电晕放电与沿面放电

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电晕放电与沿面放电
7
电晕的积极意义
分裂导线:每相都用若干根直径较小的平行分导线来 替换大直径导线。分裂数超过两根时,这些分导线通常 被布置在一个圆的内接正多边形顶点上。
分裂导线的电场强度与分导线的直径和分导线间的距
离 d 有关。330—750kv的超高压线路,分裂数一般取2—4
; 1000kv及以上的特高压线路分裂数就更多,例如取8或 更大。 五、电晕的积极意义
电晕放电与沿面放电
9
非自持放电阶段
(1)当棒具有负极性时 电子崩中电子离开强电场区后,不再 引起电离,正离子逐渐向棒极运动, 在棒极附近出现了比较集中的正空间 电荷,使电场畸变。棒极附近的电场 得到增强,因而自持放电条件易于满 足,易于转入流柱而形成电晕放电。
电晕放电与沿面放电
10
流柱发展阶段
(1)当棒具有正极性时 电子崩进入棒电极,正电荷留在棒尖加
电晕放电与沿面放电
16
三、沿面放电的类型与特点
界面电场分布可分为三种典型 情况,分别为:
(a)均匀和稍不均匀电场; (b)极不均匀电场具有强垂 直分量; (c)极不均匀电场具有弱垂 直分量
E (a)
Et
E En (b)
En
电晕放电与沿面放电
E Et 17 (c)
(一)均匀和稍不均匀电场中的沿面放电。
第三节 自放电条件
第六节 不均匀电场中的放电过程 一、稍不均匀电场和极不均匀电场中的放电过程
§2.3 电晕放电
一、稍不均匀电场和极不均匀电场的放电特征 按照电场的不均匀程度分为 稍不均匀电场 和 极
不均匀电场。
稍不均匀电场:放电特性与均匀电场相似,一旦 出现自持放电便一定立即导致整个气隙击穿。例如: 高压实验中用来测高电压的球隙、全封闭组合电器中 的分相母线筒。
电晕放电与沿面放电
5
(1)基本物理过程描述; (2)外观特征:电极附近空间发出蓝色的晕光; (3)外加电压增大,电晕区也随之扩大,放电电流也 增大(由微安级到毫安级),但气隙总的来看,还保 持着绝缘状态,还没有被击穿。
电晕放电与沿面放电
6
三、电晕的危害 (1)光、声、热等效应使空气发生化学反应,产生
电晕放Fra Baidu bibliotek与沿面放电
15
二、研究沿面放电的意义
电力系统中绝缘子、套管等固体绝缘在机械 上对高压导体起固定作用,又在电气上起绝缘作 用,其绝缘状况(击穿和闪络)关系到整个电力 系统的可靠运行。输电线路和变电所外绝缘的实 际绝缘水平取决于它的沿面闪络电压(为什么)。
沿固体介质表面的闪络电压不但比固体介质 本身的击穿电压低得多,而且比极间距离相同的 纯气隙的击穿电压低不少?
强了前方的电场(曲线2),对形成流柱发展 有利。头部前方产生电子崩,吸引入流柱头部 正电荷区域,加强并延长流柱通道;
流柱及其头部的正电荷使强电场区更向前 推移(曲线3),促进流柱通道进一步发展, 逐渐向阴极推进,形成正流柱。
电晕放电与沿面放电
11
流柱发展阶段
(1)当棒具有负极性时 电子崩由强场区向弱场区发展,对电子崩
存在明显差异的现象。
极性效应的应用 在进行外绝缘的冲击高压试验时往往加正极性冲击电压;
在工频高压作用下,击穿均发生在外加电压为正极性的半周 内。
电晕放电与沿面放电
13
二、长气隙的击穿 气隙较长时,流注往往不能一次贯穿整个气隙,而
出现逐级推进的先导放电现象。 长间隙的放电过程:电晕放电——先导放电(热电
3
第 电晕放电 电场不均匀系数
电场不均匀系数
f E max E av
式中 Emax 最大电场强度,Eav为平均电场强度。
E av
U d
f < 2 时为稍不均匀电场 f > 4 以上时明显地属于极不均匀电场
电晕放电与沿面放电
4
二、电晕放电
电晕放电可以是极不均匀电场气隙击穿过程的第 一阶段,也可以是长期存在的稳定放电形式。这种放 电是极不均匀电场所特有的一种放电形式。
极不均匀电场:电场强度沿气隙分布极不均匀,
当所加电压达到某一临界值时,曲率半径小的电极附
近空间电场强度首先达到起始场强值E0 ,在此区域先
出现碰撞电离和电子崩,甚至出现流柱。
电晕放电与沿面放电
1
110kV全封闭组合电器
分相母线筒
电晕放电与沿面放电
2
图 户外1000kV特高压GIS变电站实景图
电晕放电与沿面放电
界面与电力线平行,但沿面闪落电 压仍要比空气间隙的击穿电压低很 多?
E
Keywords:气隙,水膜,电阻不 均匀和粗糙不平。
提高沿面闪络电压的措施:在连接 处涂导电粉末或导电胶。
电晕放电与沿面放电
18
不同憎水性固体表面的沿面闪络情况如左图; 不同电压形式下玻璃表面的闪络情况如右图。
腐蚀作用;(2)消耗能量,电晕损耗是超高压输电线 路设计是必须考虑的因素,坏天气电晕功率损耗会比 好天气时大得多;(3)电晕会对无线电和电视广播产 生干扰,还可能产生超过环保标准的噪声。
四、防止和减轻电晕的方法 根据产生的机理制定方法 采用扩径导线和空心导
线,更加合适的措施是采用分裂导线(思考其他优点 ?)。
衰减雷电过电压幅值和降低其陡度;抑制操作过电压的幅 值;改善电场分布;广泛应用于工业设施(静电除尘器、静电 喷涂装置、臭氧发生器)。
电晕放电与沿面放电
8
§2.4 不均匀电场气隙的击穿
一、短间隙的击穿 击穿过程
1、非自持放电阶段 2、流柱发展阶段。
非自持放电阶段
(1)当棒具有正极性时 在棒极附近,积聚起正空间电荷,减 少了紧贴棒极附近的电场,而略微 加强了外部空间的电场,棒极附近难 以造成流柱,使得放电自持,即电晕 放电难以形成。
发展不利。棒极前的正电荷区消弱了前方空间 的电场,使流柱发展不利(曲线2);
等离子体层前方电场足够强后,发展新电 子崩,形成了大量二次电子崩,汇集起来后使 得等离子体层向阳极推进,形成负流柱
U 放 棒 板 U 放 棒 板
电晕放电与沿面放电
12
极性效应 曲率半径较小的电极的电位符号不同时,气隙的击穿电压
离)——主放电——整个气隙被击穿。 ** 雷电放电是自然界的超长间隙放电,其先导过程和 主放电过程发展的最充分。
电晕放电与沿面放电
§2.6 沿面放电和污闪事故
一、沿面放电概念 沿面放电:沿气体和固体绝缘或气体和液体绝缘
表面发生的气体放电现象叫沿面放电。
气体中沿着固体绝缘表面放电的形式包括: 沿面滑闪:尚未发生击穿; 沿面闪络:沿面击穿;
相关文档
最新文档