曲线与方程ppt课件
合集下载
人教版高中数学选修2-1曲线与方程(共17张PPT)教育课件
即以这个解为坐标的点到点(a,b)的距离为r,它一定在以(a,b)
为圆心、r为半径的圆上.
思考?你能得到什么结论? (1)曲线C上点的坐标都是方程(x-a)2+(y-b)2=r2的解.
(2)以方程(x-a)2+(y-b)2=r2的解为坐标的点都在曲线C上.
概念形成
在直角坐标系中,如果如果某曲线C(看作点的集合或适合某
•
: 其实兴趣真的那么重要吗?很多事情我 们提不 起兴趣 可能就 是运维 我们没 有做好 。想想 看,如 果一件 事情你 能做好 ,至少 做到比 大多数 人好, 你可能 没有办 法岁那 件事情 没有兴 趣。再 想想看 ,一个 刚来到 人世的 小孩, 白纸一 张,开 始什么 都不会 ,当然 对事情 开始的 时候也 没有 兴趣这 一说了 ,随着 年龄的 增长, 慢慢的 开始做 一些事 情,也 逐渐开 始对一 些事情 有兴趣 。通过 观察小 孩的兴 趣,我 们可以 发现一 个规律 ,往往 不是有 了兴趣 才能做 好,而 是做好 了才有 了兴趣 。人们 总是搞 错顺序 ,并对 错误豪 布知晓 。尽管 并不绝 对是这 样,但 大多数 事情都 需要熟 能生巧 。做得 多了, 自然就 擅长了 ;擅长 了,就 自然比 别人做 得好; 做得比 别人好 ,兴趣 就大起 来,而 后就更 喜欢做 ,更擅 长,更 。。更 良性循 环。教 育小孩 也是如 此,并 不是说 买来一 架钢琴 ,或者 买本书 给孩子 就可以 。事实 上,要 花更多 的时间 根据孩 子的情 况,选 出孩子 最可能 比别人 做得好 的事情 ,然后 挤破脑 袋想出 来怎样 能让孩 子学会 并做到 很好, 比一般 人更好 ,做到 比谁都 好,然 后兴趣 就自然 出现了 。
种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解
8.8 曲线与方程(精品课件)
3.方程y 9 x2 表示的曲线是( )
(A)抛物线的一部分
(B)双曲线的一部分
(C)圆
(D)半圆
【解析】选D.因为 y 9 x2 , ∴y≥0, ∴x2+y2=9(y≥0)表示一个半圆.
4.(2012·河源质检)已知点 F(14,0),直线 l:x=-14,点 B 是 l 上的动点.若过点 B 垂直于 y 轴的直线与线段 BF 的垂直平分线 交于点 M,则点 M 的轨迹是( )
解法 2:因为点 M 在线段 PF1 的垂直平分线上,所以|MF1| =|MP|,即 M 到 F1 的距离等于 M 到 l1 的距离.
此轨迹是以 F1(-1,0)为焦点 l1:x=1 为准线的抛物线,轨迹 方程为 y2=-4x.
[点评] 在利用圆锥曲线定义求轨迹时,若所求的轨迹符合 某种圆锥曲线的定义,则根据曲线的方程,写出所求的轨迹方程, 若所求轨迹是某种圆锥曲线上的特定点的轨迹,则利用圆锥曲线 的定义列出等式,化简求得方程.
用直接法求轨迹方程 【例2】已知点M,N为两个定点,|MN|=6,且动点P满足PM PN 6, 求点P的轨迹方程. 【解析】以点M,N所在的直线为x轴,MN的中点O为坐标原点, 建立平面直角坐标系,则M(-3,0),N(3,0),设P(x,y), 则 PM =(-3-x,-y),PN =(3-x,-y),PM PN=(-3-x,-y)·(3-x,y), 又因为PM PN=6, 所以(-3-x,-y)·(3-x,-y)=6, 化简整理得:x2+y2=15.
2.求动点的轨迹方程的基本步骤
3.圆锥曲线的共同特征
圆锥曲线上的点到__一__个_定__点__的距离与它到_一__条__定__直_线___的距离
3-2-1双曲线及其标准方程 课件(共67张PPT)
【解析】 距离的差要加绝对值,否则只为双曲线的一支.若 F1,F2 表示双曲线的左、右焦点,且点 P 满足|PF1|-|PF2|=2a,则点 P 在右支上;若点 P 满足|PF2|-|PF1|=2a,则点 P 在左支上.
互动 2 在双曲线的定义中,必须要求“常数小于|F1F2|”, 那么“常数等于|F1F2|”“常数大于|F1F2|”或“常数为 0”时,动 点的轨迹是什么?
【解析】 (1)若“常数等于|F1F2|”时,此时动点的轨迹是以 F1,F2 为端点的两条射线 F1A,F2B(包括端点),如图所示.
(2)若“常数大于|F1F2|”,此时动点轨迹不存在. (3)若“常数为 0”,此时动点轨迹为线段 F1F2 的垂直平分线.
互动 3 已知点 P(x,y)的坐标满足下列条件,试判断下列各 条件下点 P 的轨迹是什么图形?
2.关于双曲线应注意的几个问题 (1)双曲线的标准方程与选择的坐标系有关,当且仅当双曲线 的中心在原点,焦点在坐标轴上时,双曲线的方程才具有标准形 式.
(2)如图,设 M(x,y)为双曲线上任意一点,若 M 点在双曲线 的右支上,则|MF1|>|MF2|,|MF1|-|MF2|=2a(0<2a<|F1F2|);若 M 在双曲线的左支上,则|MF1|<|MF2|,|MF1|-|MF2|=-2a,因 此得|MF1|-|MF2|=±2a,这与椭圆不同.
(3)列式:由|MF1|-|MF2|=±2a, 可得 (x+c)2+y2- (x-c)2+y2=±2a.①
(4)化简:移项,平方后可得 (c2-a2)x2-a2y2=a2(c2-a2). 令 c2-a2=b2,得双曲线的标准方程为xa22-yb22=1(a>0,b>0).② (5)从上述过程可以看到,双曲线上任意一点的坐标都满足方 程②;以方程②的解(x,y)为坐标的点到双曲线两个焦点(-c, 0),(c,0)的距离之差的绝对值为 2a,即以方程②的解为坐标的 点都在双曲线上.这样,就把方程②叫作双曲线的标准方程.
互动 2 在双曲线的定义中,必须要求“常数小于|F1F2|”, 那么“常数等于|F1F2|”“常数大于|F1F2|”或“常数为 0”时,动 点的轨迹是什么?
【解析】 (1)若“常数等于|F1F2|”时,此时动点的轨迹是以 F1,F2 为端点的两条射线 F1A,F2B(包括端点),如图所示.
(2)若“常数大于|F1F2|”,此时动点轨迹不存在. (3)若“常数为 0”,此时动点轨迹为线段 F1F2 的垂直平分线.
互动 3 已知点 P(x,y)的坐标满足下列条件,试判断下列各 条件下点 P 的轨迹是什么图形?
2.关于双曲线应注意的几个问题 (1)双曲线的标准方程与选择的坐标系有关,当且仅当双曲线 的中心在原点,焦点在坐标轴上时,双曲线的方程才具有标准形 式.
(2)如图,设 M(x,y)为双曲线上任意一点,若 M 点在双曲线 的右支上,则|MF1|>|MF2|,|MF1|-|MF2|=2a(0<2a<|F1F2|);若 M 在双曲线的左支上,则|MF1|<|MF2|,|MF1|-|MF2|=-2a,因 此得|MF1|-|MF2|=±2a,这与椭圆不同.
(3)列式:由|MF1|-|MF2|=±2a, 可得 (x+c)2+y2- (x-c)2+y2=±2a.①
(4)化简:移项,平方后可得 (c2-a2)x2-a2y2=a2(c2-a2). 令 c2-a2=b2,得双曲线的标准方程为xa22-yb22=1(a>0,b>0).② (5)从上述过程可以看到,双曲线上任意一点的坐标都满足方 程②;以方程②的解(x,y)为坐标的点到双曲线两个焦点(-c, 0),(c,0)的距离之差的绝对值为 2a,即以方程②的解为坐标的 点都在双曲线上.这样,就把方程②叫作双曲线的标准方程.
曲线与方程ppt课件
xy==-0-2+23+30+y1.x1,xy11==33xy++22., 代入 y1=3x12-1, 得 3y+2=3(3x+2)2-1. ∴y=9x2+12x+3,即为所求轨迹方程.
1.曲线和方程的关系: (1)曲线上的点的坐标都是方程的解,无一例外; (2)以这个方程的解为坐标的点都在曲线上,缺一不可. 2.求曲线方程的一般步骤: ①建系 ②设动点 ③限制条件 ④代入 ⑤化简. 3.求曲线方程的关键是找关系列等式,常见方法为直译法 和代入法.
即 (x+a)2+y2· (x-a)2+y2 = x2+(y+b)2· x2+(y-b)2. 化简得 x2-y2=a2-2 b2.
题型三 代入法求轨迹方程 例 4 已知 A(-2,0)、B(2,0),点 C、D 满足|A→C|=2,A→D =12(A→B+A→C).求点 D 的轨迹方程.
解析 设点 C、D 的坐标分别为(a,b)、(x,y),则A→C=(a +2,b),A→B=(4,0).
例 3 设△ABC 的周长为 18,|AB|=8,求顶点 C 的轨迹方 程.
解析 如右图所示,以线段 AB 的中点 O 为坐 标原点,线段 AB 所在的直线为 x 轴建立直角坐标系, 由于|AB|=8.∴A(-4,0),B(4,0),
设 C(x,y)为所求轨迹上任意点,∵|AC|+|BC| =10,
解析 (1)错误.因为以方程|x|=2 的解为坐标的点,不都 在直线 l 上,直线 l 只是方程|x|=2 所示的图形的一部分.
(2)错误.因为到两坐标轴距离相等的点的轨迹有两条直线 l1 和 l2(如图所示),直线 l1 上的点的坐标都是方程 y=x 的解,但 是直线 l2 上的点(除原点)的坐标不是方程 y=x 的解.故 y=x 不 是所求的轨迹方程.
1.曲线和方程的关系: (1)曲线上的点的坐标都是方程的解,无一例外; (2)以这个方程的解为坐标的点都在曲线上,缺一不可. 2.求曲线方程的一般步骤: ①建系 ②设动点 ③限制条件 ④代入 ⑤化简. 3.求曲线方程的关键是找关系列等式,常见方法为直译法 和代入法.
即 (x+a)2+y2· (x-a)2+y2 = x2+(y+b)2· x2+(y-b)2. 化简得 x2-y2=a2-2 b2.
题型三 代入法求轨迹方程 例 4 已知 A(-2,0)、B(2,0),点 C、D 满足|A→C|=2,A→D =12(A→B+A→C).求点 D 的轨迹方程.
解析 设点 C、D 的坐标分别为(a,b)、(x,y),则A→C=(a +2,b),A→B=(4,0).
例 3 设△ABC 的周长为 18,|AB|=8,求顶点 C 的轨迹方 程.
解析 如右图所示,以线段 AB 的中点 O 为坐 标原点,线段 AB 所在的直线为 x 轴建立直角坐标系, 由于|AB|=8.∴A(-4,0),B(4,0),
设 C(x,y)为所求轨迹上任意点,∵|AC|+|BC| =10,
解析 (1)错误.因为以方程|x|=2 的解为坐标的点,不都 在直线 l 上,直线 l 只是方程|x|=2 所示的图形的一部分.
(2)错误.因为到两坐标轴距离相等的点的轨迹有两条直线 l1 和 l2(如图所示),直线 l1 上的点的坐标都是方程 y=x 的解,但 是直线 l2 上的点(除原点)的坐标不是方程 y=x 的解.故 y=x 不 是所求的轨迹方程.
曲线与方程 课件(共35张PPT)
曲线与方程
最新考纲展示
1.了解方程的曲线与 曲线的方程的对应关系.
2.了解解析几何的基本 思想和利用坐标法研究几 何问题的基本方法.
3.能够根据所给条件选 择适当的方法求曲线的轨 迹方程.
一、曲线与方程的定义 一般地,在直角坐标系中,如果某曲线C上的点与一个二元方
程f(x,y)=0的实数解建立如下的对应关系:
(2)证明:设 E(xE,yE),F(xF,yF),依题意,
y=k1x+3,
由y92+x2=1
⇒(k21+9)x2+6k1x=0,①
解得 x=0 或 x=-k216+k19. 所以 xE=-k216+k19,yE=k1-k216+k19+3=2k721-+39k21, ∴E-k126+k19,2k721-+39k21. ∵k1k2=-9,∴k2=-k91.用 k2=-k91替代①中的 k1, 同理可得 Fk126+k19,3kk2121- +297. 显然 E,F 关于原点对称,∴直接 EF 必过原点 O.
曲线的交点问题(师生共研)
例 2 (2015 年南京模拟)设 0<θ<π2,曲线 x2sin θ+y2cos θ=1 和 x2cos θ-y2sin θ=1 有 4 个不同的交点.
(1)求θ的取值范围; (2)证明:这4个点共圆,并求圆的半径的取值范围.
解 析 (1) 两 曲 线 的 交 点 坐 标 (x , y) 满 足 方 程 组 x2sin θ+y2cos θ=1, x2=sin θ+cos θ, x2cos θ-y2sin θ=1, 即y2=cos θ-sin θ.
D.以上答案都不对
(2)(2015年广州模拟)下列说法正确的是( )
A.△ABC中,已知A(1,1),B(4,1),C(2,3),则AB边上的高的方
最新考纲展示
1.了解方程的曲线与 曲线的方程的对应关系.
2.了解解析几何的基本 思想和利用坐标法研究几 何问题的基本方法.
3.能够根据所给条件选 择适当的方法求曲线的轨 迹方程.
一、曲线与方程的定义 一般地,在直角坐标系中,如果某曲线C上的点与一个二元方
程f(x,y)=0的实数解建立如下的对应关系:
(2)证明:设 E(xE,yE),F(xF,yF),依题意,
y=k1x+3,
由y92+x2=1
⇒(k21+9)x2+6k1x=0,①
解得 x=0 或 x=-k216+k19. 所以 xE=-k216+k19,yE=k1-k216+k19+3=2k721-+39k21, ∴E-k126+k19,2k721-+39k21. ∵k1k2=-9,∴k2=-k91.用 k2=-k91替代①中的 k1, 同理可得 Fk126+k19,3kk2121- +297. 显然 E,F 关于原点对称,∴直接 EF 必过原点 O.
曲线的交点问题(师生共研)
例 2 (2015 年南京模拟)设 0<θ<π2,曲线 x2sin θ+y2cos θ=1 和 x2cos θ-y2sin θ=1 有 4 个不同的交点.
(1)求θ的取值范围; (2)证明:这4个点共圆,并求圆的半径的取值范围.
解 析 (1) 两 曲 线 的 交 点 坐 标 (x , y) 满 足 方 程 组 x2sin θ+y2cos θ=1, x2=sin θ+cos θ, x2cos θ-y2sin θ=1, 即y2=cos θ-sin θ.
D.以上答案都不对
(2)(2015年广州模拟)下列说法正确的是( )
A.△ABC中,已知A(1,1),B(4,1),C(2,3),则AB边上的高的方
双曲线及其标准方程ppt课件
C.(0,-5),(0,5)
D.(0,- 7),(0, 7)
双曲线的定义
2
1.设 F1,F2 分别是双曲线 x2-24=1 的左、右焦点,P 是双曲线上的一点,且 3|PF1|=4|PF2|, 则△PF1F2 的面积等于 ( )
A.4 2
B.8 3
C.24
D.48
2.已知动点 P(x,y)满足 ( + 2)2 + 2- ( -2)2 + 2=2,则动点 P 的轨迹是 ( )
这两个定点叫做双曲线的焦点. 两焦点的距离叫做双曲线的焦距.
y
M
F1 o F2 x
如何理解绝对值?若去掉绝对值则图像有何变化?
03 双曲线的标准方程
1. 建系:如图建立直角坐标系xOy,使x轴经 过点F1,F2,并且点O与线段F1F2中点重合.
y M
F1 O F2
x
2.设点:设M(x , y),双曲线的焦距为2c(c>0),F1(-c,0),F2(c,0) 常数=2a
利用定义求轨迹方程
P P127 习题3.2 第5题
如图,圆O的半径为定长 ,A是圆O外一定点,P是圆上任
意一点,线段AP的垂直平分线l和直线OP相交于点Q,当
O
点P在圆O上运动时,点Q的轨迹是什么?为什么?
A Q
P115 习题3.1 第6题 如图,圆O的半径为定长 ,A是圆O内一定点,P是圆上 任意一点,线段AP的垂直平分线l和半径OP相交于点 Q,当点P在圆O上运动时,点Q的轨迹是什么?为什么?
A.椭圆 C.双曲线的左支
B.双曲线 D.双曲线的右支
双曲线的定义
22
【变式练习】
已知
P
是双曲线
优质实用教学课件精选双曲线及其标准方程PPT课件公开课
解: 6 10 点P的轨迹为双曲线
根据双曲线的焦点在 x 轴上,设它的标准方程为:
x2 y2 a2 b2 1 (a 0, b 0)
∵ 2a = 6, c=5 ∴ a = 3, c = 5 ∴ b2 = 52-32 =16
所以所求双曲线的标准方程为: x2 y2 1 9 16
课堂练习
y
M
F1 o F2 x
y
M F2
F1
x
y2 a2
x2 b2
1
F(0, ± c)
焦点在x轴上
焦点在y轴上
问题:如何判断双曲线的焦点在哪个轴上?
x2与y2的系数符号,决定焦点所在的坐标轴,x2,y2 哪个系数为正,焦点就在哪个轴上,双曲线的焦点 所在位置与分母的大小无关。
x2 y2 a2 b2 1 F ( ±c, 0)
这表明动点M与两定点C2、C1的距离的差是常数2.根 据双曲线的定义,动点M的轨迹为双曲线的左支(点M与C2 的距离大,与C1的距离小),这里a=1,c=3,则b2=8,设点M 的坐标为(x,y),其轨迹方程为:
• 例曲线3、,如求果m方的程范m围x-21+2-ym2 = 1 表示双 • 解(m-1)(2-m)<0,∴m>2或m<1
x2
y2
1( x 0)
115600 44400
例2.已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9, 动圆M同时与圆C1及圆C2相外切,求动圆圆心M的轨 迹方程.
解:设动圆M与圆C1及圆C2分别外切于点A 和B,根据两圆外切的条件,
|MC1|-|AC1|=|MA|,|MC2|-|BC2|=|MB|
1. 建系. 以F1,F2所在的直线为X轴,线
根据双曲线的焦点在 x 轴上,设它的标准方程为:
x2 y2 a2 b2 1 (a 0, b 0)
∵ 2a = 6, c=5 ∴ a = 3, c = 5 ∴ b2 = 52-32 =16
所以所求双曲线的标准方程为: x2 y2 1 9 16
课堂练习
y
M
F1 o F2 x
y
M F2
F1
x
y2 a2
x2 b2
1
F(0, ± c)
焦点在x轴上
焦点在y轴上
问题:如何判断双曲线的焦点在哪个轴上?
x2与y2的系数符号,决定焦点所在的坐标轴,x2,y2 哪个系数为正,焦点就在哪个轴上,双曲线的焦点 所在位置与分母的大小无关。
x2 y2 a2 b2 1 F ( ±c, 0)
这表明动点M与两定点C2、C1的距离的差是常数2.根 据双曲线的定义,动点M的轨迹为双曲线的左支(点M与C2 的距离大,与C1的距离小),这里a=1,c=3,则b2=8,设点M 的坐标为(x,y),其轨迹方程为:
• 例曲线3、,如求果m方的程范m围x-21+2-ym2 = 1 表示双 • 解(m-1)(2-m)<0,∴m>2或m<1
x2
y2
1( x 0)
115600 44400
例2.已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9, 动圆M同时与圆C1及圆C2相外切,求动圆圆心M的轨 迹方程.
解:设动圆M与圆C1及圆C2分别外切于点A 和B,根据两圆外切的条件,
|MC1|-|AC1|=|MA|,|MC2|-|BC2|=|MB|
1. 建系. 以F1,F2所在的直线为X轴,线
双曲线及其标准方程ppt课件
F1 O F2
3.限式 |MF1| - |MF2|=±2a
4.代换 即 (x c)2 y2 (x c)2 y2 2a
5.化简
6
代数式化简得:
y
M (c2 a2) x2 a2 y2 a2 (c2 a2)
F1 O F2
可令:c2-a2=b2
x
代入上式得:b2x2-a2y2=a2b2
不存在
(4)已知A(-5,0),B(5,0),M点到A,B两点的距离之差 的绝对值为0,则M点的轨迹是什么?
线段AB的垂5直平分线
(三)合作探究,构建方程
双曲线标准方程推导
1.建系
以F1,F2所在的直线为x轴,线段F1F2的中 y 点为原点建立直角坐标系
M
2.设点
x
设M(x , y),则F1(-c,0),F. 2(c,0)
15
16
2
(二)注重细节,理解概念
双曲线定义:
平面内与两个定点F1,F2的距离的差的绝对 值等于非零常数(小于︱F1F2︱)的点的轨迹
叫做双曲线.
M
① 两个定点F1、F2——双曲线的焦点;
② |F1F2|=2c ——焦距.
F1 o F2
3
(二)注重细节,理解概念
思考:为什么要求 0<2a<2c? 演示
当2a=2c时,动点的轨迹是什么? 以点F1、F2为端点,方向指向F1F2外侧的两条射 线. 当2a>2c时,动点的轨迹是什么? 不存在 当2a=0时,动点的轨迹是什么? 线段F1F2的垂直平分线
x2 b2
(1 a
0, b
0)
问题:如何判断双曲线的焦点在哪个轴上呢?
(二次项系数为正,焦点在相应的轴8上)
人教B版选择性必修第一册2-4曲线与方程课件(43张)
[练习3] 已知△ABC的两个顶点A(-2,0),B(0,-2),第三个顶点C在曲线y=3x2- 1上移动,求△ABC的重心G的轨迹方程.
解:设△ABC的重心G(x,y),C(x0,y0),
则xy= =yx00--33 22, ,
即xy00= =33xy+ +22, .
∵点C在y=3x2-1上,
∴y0=3x20-1,即3y+2=3(3x+2)2-1. 整理得y=9x2+12x+3.
5.(2022陕西西安中学月考)已知点P到y轴的距离比它到点(1,0)的距离小1,则点P满 足的方程是___y2_=__4_x_或__y_=__0_(_x_<_0_) __.
解析:设P(x,y),则|x|+1= x-12+y2. 若x≥0,则x+1= x-12+y2, 两边平方并整理得y2=4x; 若x<0,则1-x= x-12+y2, 两边平方并整理得y=0. ∴P点轨迹方程为y=0(x<0)或y2=4x. 故答案为y=0(x<0)或y2=4x.
3.两曲线的交点 (1)求两条曲线的交点坐标 已知两条曲线C1,C2的方程分别为F(x,y)=0,G(x,y)=0,则求两条曲线的交点坐 标只需求方程组FGxx,,yy==00, 的实数解即可. 特别提醒:由曲线方程的定义可知,两曲线交点坐标即两曲线方程所构成的方程组 的解.于是求曲线交点坐标问题,可转化为解二元方程组的问题.确定两曲线交点个数 问题,可转化为讨论方程组解的组数问题. (2)过两曲线交点的曲线方程 过两曲线F1(x,y)=0,F2(x,y)=0交点的曲线系方程可用F1(x,y)+λF2(x,y)=0(λ∈ R)表示,但应注意该方程不能表示曲线F2(x,y)=0.
[自我排查] 1.(2022山东菏泽月考)“点M在曲线x2=4y上”是“点M的坐标满足方程x=2 y”的 ( B) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
曲线的方程与方程的曲线-课件
5.一般地:在直角坐标系中,如果某曲线C上的点与 一个二元方程f(x,y)=0的实数解之间建立了如下的关系: ①曲线上点的坐标都是这个方程的解;②以这个方程的解 为坐标的点都是曲线上的点,那么,这个方程叫做 ______________;这条曲线叫做________.
例:画出方程y=-x2(x≥0)的曲线.
解析:(1)∵12+(-2-1)2=10,
( 2)2+(3-1)2=6≠10.
∴点P(1,-2)在方程x2+(y-1)2=10表示的曲线上,
点Q( 2 ,3)不在方程x2+(y-1)2=10表示的曲线上.
(2)∵点 Mm2 ,-m在方程 x2+(y-1)2=10 表示的曲线上.
∴x=m2 ,y=-m 适合方程 x2+(y-1)2=10.
•
11、越是没有本领的就越加自命不凡 。2021/3/32021/3/32021/3/3M ar-213- Mar-21
•
12、越是无能的人,越喜欢挑剔别人 的错儿 。2021/3/32021/3/32021/3/3Wednesday, March 03, 2021
•
13、知人者智,自知者明。胜人者有 力,自 胜者强 。2021/3/32021/3/32021/3/32021/3/33/3/2021
程x2+y2=25(x≤0)所表示的曲线上.
答案:(1)不正确 (2)不正确 (3)不正确
一、选择填空题
1.下列命题正确的是( D )
A.方程x-y 2=1 表示斜率为 1,在 y 轴上的截距为-2 的直线方程
B.△ABC 的三个顶点坐标为 A(-3,0)、B(3,0)、C(0,3), 则中线 CO(O 为坐标原点)的方程是 x=0
C.到 y 轴距离为 2 的轨迹方程为 x=2 D.方程 y= x2+2x+1表示两条射线
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
那么,这个方程叫做曲线的方程; 这条曲线叫做方程的曲线.
y
f(x,y)=0
说明:
0
x
1.曲线的方程—反映的是图形所满足的数量关系; 方程的曲线—反映的是数量关系所表示的图形.
2.“曲线上的点的坐标都是这个方程 的解” , 阐明曲线上没有坐标不满足方程的点,也就是 说曲线上所有的点都符合这个条件而毫无例外.
因为点 M 与 x 轴的距离为 y 0 , 与 y 轴的距离为 x 0 , 所以 x 0 • y 0 k ,即 ( x 0 , y 0 ) 是方程 xy k 的解。
y
M
o
x
(2)设M 点 1的坐 (x1,标 y1)是方 xy程 k的解 即 x1y1k,即 x1•y1k
而x1, y1正是点M1到纵轴、横轴的距离, 因此点M1到两条直线的距离的 是积 常数k, 点M1是曲线上的点。
2.1 曲线与方程
2.1.1 曲线与方程
复习回顾:
我们研究了直线和圆的方程. 1.经过点P(0,b)和斜率为k的直线L的方程
为_____y___k_x___b
2.在直角坐标系中,平分第一、三象限的
直线方程是___x__-y__=_0______
3.圆心为C(a,b) ,半径为r的圆C的方程
为___(_x___a_)_2___( _y__b__)2___r_2__.
是“方程 f (x, y) =0 是曲线 C 的方程”的( )条
件.
(A)充分非必要
(B)必要非充分
(C)充要
(D)既非充分也非必要
由(1),(2)可知, xyk是与两条坐标轴的 的积为常k(数 k 0)的点的轨迹方程。
归纳: 证明已知曲线的方程的方法和步骤
第一步,设 M (x0,y0)是曲线C上任一点, 证明(x0,y0)是f(x,y)=0的解;
第二步,设(x0,y0)是 f(x,y)=0的解,证明 点 M (x0,y0)在曲线C上.
练习1:下述方程表示的图形分别是下图 中的哪一个?
① x - y =0 ② |x|-|y|=0 ③ x-|y|=0
Y
Y
1
1
Y
Y
1
1
O
1X
A
O
1 X -1 O
1X O
1X
-1 -1
B
C
D
①表示 B ②表示 C ③表 C 上的点的坐标都是方程 f (x, y) =0 的解”
思考?
圆心为C(a,b) ,半径为r的圆C的方程为:
(xa)2(yb)2r2
定义: 一般地,在直角坐标系中,如果某曲线C(看
作点的集合或适合某种条件的点的轨迹)上的点 与一个二元方程f(x,y)=0的实数解建立了如下 的关系:
(1)曲线上点的坐标都是这个方程的解;
(2)以这个方程的解为坐标的点都是曲线上的点.
为什么?
思考?
坐标系中,平分第一、三象限的直线方程是x-y=0
第一、三象限角平分线 l 点的横坐标与纵坐标相等 条件
曲线
c
x=y(或x- y=0)方程
l y
x-y=0 含有关系:
0 x (1) l上点的坐标都是方程x-y=0的解
(2)以方程x-y=0的解为坐标的点都
在 l上
∴说直线 l 的方程是 x y 0 ,又说方程 x y 0 的直线是 l .
3.“以这个方程的解为坐标的点都在曲线上”, 阐明符合条件的所有点都在曲线上而毫无遗漏.
4、由曲线的方程的定义可知: 如果曲线C的方程是 f(x,y)=0,那么点P0(x0 ,y0)
在曲线C 上的 充要条件 是 f(x0, y0)=0
例1 :判断下列命题是否正确 (1)过点A(3,0)且垂直于x轴的直线的方程 为︱x︱=3 (2)到x轴距离等于1的点组成的直线方程为y=1 (3)到两坐标轴的距离之积等于1的点的轨迹方 程为︱xy︱=1 (4) △ABC的顶点A(0,-3),B(1,0),C(-1,0), D为BC中点,则中线AD的方程x=0
解:(1)不正确,不具备(2) ,应为x=3,
(2)不正确,不具备(1) ,应为y=±1.
(3)正确.
(4)不正确,不具备(2),应为x=0(-3≤y≤0).
例2.证明与两条坐标轴的距离的积是常数k(k>0) 的点的轨迹方程是xy=±k.
证明: (1)如图,设 M ( x 0 , y 0 ) 是轨迹上的任意一点,