AB=6,∴点P表示的数为﹣2;(2)设点P运动时间为t秒,根据题意可知,PA=t+8,PB=|4﹣t|,∴t+8=3|4﹣t|,解得:t=1或10,∴点P运动的时间为1秒或10秒;(3)设点P表示的数为n,根据题意可得,PA=n+8或﹣n﹣8,PB=4﹣n,AB=12,分五种情况进行讨论:①当点A是关于P→B的“广益点”时,得PA=3AB,即﹣n﹣8=36,解得n=﹣44;②当点A是关于B→P的“广益点”时,得AB=3AP,即3(﹣n﹣8)=12,解得n=﹣12;或3(n+8)=12,解得n=﹣4;③当点P是关于A→B的“广益点”时,得PA=3PB,即﹣n﹣8=3(4﹣n),解得n=10;(不符合题意,舍去),或n+8=3(4﹣n),解得n=1(不符合题意,舍去);④当点P是关于B→A的“广益点”时,得PB=3AB,即4﹣n=3(n+8),解得n=﹣5;或4﹣n=3(﹣n﹣8),解得n=﹣14;⑤当点B是关于P→A的“广益点”时,得BP=3AB,即4﹣n =36,解得n=﹣32,综上所述,所有符合条件的点P表示的数是:﹣4,﹣5,﹣12,﹣14,﹣32,﹣44.12.(长郡)已知:点A、B、P为数轴上三点,我们约定:点P到点A的距离是点P到点B的距离的k 倍,则称P是[A,B]的“k倍点”,记作:P[A,B]=k.例如:若点P表示0,点A表示﹣2,点B表示1,则P是[A,B]的“2倍点”[A,B]=2.(1)如图,A、B、P、Q、M、N为数轴上各点,如图图示,回答下面问题:①P[A,B]=;②M[N,A]=;③若C[Q,B]=1,则C表示的数为.(2)若点A表示﹣1,点B表示5,点C是数轴上一点,且C[A,B]=3,求点C所表示的数.(3)数轴上,若点M表示﹣10,点N表示50,点K在点M和点N之间,且K[M,N]=5.从某时刻开始,M、N同时出发向右匀速运动,且M的速度为5单位/秒,点N速度为2单位/秒,设运动时间为t(t>0),当t为何值时,M是K、N两点的“3倍点”.【解答】解:(1)①∵A、B、P三点表示的数分别是﹣3、5、3,∴PA=3﹣(﹣3)=6,PB=5﹣3=2,∴PA=3PB,即P[A,B]=3;②∵MN=7﹣(﹣5)=12,MA=﹣3﹣(﹣5)=2,∴MN=6MA,即M[N,A]=6;③∵C[Q,B]=1,∴CQ=CB,∴C为线段QB的中点,∴C表示的数为=2.故答案为:①3;②6;③2.(2)设点C在数轴上表示的数为x,∵C[A,B]=3,∴CA=3CB,∴|x﹣(﹣1)|=3|x﹣5|,∴x=3.5或8.故点C所表示的数为:3.5或8.(3)∵K[M,N]=5,∴KM=5KN,∵点M表示﹣10,点N表示50,点K在点M和点N之间,∴KM+KN=MN=60,∴KN=MN=10,∴点K表示的数为50﹣10=40.由题意得,运动t秒时点M表示的数为﹣10+5t,点N表示的数为50+2t.∵M是K、N两点的“3倍点”,∴MK=3MN,∴|40﹣(﹣10+5t)|=3|50+2t﹣(﹣10+5t)|,∴t=或.即当t为或时,M是K、N两点的“3倍点”.。
精选七年级上册数学数轴动点问题压轴题专题练习3
精选七年级上册数学数轴动点问题压轴题专题练习1.已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A、点B的距离相等,则点P对应的数为;(2)利用数轴探究:找出满足|x﹣3|+|x+1|=6的x的所有值是;(3)当点P以每秒6个单位长的速度从O点向右运动时,点A以每秒6个单位长的速度向右运动,点B以每秒钟5个单位长的速度向右运动,问它们同时出发,几秒后P点到点A、点B的距离相等?2.数轴上有A、B、C三个点,分别表示有理数﹣24、﹣10、10,两条动线段PQ和MN,PQ=2,MN=4,如图,线段MN以每秒1个单位的速度从点B开始一直向右匀速运动,线段PQ同时以每秒3个单位的速度从点A开始向右匀速运动,当点Q运动到C时,线段PQ立即以相同的速度返回,当点P运动到点A时,线段PQ、MN立即同时停止运动,设运动时间为t秒(整个运动过程中,线段PQ和MN保持长度不变,且点P总在点Q 的左边,点M总在点N的左边)(1)当t为何值时,点Q和点N重合?(2)在整个运动过程中,线段PQ和MN重合部分长度能否为1,若能,请求出此时点P表示的数;若不能,请说明理由.3.如图,已知数轴上点A表示的数为6,点B是数轴上在A左侧的一点,且A,B两点间的距离为11,动点P从点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是,当点P运动到AB中点时,它所表示的数是;(2)动点Q从点B出发,以每秒2个单位长度的速度沿数辅向右匀速运动,若P,Q两点同时出发,求点P与Q运动多少秒时重合?(3)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若P,Q两点同时出发,求:①当点P运动多少秒时,点P追上点Q?②当点P与点Q之间的距离为8个单位长度时,求此时点P在数轴上所表示的数.4.已知,数轴上点A、C对应的数分别为a、c,且满足|a+7|+(c﹣1)2020=0,点B对应点的数为﹣3.(1)a=,c=;(2)若动点P、Q分别从A、B同时出发向右运动,点P的速度为3个单位长度/秒;点Q的速度为1个单位长度/秒,求经过多长时间P、Q两点的距离为;(3)在(2)的条件下,若点Q运动到点C立刻原速返回,到达点B后停止运动,点P 运动至点C处又以原速返回,到达点A后又折返向C运动,当点Q停止运动点P随之停止运动.求在整个运动过程中,两点P,Q同时到达的点在数轴上表示的数.5.如图,点A、点B是数轴上原点O两侧的两点,其中点A在原点O的左侧,且满足AB =6,OB=2OA.(1)点A、B在数轴上对应的数分别为和.(2)点A、B同时分别以每秒1个单位长度和每秒2个单位长度的速度向左运动.①经过几秒后,OA=3OB;②点A、B在运动的同时,点P以每秒1个单位长度的速度从原点向右运动,经过几秒后,点A、B、P中的某一点成为其余两点所连线段的中点?6.A、B、C为数轴上的三点,动点A、B同时从原点出发,动点A每秒运动x个单位,动点B每秒运动y个单位,且动点A运动到的位置对应的数记为a,动点B运动到的位置对应的数记为b,定点C对应的数为8.(1)若2秒后,a、b满足|a+8|+(b﹣2)2=0,则x=,y=,并请在数轴上标出A、B两点的位置.(2)若动点A、B在(1)运动后的位置上保持原来的速度,且同时向正方向运动z秒后使得|a|=|b|,使得z=.(3)若动点A、B在(1)运动后的位置上都以每秒2个单位向正方向运动继续运动t秒,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,点A与点B之间的距离为AB,且AC+BC=1.5AB,则t=.7.数轴上点A对应的数为﹣2,点B对应的数为4,点P为数轴上一动点.(1)AB的距离是.(2)①若点P到点A的距离比到点B的距离大1,点P对应的数为.②若点P其对应的数为x,数轴上是否存在点P,使点P到点A,点B的距离之和为8?若存在,请求出x的值;若不存在,请说明理由.(3)当点P以每秒钟1个单位长度从原点O向右运动时,点M以每秒钟2个单位长度的速度从点A向左运动,点N以每秒钟3个单位长度的速度从点B向右运动,问它们同时出发秒钟时,PM=PN(直接写出答案即可).8.如图所示,甲、乙二人沿着边长为90米的正方形,按A→B→C→D→A的方向行走,甲从A以65米/分的速度行走,乙从B以72米/分的速度行走,当乙第一次追上甲时,是在正方形的哪条边上?9.已知x=﹣3是关于x的方程(k+3)x+2=3x﹣2k的解.(1)求k的值;(2)在(1)的条件下,已知线段AB=6cm,点C是线段AB上一点,且BC=kAC,若点D是AC的中点,求线段CD的长.(3)在(2)的条件下,已知点A所表示的数为﹣2,有一动点P从点A开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q从点B开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD=2QD?10.点A、B、C在数轴上表示的数a、b、c满足:(b+2)2+(c﹣24)2=0,且多项式x|a+3|y2﹣ax3y+xy2﹣1是五次四项式.(1)a的值为,b的值为,c的值为(2)点S是数轴上的一个点,当S点满足SC﹣2SA=12时,求S点对应的数.(3)若数轴上有三个动点M、N、P,分别从点A、B、C开始同时出发,在数轴上运动,速度分别为每秒1个单位长度、7个单位长度、3个单位长度,其中点P向左运动,点N 先向左运动,遇到点M后回头再向右运动,遇到点P后又回头向左运动,…,这样直到点P遇到点M时三点都停止运动,求点N所走的路程.参考答案1.解:(1)∵点P到点A、点B的距离相等,∴P点只能在A、B之间,∴PA=PB=AB=×4=2∴P点对应的数为1.故答案是:1.(2)|x﹣3|+|x+1|=6表示P点到数轴表示3和﹣1的点的距离之和为6,即表示P点到A、B两点的距离之和为6.①当P在A点左侧时,PA+PB=6,即PA+PA+4=6,∴PA=1,∴x═﹣2;②当P在B点右侧时,PA+PB=6,即PB+4+PB=6,∴PB=1,∴x=4③当P点A、B之间时,x不存在.∴x的值为﹣2或4.故答案是:﹣2或4.(3)设t秒后P点到点A、点B的距离相等,当P点在B左侧时5t+3﹣6t=1,∴t=2当P点在B右侧时6t﹣(5t+3)=1,∴t=4所以它们出发2秒或4秒后P到A、B点的距离相等.2.解:(1)当Q、N第一次重合时,有3t﹣t=(﹣10)﹣(﹣24),解得,t=7,当Q、N第二次重合时,有3t+t=[10﹣(﹣24)]+[10﹣(﹣10)],解得,t=13.5,综上,当t=7s或13.5s时,点Q和点N重合;(2)①在PQ与MN两线段第一次重合中,当Q在线段MN上,且MQ=1时,有3t﹣t=[﹣10﹣(﹣24)]﹣(4﹣1),解得,t=5.5,此时P点表示的数为:﹣24﹣2+3×5.5=﹣9.5;当P在线段MN上,且PN=1时,有3t﹣t=(﹣10)﹣(﹣24)+(4﹣1),解得,t=7.5,此时P点表示的数为:﹣24﹣2+3×7.5=﹣3.5;②在PQ与MN两线段第二次重合中,当P在线段MN上,且PN=1时,有3t+t=[10﹣(﹣24)+[10﹣(﹣10)]﹣(2﹣1),解得,t=13.25,此时P点表示的数为:10﹣2﹣3×[13.25﹣]=2.25;当Q在线段MN上,且MQ=1时,有3t+t=[10﹣(﹣24)+[10﹣(﹣10)]+(4﹣1),解得,t=14.25,此时P点表示的数为:10﹣2﹣3×[14.25﹣]=﹣0.75;综上,在整个运动过程中,线段PQ和MN重合部分长度能为1,此时P点表示的数是﹣9.5或﹣3.5或﹣0.75或2.25.3.解:(1)∵数轴上点A表示的数为6,点B是数轴上在A左侧的一点,且A,B两点间的距离为11,∴数轴上点B表示的数是6﹣11=﹣5,∵点P运动到AB中点,∴点P对应的数是:×(﹣5+6)=0.5,故答案为:﹣5,0.5;(2)设点P与Q运动t秒时重合,点P对应的数为:6﹣3t,点Q对应的数为:﹣5+2t,∴6﹣3t=﹣5+2t,解得:t=2.2,∴点P与Q运动2.2秒时重合;(3)①运动t秒时,点P对应的数为:6﹣3t,点Q对应的数为:﹣5﹣2t,∵点P追上点Q,∴6﹣3t=﹣5﹣2t,解得:t=11,∴当点P运动11秒时,点P追上点Q;②∵点P与点Q之间的距离为8个单位长度,∴|6﹣3t﹣(﹣5﹣2t)|=8,解得:t=3或t=19,当t=3时,点P对应的数为:6﹣3t=6﹣9=﹣3,当t=19时,点P对应的数为:6﹣3t=6﹣57=﹣51,∴当点P与点Q之间的距离为8个单位长度时,此时点P在数轴上所表示的数为﹣3或﹣51.4.解:(1)由非负数的性质可得:,∴a=﹣7,c=1,故答案为:﹣7,1.(2)设经过t秒两点的距离为由题意得:,解得或,答:经过秒或秒P,Q两点的距离为.(3)点P未运动到点C时,设经过x秒P,Q相遇,由题意得:3x=x+4,∴x=2,表示的数为:﹣7+3×2=﹣1,点P运动到点C返回时,设经过y秒P,Q相遇,由题意得:3y+y+4=2[1﹣(﹣7)],∴y=3,表示的数是:﹣3+3=0,当点P返回到点A时,用时秒,此时点Q所在位置表示的数是,设再经过z秒相遇,由题意得:,∴,∵+=<4+4,∴此时点P、Q均未停止运动,故z=还是符合题意.此时表示的数是:,答:在整个运动过程中,两点P,Q同时到达的点在数轴上表示的数分别是﹣1,0,﹣2.5.解:(1)设点A在数轴上对应的数为x,则点B在数轴上对应的数为﹣2x,∵AB=﹣2x﹣x=6,∴x=﹣2,﹣2x=4.故答案为:﹣2;4.(2)①设t秒后,OA=3OB.情况一:当点B在点O右侧时,则2+t=3(4﹣2t),解得:;情况二:当点B在点O左侧时,则2+t=3(2t﹣4),解得:.答:经过秒或秒,OA=3OB.②设经过t秒后,点A、B、P中的某一点成为其余两点所连线段的中点.当点P是AB的中点时,则PA=PB,∴t+2+t=4﹣t﹣2t,解得:;当点B是AP的中点时,则AB=BP,∴(t+2)﹣(2t﹣4)=(2t﹣4)+t,解得:;当点A是BP的中点时,则AB=AP,∴2t﹣4﹣(t+2)=(t+2)+t,解得:t=﹣8(不合题意,舍去).答:设经过秒或秒后,点A、B、P中的某一点成为其余两点所连线段的中点.6.解:(1)∵|a+8|+(b﹣2)2=0,∴a+8=0,b﹣2=0,即a=﹣8,b=2,则x=|﹣8|÷2=4,y=2÷2=1故答案为:4、1;(2)动点A、B在(1)运动后的位置上保持原来的速度,且同时向正方向运动z秒后a=﹣8+4z,b=2+z,∵|a|=|b|,∴|﹣8+4z|=2+z,解得,故答案为:;(3)若动点A、B在(1)运动后的位置上都以每秒2个单位向正方向运动继续运动t秒后点A表示:﹣8+2t,点B表示:2+2t,点C表示:8,∴AC=|﹣8+2t﹣8|=|2t﹣16|,BC=|2+2t﹣8|=|2t﹣6|,AB=|﹣8+2t﹣(2+2t)|=10,∵AC+BC=1.5AB∴|2t﹣16|+|2t﹣6|=1.5×10,解得,故答案为:或;7.解:(1)∵点A对应的数为﹣2,点B对应的数为4,∴AB的距离是4﹣(﹣2)=6故答案为6(2)①设点P对应的数为a,若点P在点A,点B之间∵点P到点A的距离比到点B的距离大1,∴4﹣a=a﹣(﹣2)﹣1∴a=若点P在点A的左边,则PA<PB,∴不存在点P若点P在点B的右边,则PA﹣PB=6∴不存在点P综上所述,点P对应的数为②若点P在点A左边,则﹣2﹣x+4﹣x=8∴x=﹣3若点P在点A,点B之间,PA+PB=6,不合题意.若点P在点B右边,则x﹣4+x﹣(﹣2)=8∴x=5(3)设时间为t秒根据题意可得;4+3t﹣t=2+2t+t∴t=2故答案为28.解:设乙第一次追上甲用了x分钟,根据题意列方程得:72x=65x+90×3解得:x=而72×=7×360+2×90答:乙第一次追上甲是在AD边上.9.解:(1)把x=﹣3代入方程(k+3)x+2=3x﹣2k得:﹣3(k+3)+2=﹣9﹣2k,解得:k=2;(2)当k=2时,BC=2AC,AB=6cm,∴AC=2cm,BC=4cm,当C在线段AB上时,如图,∵D为AC的中点,∴CD=AC=1cm.即线段CD的长为1cm;(3)在(2)的条件下,∵点A所表示的数为﹣2,AD=CD=1,AB=6,∴D点表示的数为﹣1,B点表示的数为4.设经过x秒时,有PD=2QD,则此时P与Q在数轴上表示的数分别是﹣2﹣2x,4﹣4x.分两种情况:①当点D在PQ之间时,∵PD=2QD,∴﹣1﹣(﹣2﹣2x)=2[4﹣4x﹣(﹣1)],解得x=;②当点Q在PD之间时,∵PD=2QD,∴﹣1﹣(﹣2﹣2x)=2[﹣1﹣(4﹣4x)],解得x=.答:当时间为或秒时,有PD=2QD.10.解:(1)∵(b+2)2+(c﹣24)2=0∴b=﹣2,c=24∵多项式x|a+3|y2﹣ax3y+xy2﹣1是五次四项式.∴a=﹣6故答案为﹣6,﹣2,24(2)①当点S在A点左侧时:30+SA﹣2SA=12∴SA=18∴点S对应的数为:﹣6﹣18=﹣24②当点S在C点右侧时:SC<SA∴点S不可能在C点右侧③当点S在A,C之间时:SC=30﹣SA,∴30﹣SA﹣2SA=12,∴SA=6∴点S对应的数为:﹣6+6=0(3)①若点M向右运动:点P,M相遇时间∴N点所走路程:7.5×7=52.5②若点M向左运动:点P追上M点时间∴N点所走路程:15×7=105综上得:N点所走路程为52.5或105个单位长度.。
2023学年浙江七年级数学上学期专题训练专题03数形结合之数轴上的动点问题压轴题(解析版)
故答案为:①②④.
【点睛】
本题考查了规律型——数字的变化类,主要考查了数轴,要注意数轴上点的移动规律是“左减右加”.把数和点对应起来,也就是把“数”和“形”结合起来.前进3步后退2步”这5秒组成一个循环结构,让n÷5看余数,余数是几,那么第n秒时就是循环节中对应的第几个数.
②求甲、乙两小球相距两个单位时所经历的时间.
【答案】(1)a=-2,b=6;(2) 或14;(3)①甲:-2-2t,乙:6-3t;②6秒或10秒
【分析】
(1)根据非负数的性质求得a=-2,b=6;
(2)分C点在线段AB上和线段AB的延长线上两种情况讨论即可求解;
(3)①根据两个小球的运动情况直接列式即可;
故答案为:2、 、6、 .
【点睛】
本题考查了一元一次方程的应用以及数轴,解题的关键是按P、O、Q三点位置不同分类讨论.本题属于中档题,难度不大,解决该题型题目时,根据运动的过程分情况考虑,再根据三等分点的性质列出方程是关键.
二、解答题
3.(2020·永嘉县上塘城关中学七年级期中)已知数轴上三点 , , 对应的数分别为 ,0,3,点 为数轴上任意一点,其对应的数为 .
7.(2021·浙江宁波市·七年级期中)如图,点 、 在数轴上分别表示实数 、 , 、 两点之间的距离表示为 ,在数轴上 、 两点之间的距离 请你利用数轴回答下列问题:
(1)数轴上表示2和6两点之间的距离是________,数轴上表示1和 的两点之间的距离为________.
(2)数轴上表示 和1两点之间的距离为_______,数轴上表示 和 两点之间的距离为________.
当点P在点M的左侧时,
(-1-x)+(3-x)=8,
七年级上册数轴上的动点压轴题专练
七年级上册数轴上的动点压轴题专练一、数轴上动点问题相关知识点回顾1. 数轴的三要素原点、正方向和单位长度。
在数轴上,数与点是一一对应的关系。
2. 两点间的距离公式设数轴上两点公式、公式所表示的数分别为公式、公式,则公式和公式两点间的距离公式。
例如,若公式表示公式,公式表示公式,则公式;若公式表示公式,公式表示公式,则公式。
3. 动点在数轴上的表示设动点公式从数轴上表示数公式的点出发,以速度公式沿数轴正方向运动,经过时间公式后,点公式所表示的数为公式;若沿数轴负方向运动,则点公式所表示的数为公式。
二、典型例题及解析1. 已知数轴上公式、公式两点对应的数分别为公式和公式,点公式为数轴上一动点,其对应的数为公式。
(1)若点公式到点公式、点公式的距离相等,求点公式对应的数。
解析:因为点公式到点公式、点公式的距离相等,根据两点间距离公式公式,公式。
又因为公式,所以公式。
当公式时,方程无解。
当公式时,公式,公式,解得公式。
所以点公式对应的数为公式。
(2)若点公式在点公式、点公式之间,且公式,求点公式对应的数。
解析:因为公式,公式,且公式,所以公式。
因为点公式在公式、公式之间,即公式,所以公式。
去括号得公式。
移项得公式。
合并同类项得公式,解得公式。
所以点公式对应的数为公式。
(3)点公式以每分钟公式个单位长度的速度从原点公式向左运动,同时点公式以每分钟公式个单位长度的速度向左运动,点公式以每分钟公式个单位长度的速度向左运动,设运动时间为公式分钟。
问公式为何值时,点公式到点公式、点公式的距离相等?解析:公式分钟后,点公式表示的数为公式,点公式表示的数为公式,点公式表示的数为公式。
根据公式,公式。
当公式时,即公式。
当公式时,公式,公式,解得公式。
当公式时,公式,公式,公式,解得公式。
2. 数轴上点公式表示的数为公式,点公式表示的数为公式。
(1)求线段公式的长。
解析:根据两点间距离公式公式。
(2)若点公式是线段公式的中点,则点公式表示的数为多少?解析:设点公式表示的数为公式,因为公式是公式中点,所以公式。
2022--2023学年人教版七年级上册数学期末动点问题压轴题训练
人教版七年级上册数学期末动点问题压轴题训练1.在一条不完整的数轴上从左到右有点A、B、C,其中点A到点B的距离为4,点C到点B的距离为9,如图所示,设点A、B、C所对应的数的和是m.(1)若以A为原点,则m=___________;若以B为原点,则m=___________.(2)若原点O在图中数轴上,且点B到原点O的距离为6,求m的值.(3)动点M从点A出发,以每秒2个单位长度的速度向终点C移动,动点N从点B出发,以每秒1个单位长度的速度向终点C移动,t秒后M,N两点间距离是2,则t=___________秒(直接写出答案).b≥时,将点A向右移动2个单2.在数轴上有A,B两点,点B表示的数为b.对点A给出如下定义:当0位长度,得到点P;当0b<时,将点A向左移动b个单位长度,得到点P.称点P为点A关于点B的“联动点”.如图,点A表示的数为1-.b=时,点A关于点B的“联动点”P;(1)在图中画出当4(2)点A从数轴上表示1-的位置出发,以每秒1个单位的速度向右运动,点B从数轴上表示7的位置同时出发,以相同的速度向左运动,两个点运动的时间为t秒.①点B表示的数为___________(用含t的式子表示);②是否存在t,使得此时点A关于点B的“联动点”P恰好与原点重合?若存在,请求出t的值;若不存在,请说明理由.3.如图,已知线段24AB=,动点P从A出发,以每秒2个单位的速度沿射线AB方向运动,运动时间为t t>),点M为AP的中点.秒(0(1)若点P 在线段AB 上运动,当t 为多少时,PB AM ?(2)若点P 在射线AB 上运动,N 为线段PB 上的一点.①当N 为PB 的中点时,求线段MN 的长度;②当2PN NB 时,是否存在这样的t ,使M ,N ,P 三点中的一个点是以其余两点为端点的线段的中点?如果存在,请求出t 的值;如不存在,请说明理由.4.已知150a b ++-=,点A 、B 在数轴上对应的数分别是a 、b ;(1)求a 、b 的值,并在数轴上标出点A 和点B ;(2)若动点P 从点A 出发沿数轴正方向运动,点P 的速度是每秒1个单位长度,求几秒后点P 与点B 的距离是3个单位长度;(3)在(2)的条件下,动点Q 以每秒2个单位长度的速度,从点B 出发向数轴正方向运动,求几秒后点P 与点Q 的距离等于3个单位长度.5.点A 、B 在数轴上的位置如图所示,P 是数轴上的一个动点.(1)当P 、B 两点之间的距离为1时,则点P 表示的数为__________;(2)当点P 将A 、B 两点之间的距离三等分时,则点P 表示的数为__________;(3)现在点A 以每秒2个单位长度、点B 以每秒1个单位长度的速度同时向右运动,同时点P 以每秒4个单位长度的速度从表示数1的点向左运动,当点A与点B之间的距离为3个单位长度时,求点P所对应的数是多少?6.已知数轴上有A、B、C三个点对应的数分别是a,b,c,且2++++-=,点O为原点.a b c|24||10|(10)0a____________;=b____________;=c____________;(1)请写出=(2)以AB为长,BO为宽,作出长方形EFGH,其中G与A重合,H与B重合(如图所示),将这个长方形总绕着右边的端点在数轴上不断滚动(无滑动),求出E点第3次落在数轴上对应的数字;(3)将(2)中的长方形EFGH,G与A重合,H与B重合时开始计时,该长方形以2个单位长度/秒向右移动,当H点与C点重合时停止运动,整个过程中速度保持不变.数轴上一动点P与长方形同时开始运动,从C 点出发,沿数轴向左移动,速度为3个单位长度/秒,设它们的运动时间为t,求t为何值时,点P与点H之PH=).间的距离为5(即57.如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A,B是数轴上的点,请参照下图并思考,完成下列各题:(1)如果点A表示数-4,将点A向右移动3个单位长度,那么终点B表示的数是,A、B两点间的距离是________;(2)如果点A表示数-2,将A点向右移动188个单位长度,再向左移动266个单位长度,那么终点B表示的数是_________,A,B两点间的距离是________.(3)一般地,如果A点表示的数为a,将A点向右移动b个单位长度,再向左移动n个单位长度,那么终点B 表示的数是_________,A,B两点间的距离是________.(4)在(..1.)的条件下.....,动点P从点B出发,以每秒2个单位长度的速度在数轴上匀速运动,设运动时间为t 妙(t>0),当t为何值时,P、A两点之间的距离为9个单位长度?8.在数轴上点A 表示a ,点B 表示b ,且a 、b 满足570a b ++-=.(1)求a ,b 的值,并计算点A 与点B 之间的距离.(2)若动点P 从A 点出发,以每秒2个单位长度的速度沿数轴正方向匀速运动,运动几秒后,点P 到达B 点?(3)若动点P 从A 点出发,以每秒1个单位长度的速度沿数轴向右匀速运动,同时动点Q 从B 点出发,以每秒3个单位长度的速度沿数轴向左匀速运动,运动几秒后,P 、Q 两点间的距离为4个单位长度?9.已知数轴上有A 、B 、C 三点,分别表示有理数26,1010--,,动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设点P 移动时间为t 秒.(1)用含t 的代数式表示P 到点A 和点C 的距离:P A = ,PC = ;(2)当点P 运动到B 点时,点Q 从A 点出发,以每秒3个单位的速度向C 点运动,Q 点到达C 点后,再立即以同样的速度返回,当点P 运动到点C 时,P 、Q 两点运动停止.①求当t 为何值时Q 点追上P 点?②当P 、Q 两点运动停止时,求点P 和点Q 的距离.10.已知数轴上两点A 、B 对应的数分别为2-、5,点P 为数轴上一动点,其对应的数为x .(1)若点P 到点A 、点B 的距离相等,直接写出点P 对应的数是___________;(2)若点P 到点A 、点B 的距离之和为8.请直接写出x 的值为___________;(3)现在点A 、点B 分别以每秒2个单位长度和每秒0.5个单位长度的速度同时向右运动,同时点P 以每秒6个单位长度的速度从表示数1的点向左运动,当点A 与点B 之间的距离为5个单位长度时,求点P 所对应的数是多少?11.如图,已知数轴上的点A表示的数为6,点B表示的数为-4,点C到点A、点B的距离相等,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t大于0)秒.(1)点C表示的数是___________.(2)求当t等于多少秒时,点P到达点A处?(3)t=3时,点P表示的数是___________.(4)求当t等于多少秒时,P、C之间的距离为2个单位长度.12.在数轴上点A表示的数是4,点B位于点A的左侧,与点A的距离是10个单位长度.(1)点B表示的数是_______.(2)动点P从点B出发,沿着数轴的正方向以每秒3个单位长度的速度运动.经过多少秒点P与点A的距离是2个单位长度?(3)在(2)的条件下,点P出发的同时,点Q也从点A出发,沿着数轴的负方向,以1个单位每秒的速度运动.经过多少秒,点Q到点B的距离是点P到点A的距离的2倍?,12.13.数轴上有A,B,C三点,其中点A,B表示的数分别为3(1)线段AB的长为_________;(2)若13AC AB=,求点C表示的数;(3)在(2)的条件下点P,Q是该数轴上沿正方向同时出发的两个动点,点P以每秒3个单位长度的速度从点C出发,点Q以每秒1个单位长度的速度从点B出发,设运动时间为t秒.①请用含t的式子表示点P运动t秒后,到达位置上表示的数_______________;②当P,Q两点到点B的距离相等时,求t的值.14.已知a是最小的正整数,b是7-的相反数,2c=--,且a、b、c分别是点A、B、C在数轴上对应的数,动点P从点A出发沿数轴正方向匀速运动,动点Q同时从点B出发也沿数轴正方向匀速运动.点P的速度是每秒2个单位长度,点Q的速度是每秒1个单位长度,设点P的运动时间为t秒.(1)a=______,b=______,c=______;(2)当t=1时,线段PQ长为______;(3)若P、Q出发的同时,动点M从点C出发沿数轴正方向匀速运动,速度为每秒4个单位长度.再运动几秒,M能追上P?再运动几秒,M能追上Q?15.有A,B两点,在数轴上分别表示实数a、b,若a的绝对值是b的绝对值的4倍,且A,B两点的距离是15个单位,(1)探讨a、b的值.①A,B两点都在原点的左侧时,a=___________,b=___________;②若规定A在原点的左侧、B在原点的右侧,a=___________,b=___________;(2)数轴上现有两个动点P、Q,动点P从A点出发向B点运动,每秒2个单位;动点Q从B点出发向A点运动,每秒1个单位,两点同时出发,当其中一点到达终点时另一点也随之停止,经过t秒后P、Q两点相距3个单位,求此时t的值.16.如图,数轴上有三点A B C ,,,表示的数分别是423--,,,请回答:(1)若使C B ,两点的距离等于A B ,两点的距离,即CB AB =,则需将点C 向左移动______个单位长度;(2)点P 是数轴上的一个动点,其表示的数为x ,则43x x ++-的最小值是__________.(3)若有两只小青蛙M N ,,它们在数轴上的点表示的数分别为m n ,,满足439m m ++-=且423n n n ++++-的值最小,求两只小青蛙M N ,之间的距离__________.(4)点P Q R ,,同时分别从A B C ,,出发,点P 以每秒5个单位长度向数轴正方向运动,点Q 以每秒4个单位长度向数轴正方向运动,点R 以每秒2个单位长度向数轴负方向运动,当8PQ PR +=时,点R 对应的数是__________.17.已知多项式32(10)2053a x x x ++-+是关于x 的二次多项式,且二次项系数为b ,数轴上两点A ,B 对应的数分别为a ,b .(1)a =___________,b =___________,线段AB =___________;(2)若数轴上有一点C ,使得32AC BC =,点M 为AB 的中点,求MC 的长; (3)有一动点G 从点A 出发,以1个单位每秒的速度向终点B 运动,同时动点H 从点B 出发,以56个单位每秒的速度在数轴上作同向运动,设运动时间为t 秒(30t <),点D 为线段GB 的中点,点F 为线段DH 的中点,点E 在线段GB 上且13GE GB =,在G ,H 的运动过程中,求DE DF +的值.18.如图,数轴上相邻两点之间的距离为1个单位长度,四个点A ,B ,C ,D 对应的数分别为a 、b ,c ,d .a b -表示点A 和B 之间的距离.(1)a b c d -+-=;(2)求3a -b -c -d 的值;(3)若a +b +c +d =2,求a 的值;(4)在(3)的条件下,动点P 从A 点出发以1个单位长度/秒的速度向左运动,动点Q 从B 点出发以4个单位长度/秒的速度向左运动,动点M 从C 点出发以2个单位长度/秒的速度向右运动,动点N 从D 出发以3个单位长度/秒的速度向右运动,P ,Q ,M ,N 四点同时出发,第几秒时,线段QM 的三等分点恰好是线段PN 的中点?(直接写出结果)19.如图,数轴上有三个点A 、B 、C ,表示的数分别是﹣4、﹣2、3,请回答:(1)若使C 、B 两点的距离与A 、B 两点的距离相等,则需将点C 向左移动 ___________个单位(其中点C 不与点A 重合).(2)若在表示﹣1的点处有一只小青蛙,一步跳1个单位长,小青蛙第1次先向左跳1步,第2次再向右跳3步,然后第3次再向左跳5步,第4次再向右跳7步…按此规律继续跳下去,那么跳第99次时,应跳 ___________步,落脚点表示的数是 ___________;(3)若移动A 、B 、C 三点中的两个点,使三个点表示的数相同,移动方法有 ___________种,其中移动所走的距离和最小的是 ___________个单位;(4)若数轴上有个动点表示的数是x ,则423x x x ++++-的最小值是 ___________.20.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB =20,(1)写出数轴上点B 表示的数______; (2)53-表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如3x -的几何意义是数轴上表示有理数3的点与表示有理数x 的点之间的距离.试探索:①若82x ,则x =______; ②128x x 的最小值为______.(3)动点P 从O 点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t (t >0)秒.当t =______,A ,P 两点之间的距离为2;(4)动点P ,Q 分别从O ,B 两点,同时出发,点P 以每秒2个单位长度沿数轴匀速运动,Q 点以P 点速度的两倍,沿数轴匀速运动,设运动时间为t (t >0)秒.当P ,Q 之间的距离为4时,求t 的值.参考答案:1.(1)17;5(2)m 的值为23或13-(3)6或22.(2)①7t -,②不存在,3.(1)8;(2)①12.②当487t =时,P 是MN 的中点;当965t =时,N 是MP 的中点.4.(1)1a =-,5b =,(2)3秒或9秒(3)1秒或3秒5.(1)3或5(2)0或2(3)点P 所对应的数是11-或35-.6.(1)24-,10-,10(2)E 点第3次落在数轴上对应的数是96(3)当=3t 或=5t 时,点P 与点H 之间的距离为57.(1)-1,3;(2)-80,78;(3)a b n +-,b n -;(4)=3t 或=6t8.(1)5a =-,=7b ,A 与B 之间的距离为12个单位长度(2)6秒11(3)2秒或4秒9.(1)t ;36t -;(2)①24;②24.10.(1)1.5;(2) 2.5-或5.5;(3)7-或-47.11.(1)1(2)5秒(3)2(4)1.5或3.5秒12.(1)6-(2)经过83秒或4秒点P 与点A 的距离是2个单位长度 (3)经过2秒或307秒,点Q 到点B 的距离是点P 到点A 的距离的2倍13.(1)15(2)8-或2 (3)①83t -+或23t +;②2.5或5或1014.(1)1,7,2-(2)5(3)运动32秒,M 能追上P ,再运动32秒,M 能追上Q15.(1)①20a =-,5b =-;②12a =-,=3b(2)4或者616.(1)3;(2)7;(3)6或3;(4)54-或114.17.(1)10-,20,30;(2)3或75;(3)252.18.(1)4 (2)14-(3)3a=-(4)43t=秒或29秒19.(1)3(2)197,100-(3)3,7(4)720.(1)-12(2)①6或10;②20(3)5或3(4)43或4或812。
人教版七年级上册数学期末动点问题压轴题(含答案)
人教版七年级上册数学期末动点问题压轴题(含答案)1.如图,已知在原点为O 的数轴上三个点A 、B 、C ,20cm OA AB BC ===,动点P 从点O 出发向右以每秒2cm 的速度匀速运动;同时,动点Q 从点C 出发向左以每秒cm a 的速度匀速运动.设运动时间为t 秒.(1)当点P 从点O 运动到点C 时,求t 的值;(2)若3a =,那么经过多长时间P ,Q 两点相距20cm ? (3)当40cm PA PB +=,10cm QB QC -=时,求a 的值.2.如图,数轴上两个动点A ,B 起始位置所表示的数分别为8-,4,A ,B 两点各自以一定的速度在数轴上运动,已知A 点的运动速度为2个单位/秒.(1)若A ,B 两点同时出发相向而行,正好在原点处相遇,请直接写出B 点的运动速度. (2)若A ,B 两点于起始位置按上述速度同时出发,向数轴正方向运动,几秒时两点相距8个单位长度?(3)若A ,B 两点于起始位置按上述速度同时出发,向数轴负方向运动,与此同时,C 点从原点出发作同方向的运动,如果在运动过程中,始终有2CA CB =,求C 点的运动速度.3.如图,已知数轴上的点A 对应的数是a ,点B 对应的数是b ,满足()2510a b ++-=.(1)=a __________,b =__________.(2)直接写出数轴上到点A 、点B 距离相等的点C 对应的数__________.(3)动点P 从点A 出发,以2个单位/秒的速度向右运动,设运动时间为秒,问:是否存在某个时刻t ,恰好使得P 到点A 的距离是点P 到点B 的距离的2倍?若存在,请直接写出的值;若不存在,请说明理由.4.如图1,A ,B 两点在数轴上对应的数分别为-12和 4.(1)A ,B 两点之间的距离为 ;(2)若在数轴上存在一点P ,使得 3BP AP =,求点P 表示的数.(3)如图2,现有动点P ,Q ,若点P 从点A 出发,以每秒5个单位长度的速度沿数轴向右运动,同时点Q 从点B 出发,以每秒1个单位长度的速度沿数轴向左运动,当点Q 到达原点O 后立即以每秒3个单位长度的速度沿数轴向右运动,设运动时间为t 秒.求:当2OP OQ =时t 的值.5.如图,若点A 在数轴上对应的数为a ,点B 在数轴上对应的数为b ,且a 、b 满足()220100a b ++-=.(1)求线段AB 的长.(2)在数轴上是否存在点C ,使得2AC BC =,若存在,求出C 点对应的数;若不存在,请说明理由;(3)动点P 、Q 两点分别从点A 、B 同时出发朝数轴正方向运动,速度分别是3个单位长度/秒,2个单位长度/秒,问经过多少秒时,12PQ AB =6.如图,点A 、B 、C 是数轴上三点,点A 、B 、C 表示的数分别为一10、2、6.我们规定:数轴上两点之间的距离用字母表示.例如:点A 与点B 之间的距离,可记为A B .(1)写出AB = ,BC = ,AC = (2)点P 是A 、C 之间的点,点P 在数轴上对应的数为x . ①若PB = 5时,则x =①P A = ,PC = (用含x 的式子表示);(3)动点M 、N 同时从点A 、C 出发,点M 以每秒2个单位长度的速度沿数轴向右运动,点N 以每秒2个单位长度的速度沿数向左运动,设运动时间为t (t >0)秒.求当t 为何值时,点M 、N 之间相距2个单位长度?7.如图,已知数轴上三点A ,B ,C 对应的数分别为1-,3,5,点P 为数轴上一动点,其对应的数为x .(1)若点P 是线段AC 的中点,则x =________,BP =________; (2)若8AP CP +=,求x 的值;(3)若点P ,点Q 两个动点分别以2个单位长度/秒和1个单位长度/秒的速度同时从点A ,点B 出发,沿数轴的正方向运动,运动时间为t 秒.当t 的值是多少时2PQ =?8.如图,点O 为数轴的原点,A ,B 在数轴上按顺序从左到右依次排列,点B 表示的数为8,AB =12.(1)直接写出数轴上点A 表示的数.(2)动点P 、Q 分别从A 、B 同时出发,点P 以每秒3个单位长度的速度沿数轴向右匀速运动,点Q 以每秒2个单位长度的速度沿数轴向右匀速运动.①经过多少秒,点P是线段OQ的中点?①在P、Q两点相遇之前,点M为PO的中点,点N在线段OQ上,且QN=2OQ.问:3经过多少秒,在P、M、N三个点中其中一个点为以另外两个点为端点的线段的三等分点(把一条线段分成1:2的两条线段的点叫做这条线段的三等分点)?9.已知数轴上两点A,B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x,(1)若点P到点A、点B的距离相等,则点P对应的数是.(2)数轴上存在点P到点A、点B的距离之和为8,则x=.(3)若将数轴折叠,使﹣1与3表示的点重合,则点P与数表示的点重合(用含x代数式表示);(4)若点P从A点出发沿数轴的正方向移动,速度为每秒2个单位长度,设运动时间为t,在移动过程中,是否存在某一时刻t,使得点P到点A距离等于点P到点B距离的2倍,若存在,请求出t的值;若不存在,请说明理由.10.定义:数轴上有两点A,B,如果存在一点C,使得线段AC的长度是线段BC的长度的2倍,那么称点C为线段AB的“友好点”.(1)如图①,若数轴上A,B两点所表示的数分别是2,4,点C为线段AB上一点,且点C为线段AB的“友好点”,则点C表示的数为______;(2)如图①,若数轴上A,B两点所表示的数分别是4-,1-,点C为数轴上一点,若点C为线段AB的“友好点”,则点C表示的数为_______;(3)如图①,若数轴上点A表示的数是1-,点C表示的数是2,若点C为线段AB的“友好点”,则点B表示的数为________;(4)如图①,若数轴上点A表示的数是1-,点B表示的数是3,动点P从点A出发以每秒2个单位的速度向右匀速运动,设运动的时间为t秒. 当t为何值时,点P是线段AB的“友好点”.11.已知在纸面上有一个数轴(如图),折叠纸面.(1)若1表示的点与-1表示的点重合,则-4表示的点与______表示的点重合;(2)若8表示的点与-2表示的点重合,回答下列问题:①12表示的点与______表示的点重合;①数轴上A,B两点间的距离为2022(A在B的左侧),且A,B两点经折叠后重合,则A,B两点表示数分别为______,______.①在①的条件下,点C为数轴上的一个动点,从点O出发,以2个单位每秒的速度向右运动,求当时间t为多少秒时,AC之间的距离恰好是BC之间距离的2倍.12.数轴上点A表示数﹣6,点B表示数18,动点P在数轴上从点A出发以每秒4个单位长度的速度向右运动,点P出发1秒钟后,动点Q以每秒6个单位长度的速度也从点A出发向右运动.设点P的运动时间为t(0≤t≤6).(1)在运动过程中,点P表示的数为,点Q表示的数为;(用含t 的代数式表示)(2)当t的值为时,点Q追上点P,此时点P对应的数是;(3)动点Q出发后,求t为何值时,点P,Q,B三点中有一点到其余两点的距离相等.a-是最大的负整13.如图,在数轴上有两点A、B,所对应的数分别是a、b,且满足6数,9b +是绝对值最小的有理数.点C 在点A 左侧,到点A 的距离是2个单位长度.(1)AB 两点间的距离是 .(2)点P 、Q 为数轴上两个动点,点P 从A 点出发速度为每秒2个单位长度,点Q 从B 点出发速度为每秒3个单位长度.若P 、Q 两点同时出发,相向而行,运动时间为t 秒.求当t 为何值时,点P 与点Q 之间的距离是6个单位长度?(3)在(2)的条件下,在点P 、Q 运动的过程中,是否存在t 值,使点Q 到点A 、点B 、点C 的距离之和为15,若存在,直接写出此时点P 在数轴上所表示的数;若不存在,请说明理由.14.知识准备:数轴上A 、B 两点对应的数分别为a 、b ,则A 、B 两点之间的距离就是线段AB 的长,且||AB a b =-,AB 的中点C 对应的数为:()12a b +. 问题探究:在数轴上,已知点A 所对应的数是4-,点B 对应的数是10. (1)求线段AB 的长为________;线段AB 的中点对应的数是________.(2)数轴上表示x 和5-的两点之间的距离是________;若该距离是8,则x =________. (3)若动点P 从点A 出发以每秒6个单位长度的速度向右运动,同时动点Q 从点B 出发以每秒2个单位长度的速度向左运动.经过多少秒,P 、Q 两点相距6个单位长度?15.定义:点O 与点A 之间的距离表示为OA ,点O 与点B 之间的距离表示为OB .若点A 、点B 分别在原点的两侧,OA :OB =4:5,点A 对应的数是-16 (1)求点B 对应的数及AB 的长 ;(2)点P 为A 、B 之间的动点,其对应的数为x ,是否存在点P ,使得AP =2OP ,若存在,请求出x 的值,若不存在,请说明理由(3)在(1)的条件下,若点N 、M 分别从A 、O 同时向右出发,速度分别3个单位长度/秒,1个单位长度/秒,N 点到达B 点后,再立即以同样的速度返回点A 后停止,M 点到达B 点立即停止,设它们的移动时间为t 秒,请用含t 的代数式直接表示M 、N 两点之间的距离16.已知数轴上两点A ,B 对应的数分别为﹣8和4,点P 为数轴上一动点,若规定:点P 到A 的距离是点P 到B 的距离的3倍时,我们就称点P 是关于A →B 的“好点”.(1)若点P 到点A 的距离等于点P 到点B 的距离时,求点P 表示的数是多少; (2)①若点P 运动到原点O 时,此时点P 关于A →B 的“好点”(填是或者不是); ①若点P 以每秒1个单位的速度从原点O 开始向右运动,当点P 是关于A →B 的“好点”时,求点P 的运动时间;(3)若点P 在原点的左边(即点P 对应的数为负数),且点P ,A ,B 中,其中有一个点是关于其它任意两个点的“好点”,请直接写出所有符合条件的点P 表示的数.17.如图,已知数轴上点A 表示的数为8,B 是数轴上一点,且14AB =.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为(0)t t >秒.(1)写出数轴上点B 表示的数_____,点P 表示的数_________(用含t 的代数式表示); (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点,P Q 同时出发,问点P 运动多少秒时追上点Q ?(3)若点D 是数轴上一点,点D 表示的数是x ,请你探索式子||68x x ++-是否有最小值?如果有,直接写出最小值;如果没有,说明理由18.已知数轴上有A 、B 、C 三点,分别表示有理数:﹣18,﹣3,7,动点M 从A 点出发,以每秒1个单位长度的速度向右运动,设点M 运动时间为t 秒. (1)填空:AB = ,MA = .(可用含t 的代数式表示) (2)当t 为何值,点M 到点A 、C 的距离相等.(3)当点M 运动到B 点时,点N 从A 点出发,以每秒5个单位长度的速度向右运动.当t 为何值,2MC =NC .19.如图,在数轴上的A 点表示数a ,B 点表示数b ,a 、b 满足930a b ++-=.(1)分别求出点A 表示的数a 和点B 表示的数b . (2)在数轴上的C 点表示的数c 为最大的负整数. ①求C 点分别到A 点和B 点的距离.①若有动点P 从点A 出发,以每秒3个单位长度的速度向右移动,动点Q 从点C 出发,以每秒1个单位长度的速度向左移动,运动时间为()0t t >,当时间t 为多少时,P 、Q 两点相距4个单位长度?20.已知数轴上A ,B 两点对应的数分别为a ,b ,且a ,b 满足|a +9|=﹣(b ﹣5)2,动点P 从点A 出发,以2cm/s 的速度向右运动,同时点Q 从点B 出发以1cm/s 的速度向左运动,设运动时间为t s .(1)直接写出a ,b 的值,并在下面的数轴上画出点A 和点B ;(2)分别用含t 的式子表示OP 和OQ 的长; (3)当t 为何值时,OP=OQ ? (4)当t 为何值时,OP=2OQ ?参考答案:1.(1)30t = (2)8t =和16(3)1或3或15或352.(1)1个单位/秒 (2)4秒和20秒(3)43个单位/秒3.(1)5-;1 (2)2-(3)2 秒或6秒; 4.(1)16 (2)-8和-20(3)43或207或125.(1)30(2)存在,10-或50-(3)经过45秒或15秒时,12PQ AB =6.(1)12;4;16 (2)①-3;①10,6x x +- (3)t =3.5或t =4.57.(1)2,1 (2)-2或6 (3)2或68.(1)-4(2)①4秒;①2秒或9237秒或4秒或3611秒9.(1)1 (2)3-或5 (3)2x - (4)43t =或410.(1)2;(2)-2或2;(3)0.5或3.5;(4)t 的值是43或4,点P 是线段AB 的“友好点”.11.(1)4;(2)①-6;①-1008;1014;①170秒或1518秒12.(1)64(06)t t -+≤≤,126(16)t t -+≤≤;(2)3,6;(3)t =3或t =92时,P ,Q ,B三点中有一点到其余两点的距离相等13.(1)14;(2)t 为85或4;(3)存在,73-或113-14.(1)14;3;(2)5x +,3或-13;(3)经过1秒或2.5秒时,P 、Q 两点相距6个单位长度.15.(1)20,36;(2)163-或16;(3)当08t <时,162t -;当812t <时,216t -;当1214t <时,564t -;当1420t <时,456t -;当2024t <时,336t -.16.(1)-2;(2)①不是;①1秒或10秒;(3)﹣4,﹣5,﹣12,﹣14,﹣32,﹣44 17.(1)6-;85t -;(2)7秒;(3)有,14 18.(1)15;t ;(2)t =12.5,(3)当t 为503或1507,2MC =NC . 19.(1)点A 表示的数-9和点B 表示的数3;(2)①AC =8,BC =4;①当时间t =1或3时,P 、Q 两点相距4个单位长度.20.(1)9,5a b =-=,数轴见解析;(2)29,5OP t OQ t =-=-;(3)143或4;(4)194.。
七年级上册数学动点问题压轴题
七年级上册数学动点问题压轴题一、数轴上的动点问题。
1. 已知数轴上A、B两点对应的数分别为 1、3,点P为数轴上一动点,其对应的数为x。
(1)若点P到点A、点B的距离相等,求点P对应的数。
解析:因为点P到点A、点B的距离相等,所以PA = PB。
根据数轴上两点间的距离公式d=| a b|(d为两点间距离,a、b为两点对应的数),则| x-(-1)|=| x 3|,即| x + 1|=| x-3|。
当x≥3时,x + 1=x 3,方程无解。
当-1时,x + 1=-(x 3),x+1=-x + 3,2x=2,解得x = 1。
当x≤-1时,-(x + 1)=-(x 3),方程无解。
所以点P对应的数为1。
(2)数轴上是否存在点P,使PA+PB = 5?若存在,请求出x的值;若不存在,请说明理由。
解析:根据距离公式PA=| x+1|,PB=| x 3|,则| x + 1|+| x-3| = 5。
当x≥3时,x + 1+x 3=5,2x-2 = 5,2x=7,解得x=(7)/(2)。
当-1时,x + 1-(x 3)=5,x + 1-x + 3=5,4 = 5,方程无解。
当x≤-1时,-(x + 1)-(x 3)=5,-x-1-x + 3 = 5,-2x+2 = 5,-2x=3,解得x=-(3)/(2)。
所以存在点P,x=(7)/(2)或x =-(3)/(2)。
2. 点A在数轴上对应的数为 2,点B对应的数为1,点P在数轴上对应的数为x。
(1)若点P到点A、点B的距离之和为5,求x的值。
解析:由题意得| x-(-2)|+| x 1|=5,即| x + 2|+| x-1| = 5。
当x≥1时,x + 2+x 1=5,2x+1 = 5,2x = 4,解得x = 2。
当-2时,x + 2-(x 1)=5,x + 2-x + 1=5,3 = 5,方程无解。
当x≤-2时,-(x + 2)-(x 1)=5,-x-2-x + 1 = 5,-2x-1 = 5,-2x = 6,解得x=-3。
第2章 有理数及其运算 数轴动点问题压轴专题(三) 2021--2022学年北师大版七年级数学上册
第2章《有理数及其运算》——数轴动点问题压轴专题(三)1.一辆货车从仓库出发去送货,向东走了2千米到达超市A,继续向东走了2.5千米到达超市B,然后向西走了8.5千米到达超市C,继续向西走了5千米到达超市D,此时发现车上还有距离仓库仅1千米的超市E的货还未送,于是开往超市E,最后回到仓库.(1)超市C在仓库的东面还是西面?距离仓库多远?(2)超市B距超市D多远?(3)如果货车每千米耗油0.08升,那么货车在这次送货中共耗油多少升?2.在数轴上有M、N两点,M点表示的数分别为m,N点表示的数是n(n>m),则线段MN的长(点M到点N的距离)可表示为MN=n﹣m,请用上面材料中的知识解答下面的问题:一个点从数轴上的原点O开始,先向左移动3cm到达A点,再向右移动2cm 到达B点,然后向右移动4cm到达C点,用1cm表示1个单位长度.(1)请你在数轴上表示出A、B、C三点的位置,并直接写出线段AC的长度.(2)若数轴上有一点D,且AD=4cm,则点D表示的数是什么?(3)若将点A向右移动xcm,请用代数式表示移动后的点所表示的数.(4)若点P以从点A向原点O移动,同时点Q以与点P相同的速度从原点O向点C 移动,试探索:PQ的长是否会发生改变?如果不变,请求出PQ的长.如果改变,请说明理由.3.如图,已知数轴上A、B两点所表示的数分别为﹣2和6.(1)求线段AB的长;(2)已知点P为数轴上点A左侧的一个动点,且M为PA的中点,N为PB的中点.请你画出图形,并探究MN的长度是否发生改变?若不变,求出线段MN的长;若改变,请说明理由.4.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C 表示)(2)小明家与小刚家相距多远?(3)若货车每千米耗油1.5升,那么这辆货车此次送货共耗油多少升?5.如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A、B是数轴上的点,请参照图并思考,完成下列各题.(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是,A、B两点间的距离是;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A、B两点间的距离为;(3)如果点A表示数﹣4,将A点向右移动16个单位长度,再向左移动25个单位长度,那么终点B表示的数是,A、B两点间的距离是;(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p 个单位长度,那么请你猜想终点B表示什么数?A、B两点间的距离为多少?6.如图,数轴的单位长度为1.(1)如果点A,D表示的数互为相反数,那么点B表示的数是多少?(2)如果点B,D表示的数互为相反数,那么图中表示的四个点中,哪一点表示的数的绝对值最大?为什么?(3)当点B为原点时,若存在一点M到A的距离是点M到D的距离的2倍,则点M 所表示的数是.7.已知在纸面上有一数轴(如图),折叠纸面.(1)若表示数1的点与表示数﹣1的点重合,则表示﹣2的点与表示数的点重合;(2)若表示数﹣1的点与表示数3的点重合,回答以下两个问题:①表示数5的点与表示数的点重合;②若数轴上A、B两点之间的距离为m(A在B的左侧),且A、B两点经折叠后重合,直接写出A、B两点表示的数(用含m的式子表示)是多少?8.如图所示,一个点从数轴上的原点开始,先向右移动2个单位长度,再向左移动5个单位长度,可以看到终点表示是﹣3,已知A、B是数轴上的点,请参照如图并思考,完成下列各题.(1)如果点A表示的数﹣1,将点A向右移动4个单位长度,那么终点B表示的数是.A、B两点间的距离是.(2)如果点A表示的数2,将点A向左移动6个单位长度,再向右移动3个单位长度,那么终点B表示的数是.A、B两点间的距离是.(3)如果点A表示的数m,将点A向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B表示的数是.A、B两点间的距离是.9.如图,在数轴上有三点A、B、C,请据图回答下列问题:(1)将点B向左平移3个单位后,三个点所表示的数谁最小?是多少?(2)怎样移动A、B两个点中的一个,才能使这两点表示的数为互为相反数?有几种移动方法?(3)怎样移动A、B、C中的两个点,才能使三个点所表示的数相同,有几种移动方法?10.如图.在一条不完整的数轴上一动点A向左移动4个单位长度到达点B,再向右移动7个单位长度到达点C.(1)若点A表示的数为0,求点B、点C表示的数;(2)若点C表示的数为5,求点B、点A表示的数;(3)如果点A、C表示的数互为相反数,求点B表示的数.11.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t 的值.12.如图,在数轴上有三个点A、B、C,完成系列问题:(1)将点B向右移动六个单位长度到点D,在数轴上表示出点D.(2)在数轴上找到点E,使点E到A、C两点的距离相等.并在数轴上标出点E表示的数.(3)在数轴上有一点F,满足点F到点A与点F到点C的距离和是9,则点F表示的数是.13.在学习绝对值后,我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离.类似的,有:|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)数轴上表示2和3的两点之间的距离是;数轴上P、Q两点的距离为3,点P 表示的数是2,则点Q表示的数是.(2)点A、B、C在数轴上分别表示有理数x、﹣3、1,那么A到B的距离与A到C的距离之和可表示为(用含绝对值的式子表示);满足|x﹣3|+|x+2|=7的x的值为.(3)试求|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣100|的最小值.14.邮递员骑摩托车从邮局出发,先向东骑行2km到达A村,继续向东骑行3km到达B村,然后向西骑行9km到C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1个单位长度表示1km,请你在数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)若摩托车每1km耗油0.03升,这趟路共耗油多少升?15.已知:在纸面上有一数轴,如图所示,点O为原点,点A1、A2、A3、…分别表示有理数1、2、3、…,点B1、B2、B3、…分别表示有理数﹣1、﹣2、﹣3、….(1)折叠纸面:①若点A1与点B1重合,则点B2与点重合;②若点B1与点A2重合,则点A5与有理数对应的点重合;③若点B1与A3重合,当数轴上的M、N(M在N的左侧)两点之间的距离为9,且M、N两点经折叠后重合时,则M、N两点表示的有理数分别是,;(2)拓展思考:点A在数轴上表示的有理数为a,用|a|表示点A到原点O的距离.①|a﹣1|是表示点A到点的距离;②若|a﹣1|=3,则有理数a=;③若|a﹣1|+|a+2|=5,则有理数a=.16.如图,点O为数轴原点,点A表示的数是4,将线段OA沿数轴移动,移动后的线段记为O′A′.(1)当点O′恰好是OA的中点时,数轴上点A′表示的数为.(2)设点A的移动距离AA′=x.①当O′A=1时,求x的值;②D为线段AA′的中点,点E在线段OO′上,且OE=OO′,当点D,E所表示的数互为相反数时,求x的值.17.如图所示,数轴上从左到右的三个点A,B,C所对应数的分别为a,b,c.其中点A、点B两点间的距离AB的长是2019,点B、点C两点间的距离BC的长是1000,(1)若以点C为原点,直接写出点A,B所对应的数;(2)若原点O在A,B两点之间,求|a|+|b|+|b﹣c|的值;(3)若O是原点,且OB=19,求a+b﹣c的值.18.元旦放假时,小明一家三口一起乘小轿车去探望爷爷、奶奶和姥爷、姥姥.早上从家里出发,向东走了5千米到超市买东西,然后又向东走了2.5千米到爷爷家,下午从爷爷家出发向西走了10千米到姥爷家,晚上返回家里.(1)若以小明家为原点,向东为正方向,用1个单位长度表示1千米,请将超市、爷爷家和姥爷家的位置在下面数轴上分别用点A、B、C表示出来;(2)超市和姥爷家相距多少千米?(3)若小轿车每千米耗油0.08升,求小明一家从出发到返回家,小轿车的耗油量.19.已知数轴上A,B,C三点对应的数分别为﹣1、3、5,点P为数轴上任意一点,其对应的数为x.点A与点P之间的距离表示为AP,点B与点P之间的距离表示为BP.(1)若AP=BP,则x=;(2)若AP+BP=8,求x的值;(3)若点P从点C出发,以每秒3个单位的速度向右运动,点A以每秒1个单位的速度向左运动,点B以每秒2个单位的速度向右运动,三点同时出发.设运动时间为t秒,试判断:4BP﹣AP的值是否会随着t的变化而变化?请说明理由.20.规定:如果点A、点B在数轴上表示的数分别是a、b,那么|a﹣b|表示A、B两点间距离.(1)数轴上表示﹣3的点与表示4的点相距个单位;(2)若|a﹣3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,求A、B 两点间的最大距离和最小距离;(3)数轴上点A表示8,点B表示﹣8,点C在点A与点B之间,A点以每秒0.5个单位的速度向左运动,点B以每秒1.5个单位的速度向右运动,点C以每秒3个单位的速度先向右运动碰到点A后立即返回向左运动,碰到点B后又立即返回向右运动,碰到点A后又立即返回向左运动,如此往返,三个点同时开始运动,问经过多少秒三个点聚于一点?这一点表示的数是哪个数?点C在整个运动过程中,共移动了多少个单位?。
七年级数学上册数轴类动点问题压轴题专题提高练习(三)
七年级数学上册数轴类动点问题压轴题专题提高练习1.已知数轴上有A、B两个点对应的数分别是a、b,且满足|a+3|+(b﹣9)2=0;(1)求a、b的值;(2)点M是数轴上A、B之间的一个点,使得MA=2MB,求出点M所对应的数;(3)点P,点Q为数轴上的两个动点,点P从A点以3个单位长度每秒的速度向右运动,点Q同时从B点以2个单位长度每秒的速度向左运动,设运动时间为t秒,若AP+BQ =2PQ,求时间t的值.2.如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,C是AB 的中点,且a、b满足|a+2|+(b+2a)2=0(1)求点C表示的数;(2)若点P从A向右运动,点M为AP中点,在P点到达点B之前,求证:2BM﹣BP 为定值(3)点P从A点以每秒2个单位的速度向右运动,点Q同时从B点出发以每秒1个单位的速度向左运动,若AP+BQ=2PQ,求时间t.3.已知a、b满足(a﹣2)2+|ab+6|=0,c=2a+3b,且有理数a、b、c在数轴上对应的点分别为A、B、C.(1)则a=,b=,c=.(2)点D是数轴上A点右侧一动点,点E、点F分别为CD、AD中点,当点D运动时,线段EF的长度是否发生变化,若变化,请说明理由,若不变,请求出其值;(3)若点A、B、C在数轴上运动,其中点C以每秒1个单位的速度向左运动,同时点A和点B分别以每秒3个单位和每秒2个单位的速度向右运动.请问:是否存在一个常数m使得m•AB﹣2BC不随运动时间t的改变而改变.若存在,请求出m和这个不变化的值;若不存在,请说明理由.4.已知:b是最小的正整数,且a、b、c满足(c﹣5)2+|a+b|=0.a、b、c所对应的点分别为A、B、C.(1)请求出a、b、c的值;(2)点P为动点,其对应的数为x,当点P在原点到2对应的点之间运动时(即0≤x≤2时),请化简式子:|x+1|﹣|x﹣1|;(写出化简过程);(3)在(1)、(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.设运动时间为t秒,请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.5.已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题:(1)请直接写出a、b、c的值:a=,b=,c=;(2)a、b、c所对应的点分别为A、B、C,点P为动点,其对应的数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|﹣|x﹣1|+2|x+5|(请写出化简过程);(3)一般地,数轴上表示数m和m的两点之间的距离等于|m﹣b|,请利用(2)中分类讨论的思想或利用绝对值的几何意义,求|m+4|+|m﹣2|的最小值.6.“幸福是奋斗出来的”,在数轴上,若C到A的距离刚好是3,则C点叫做A的“幸福点”,若C到A、B的距离之和为6,则C叫做A、B的“幸福中心”(1)如图1,点A表示的数为﹣1,则A的幸福点C所表示的数应该是;(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为﹣2,点C 就是M、N的幸福中心,则C所表示的数可以是(填一个即可);(3)如图3,A、B、P为数轴上三点,点A所表示的数为﹣1,点B所表示的数为4,点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,当经过多少秒时,电子蚂蚁是A和B的幸福中心?7.我们知道一个数x的绝对值的几何意义是:在数轴上表示这个数x的点离原点(表示数0)的距离,x的绝对值表示为|x|,也可以写成|x﹣0|,比如|2|=|2﹣0|=2;在数轴上表示两个数x,y的点之间的距离可以表示为|x﹣y|,比如,表示3的点与﹣1的点之间的距离表示为|3﹣(﹣1)|=|3+1|=4;|x+2|+|x﹣1|可以表示点x与点1之间的距离跟点x与﹣2之间的距离的和,根据图示易知:当点x的位置在点A和点B之间(包含点A和点B)时,点x与点A的距离跟点x与点B的距离之和最小,且最小值为3,即|x+2|+|x﹣1|的最小值是3,且此时x的值为﹣2≤x≤1请根据以上阅读,解答下列问题:(1)|x+2|+|x﹣2|的最小值是;|x+1|+|x﹣2|=7,此时x的值为;(2)|x+2|+|x|+|x﹣1|的最小值是,此时x的值为;(3)当|x+1|+|x|+|x﹣2|+|x﹣a|的最小值是4.5时,求出a的值及x的值.8.在数轴上,若点C到点A的距离恰好是3,则称点C为点A的“幸福点”;若点C到点A,B的距离之和为6,则称点C为点A,B的“幸福中心”.(1)如图1,点A表示的数是﹣1,则点A的“幸福点”C表示的数是.(2)如图2,点M表示的数是﹣2,点N表示的数是4,若点C为点M,N的“幸福中心”,则点C表示的数可以是(填两个即可);(3)如图3,点A表示的数是﹣1,点B表示的数是4,点P表示的数是8,点Q从点P 出发,以2单位/s的速度沿数轴向左运动,经过多少时间点Q是点A,B的“幸福中心”?9.动点A从原点出发沿数轴的负方向运动,同时动点B也从原点出发沿数轴的正方向运动,且动点B的速度是动点A的速度的2倍(速度单位:1个单位长度/秒).运动2秒钟时,动点A,B相距6个单位长度(1)若设动点A的运动速度为x个单位长度/秒,则可列方程为::(2)若动点A,B运动3秒时都停止,则此时动点A,B在数轴上表示的数分别为:A,B:;(直接写出结果)(3)若动点A,B分别从(2)中的位置再次同时开始在数轴上按原来的速度运动,但运动方向不限,问经过几秒钟,A,B两点相距6个单位长度?10.数轴上,若点A、B表示的数分别是﹣1和﹣3,一个点从A出发向右移动5cm到达C 点,用1个单位长度表示1cm(1)请在数轴上标出A,B,C三点的位置,并直接写出线段BC的长度:BC=;(2)若点M在数轴上表示的数是x,且MA=3cm,则x的值是;(3)若点B以每秒2cm的速度向左移动至点P1,同时点A、C分别以每秒1cm和4cm 的速度向右移动至点P2、P3,设移动时间为t秒,试探索:P3P2﹣P1P2的值是否会随着t的变化而变化?请说明理由.参考答案1.解:(1)∵|a+3|+(b﹣9)2=0,∴a+3=0,b﹣9=0,解得a=﹣3,b=9;(2)AB=9﹣(﹣3)=12,∵MA=2MB,∴点M所对应的数是﹣3+12×=5;(3)∵点P从A点以每秒3个单位的速度向右运动,点Q同时从B点出发以每秒2个单位的速度向左运动,∴AP=3t,BQ=2t,PQ=12﹣5t.∵AP+BQ=2PQ,∴3t+2t=24﹣10t,解得t=;还有一种情况,当P运动到Q的右边时,PQ=5t﹣12,方程变为3t+2t=2(5t﹣12),解得t=.故时间t的值为或.2.解:(1)∵|a+2|+(b+2a)2=0,∴a+2=0,b+2a=0,解得a=﹣2,b=4,∴=1,∴点C表示的数是1;(2)∵BM=PB+,∴2BM=2PB+AP,∴2BM﹣BP=PB+AP=AB=6.(3)∵AB=2+4=6,点P从A点以每秒2个单位的速度向右运动,点Q同时从B点出发以每秒1个单位的速度向左运动,∴AP=2t,BQ=t,PQ=6﹣3t.∵AP+BQ=2PQ,∴2t+t=12﹣6t,解得t=;还有一种情况,当P运动到Q的左边时,PQ=3t﹣6,方程变为2t+t=2(3t﹣6),解得t=4.故时间t为或4秒.3.解:(1)∵a、b满足(a﹣2)2+|ab+6|=0,∴a﹣2=0且ab+6=0.解得a=2,b=﹣3.∴c=2a+3b=﹣5.故答案为:2,﹣3,﹣5(2)如图,当点D运动时,线段EF的长度不发生变化,理由如下:∵点E、点F分别为CD、AD中点,∴ED=CD,FD=AD,∴EF=ED﹣FD=CD﹣AD=AC=×7=3.5,∴当点D运动时,线段EF的长度不发生变化,其值为3.5;(3)假设存在常数m使得m•AB﹣2BC不随运动时间t的改变而改变.则依题意得:AB=5+t,2BC=4+6t.所以m•AB﹣2BC=m(5+t)﹣(4+6t)=5m+mt﹣4﹣6t与t的值无关,即m﹣6=0,解得m=6,所以存在常数m,m=6这个不变化的值为26.4.解:(1)依题意得b=﹣1,c﹣5=0,a+b=0,解得a=﹣1,b=1,c=5;(2)当点P在原点到2对应的点之间运动时(即0≤x≤2时),因此,当0≤x≤1时,x+1≥0,x﹣1≤0,原式=x+1+x﹣1=2x;当1<x≤2时,x+1>0,x﹣1>0,原式=x+1﹣(x﹣1)=2.(3)不变.因为点A以每秒1个单位长度的速度向左运动,点B以每秒2个单位长度的速度向右运动.所以A,B每秒增加3个单位长度;因为点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,所以B,C 每秒增加3个单位长度;所以BC﹣AB=2,BC﹣AB的值不随着时间t的变化而变化.5.解:(1)∵b是最小的正整数,∴b=1.根据题意得:c﹣5=0且a+b=0,∴a=﹣1,b=1,c=5.(2)根据题意可得0≤x≤2,且x﹣1=0时,x=1①当0≤x≤1时,原式=(x+1)﹣(1﹣x)+2(x+5)=4x+10;②当1<x≤2时,原式=(x+1)﹣(x﹣1)+2(x+5)=2x+12.答:原式化简结果为2x+12或4x+10.(3)当m+4=0时,m=﹣4,当m﹣2=0时,n=2,根据题意可得当m<﹣4时,原式=(﹣m﹣4)+(2﹣m)=﹣2m﹣2;当4≤m≤2时,原式=(m+4+(2﹣m)=6;当m>2时,原式=m+4)+(m﹣2=2m+2.综上所述,当﹣4≤m≤2时,原式取得最小值为6.故答案为:﹣1;1;5.6.解:(1)A的幸福点C所表示的数应该是﹣1﹣3=﹣4或﹣1+3=2;(2)∵4﹣(﹣2)=6,∴M,N之间的所有数都是M,N的幸福中心.故C所表示的数可以是﹣2或﹣1或0或1或2或3或4(答案不唯一);(3)设经过x秒时,电子蚂蚁是A和B的幸福中心,依题意有①8﹣2x﹣4+(8﹣2x+1)=6,解得x=1.75;②4﹣(8﹣2x)+[﹣1﹣(8﹣2x)]=6,解得x=4.75.故当经过1.75秒或4.75秒时,电子蚂蚁是A和B的幸福中心.7.解:(1)根据绝对值的几何意义可得,当﹣2≤x≤2时,|x+2|+|x﹣2|的最小值是4;当x<﹣1时,﹣x﹣1﹣x+2=7,解得x=﹣3,当﹣1≤x<2时,x+1+2﹣x=7,方程无解,当x≥2时,x+1+x﹣2=7,解得x=4,∴x的值为﹣3或4,故答案为:4,﹣3或4;(2)根据绝对值的几何意义可得,当x=0时,|x+2|+|x|+|x﹣1|的最小值是3,故答案为:3,0;(3)由图可得,只有当a=1.5且0≤x≤1.5或a=﹣1.5且﹣1≤x≤0时,|x+1|+|x|+|x﹣2|+|x ﹣a|的最小值是4.5,∴当|x+1|+|x|+|x﹣2|+|x﹣a|的最小值是4.5时,a=1.5且0≤x≤1.5或a=﹣1.5且﹣1≤x≤0.8.解:(1)A的幸福点C所表示的数应该是﹣1﹣3=﹣4或﹣1+3=2;故答案为:﹣4或2;(2)4﹣(﹣2)=6,故C所表示的数可以是﹣2或﹣1或0或1或2或3或4;故答案为:﹣2或﹣1或0或1或2或3或4;(3)设经过x秒时,电子蚂蚁是A和B的幸福中心,依题意有①8﹣2x﹣4+(8﹣2x+1)=6,解得x=1.75;②4﹣(8﹣2x)+[﹣1﹣(8﹣2x)]=6,解得x=4.75.故当经过1.75秒或4.75秒时,电子蚂蚁是A和B的幸福中心.9.解:(1)设点A的速度为x个单位长度/秒,则点B的速度为2x个单位长度/秒,根据题意得:2×(x+2x)=6,故答案为:2×(x+2x)=6;(2)1×3=3,2×3=6,∴运动到3秒钟时,点A表示的数为﹣3,点B表示的数为6.(3)设运动的时间为t秒.当A、B两点向数轴负方向运动时,有|2t﹣t﹣9|=6,解得:t1=15或t2=3;当A、B两点相向而行时,有|9﹣t﹣2t|=6,解得:t3=5,t4=1,答:经过15或3或5或1秒,A、B两点之间相距6个单位长度.10.解:(1)∵点A表示的数是﹣1,一个点从A出发向右移动5cm到达C点,∴C表示的数是4∴BC=7,故答案为:7;(2)∵MA=3cm,∴|﹣1﹣x|=3,∴x=﹣4或2,故答案为:﹣4或2;(3)P3P2﹣P1P2的值不会随着t的变化而变化,理由如下:根据题意得:P3P2=(4+4t)﹣(﹣1+t)=5+3t,P1P2=(﹣1+t)﹣(﹣3﹣2t)=2+3t,∴P3P2﹣P1P2=(5+3t)﹣(2+3t)=3,∴P3P2﹣P1P2的值不会随着t的变化而变化.。
人教版2024七年级数学上册专项练习专项3数轴动点问题(原卷版)
专项3数轴动点问题1.已知数轴上有A、B、C 三点,分别对应有理数-26、-10、10,动点P 从B 出发,以每秒1个单位的速度向终点C 移动,同时,动点Q 从A 出发,以每秒3个单位的速度向终点C 移动,设点P 的移动时间为t 秒.(1)当t=5秒时,数轴上点P 对应的数为,点Q 对应的数为;P、Q 两点间的距离为.(2)用含t 的代数式表示数轴上点P 对应的数为.(3)在点P 运动到C 点的过程中(点Q 运动到C 点后停止运动),请用含t 的代数式表示P、Q 两点间的距离.2.已知数轴上A,B 两点表示的数分别为4-,8.如图,若点P 和点Q 分别从点A,B 同时出发,都沿数轴的负方向运动,点P 的运动速度为每秒2个单位长度,点Q 的运动速度为每秒6个单位长度,设运动的时间为t 秒.(1)运动2秒时P,Q 两点对应的数分别为______,______;(2)运动t 秒时P,Q 两点对应的数分别为______,______;(用含t 的代数式表示)(3)当P,Q 两点相遇时,求点P 在数轴上对应的数;(4)当P,Q 两点之间的距离为4时,求t 的值.3.已知多项式()32102053a x x x ++-+是关于x 的二次多项式,且二次项系数为b,数轴上两点A,B 对应的数分别为a,b.(1)a =,b =,线段AB =;(2)若数轴上有一点C,使得32AC BC =,点M 为AB 的中点,求MC 的长;(3)有一动点G从点A出发,以3个单位每秒的速度向右方向运动,同时动点H从点B出发,以1个单位每秒的速度在数轴上作同方向运动,设运动时间为t秒(10t<),点D为线段GB的中点,点F为线段DH的中点,点E在线段GB上且13GE BG=,在G,H的运动过程中,求DE DF+的值.(用含t的代数式表示)4.定义:若A,B,C为数轴上三点,若点C到点A的距离是点C到点B的距离2倍,我们就称点C是【A,B】的美好点.例如:如图1,点A表示的数为-1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的美好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的美好点,但点D是【B,A】的美好点.如图2,M,N为数轴上两点,点M所表示的数为-7,点N所表示的数为2(1)点E,F,G表示的数分别是3-,6.5,11,其中是【M,N】美好点的是______;写出【N,M】美好点H所表示的数是______.(2)现有一只电子蚂蚁P从点N开始出发,以2个单位每秒的速度向左运动.当t为何值时,P,M和N中恰有一个点为其余两点的美好点?。
人教版七年级数学上册期末动点问题压轴题专题练习-带答案
人教版七年级数学上册期末动点问题压轴题专题练习-带答案学校:___________班级:___________姓名:___________考号:___________1.如图:在数轴上点A表示数a,点B表示数b,点C表示数c,b是最大的负整数,且a,c满足︱a+3︱+︱c-5 ︱=0(1)a=,b=,c=.(2)如果点P表示的数为x,当P点到B、C两点的距离之和为8时,x=(3)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B 和点C分别以每秒2个单位长度和3个单位长度的速度向右运动,假设秒钟过后,若点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,则AB=,BC=.(用含t的代数式表示)(4)3BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值。
2.已知点A在数轴上对应的数为a,点B对应的数为b,且|a+4|+(b-3)2=0.(1)则a=,b=;并将这两个数在数轴上所对应的点A,B表示出来;(2)数轴上在B点右边有一点C到A、B两点的距离和为11,若点C的数轴上所对应的数为x,求x的值;(3)若点A,点B同时沿数轴向正方向运动,点A运动的速度为2单位/秒,点B运动的速度为1单位/秒,若|AB|=4,求运动时间t的值.3.已知数轴上有A,B两点,分别代表-40,20,两只电子蚂蚁甲、乙分别从A,B两点同时出发,其中甲以1个单位长度/秒的速度向右运动,到达点B处时运动停止.乙以4个单位长度/秒的速度向左运动.(1)A,B两点间的距离为个单位长度;乙到达A点时一共运动了秒.(2)甲、乙在数轴上运动,经过多少秒相遇?(3)多少秒时,甲、乙相距10个单位长度?(4)若乙到达A点后立刻掉头并保持速度不变,则甲到达B点前,甲、乙还能在数轴上相遇吗?若能,求出相遇点所对应的数;若不能,请说明理由.4.如图,在数轴上点A表示数a,点B表示数b,点C表示数c,b是最小的正整数,且a、c满足|a+2|+(c−6)2=0.(1)a=,b=,c=;(2)若将数轴折叠,使得点A与点C重合,则数轴上折痕所表示的数为,点B与数表示的点重合,原点与数表示的点重合;(3)动点P、Q同时从原点出发,点P向负半轴运动,点Q向正半轴运动,点Q的速度是点P 速度的3倍,2秒钟后,点P到达点A.①点P的速度是每秒▲ 个单位长度,点Q的速度是每秒▲ 个单位长度;②经过几秒钟,点P与点Q相距12个单位长度.5.如图,一个点从数轴上的原点开始,先向右移动3个单位长度,可以看到终点表示的数是-2.已知点A,B是数轴上的点,完成下列各题.(1)若点A表示数-2,将A点向右移动5个单位长度,那么终点B表示的数是,此时A,B两点间的距离是.(2)若点A表示数3,将A点向左移动6个单位长度,再向右移动5个单位长度后到达点B;此时A,B两点间的距离是.(3)若A点表示的数为m,将A点向右移动n个单位长度,再向左移动t个单位长度后到达终点B6.如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+|b−3|=0;(1)点A表示的数为;点B表示的数为;(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动:同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒)①当t=1时,甲小球到原点的距离=;乙小球到原点的距离=;当t=3时,甲小球到原点的距离=;乙小球到原点的距离=②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点的距离相等时经历的时间.7.如图,已知点A、B、C是数轴上三点,O为原点.点C对应的数为3,BC=2,AB=6.(1)则点A对应的数是、点B对应的数是;(2)动点P、Q分别同时从A、C出发,分别以每秒8个单位和4个单位的速度沿数轴正方向运动.M在线段AP上,且AM=MP,N在线段CQ上,且CN=14CQ,设运动时间为t(t>0).①求点M、N对应的数(用含t的式子表示);②猜想MQ的长度是否与t无关为定值,若为定值请求出该定值,若不为定值请说明理由;③探究t为何值时,OM=2BN.8.数轴上点A表示的有理数为20,点B表示的有理数为﹣10,点P从点A出发以每秒5个单位长度的速度在数轴上往左运动,到达点B后立即返回,返回过程中的速度是每秒2个单位长度,运动至点A停止,设运动时间为t(单位:秒).(1)当t=5时,点P表示的有理数为.(2)在点P往左运动的过程中,点P表示的有理数为(用含t的代数式表示).(3)当点P与原点距离5个单位长度时,t的值为.9.如图,A、B分别为数轴上的两点,A点对应的数为−20,B点对应的数为100.(1)请写出与A、B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?10.在数轴上,如果A点表示的数记为a,点B表示的数记为b,则A、B两点间的距离可以记作|a-b|或|b-a|,我们把数轴上两点的距离,用两点的大写字母表示,如:点A与点B之间的距离表示为AB.如图,在数轴上,点A,O,B表示的数为-10,0,12.(1)直接写出结果,OA=,AB=.(2)设点P在数轴上对应的数为x.①若点P为线段AB的中点,则x=.②若点P为线段AB上的一个动点,则|x+10|+|x-12|的化简结果是.(3)动点M从A出发,以每秒2个单位的速度沿数轴在A,B之间向右运动,同时动点N从B 出发,以每秒4个单位的速度沿数轴在A,B之间往返运动,当点M运动到B时,M和N两点停止运动.设运动时间为t秒,是否存在t值,使得OM=ON?若存在,请直接写出t值;若不存在,请说明理由.11.如图.数轴上A.B两点对应的有理数分别为-10和20.点P从点O出发.以每秒1个单位长度的速度沿数轴正方向运动,点Q同时从点A出发,以每秒2个单位长度的速发沿数轴正方向运动.设运动时间为t秒。
北师大版七年级数学上册压轴题攻略专题03 数轴上动点问题综合的三种考法(原卷版)
专题03数轴上动点问题综合的三种考法
【知识点精讲】
1.数轴上两点间的距离
数轴上A、B两点表示的数为分别为a、b,则A与B间的距离AB=|a-b|;
2.数轴上点移动规律
数轴上点向右移动则数变大(增加),向左移动数变小(减小);
当数a表示的点向右移动b个单位长度后到达点表示的数为a+b;向左移动b个单位长度后到达点表示的数为a-b.
类型一、求运动的时间
()2,C D两点间距离=____;,B C两点间距离=;
为线段
为数轴上一动点,对应
﹣在数轴上表示的数,类型二、定值问题(1)b=,c=.
(1)①已知点C 表示的数是-6,求点D 表示的数;
(2)当2AC BD =时,求t 的值.
是最大的负整数,
类型三、点的位置的点开始往左运动,速度为(1)当3s t =时,线段PC =_________;线段PB =___________(2)当6s t =时,PB PC +=_________;
(1)操作一:折叠纸面,使表示数1的点与表示数﹣1的点重合,则此时表示数数的点重合;
课后训练
分别从原点的速度是每秒
-,8-,8,动点P从A出发,以6.已知数轴上有A、B、C三个点,分别表示有理数20
每秒1个单位的速度向终点C移动,设移动时间为x秒.
x=时,点P到点A的距离PA=______;此时点P所表示的数为______;
(1)当6
(2)当点P运动到B点时,点Q同时从A点出发,以每秒4个单位的速度向C点运动,Q点到达C点后也停止运动,则点Q出发5秒时与P点之间的距离QP=______;
(3)在(2)的条件下,当点Q到达C点之前,请求出点Q移动几秒时恰好与点P之间的距离为2个单位?。