八年级数学上册--平面内点的坐标第2课时 坐标平面内的图形 学案(沪科版)

合集下载

上海科学技术出版社初中八年级数学上册全套教案

上海科学技术出版社初中八年级数学上册全套教案

平面内点的坐标【课时安排】2课时【第一课时】【教学目标】1.通过实际问题抽象出平面直角坐标系及其相关概念,使学生认识平面直角坐标系原点、横轴和纵轴等,会由坐标描点,由点写出坐标;让学生体会到平面上的点与有序实数对之间的对应关系;2.经历画平面直角坐标系,由点写出坐标和由坐标描点的过程,进一步渗透数形结合的数学思想;3.培养学生自主探究与合作交流的学习习惯。

【教学重点】正确认识平面直角坐标系,会准确地由点写出坐标,由坐标描点。

【教学难点】各象限内坐标的符号及各坐标轴上点坐标的特点,平面上的点与有序实数对之间的对应关系。

【教学过程】一、设置问题情境:(一)回顾一下数轴的概念,及实数与数轴有怎样的关系?(学生回答)(二)情境:(多媒体显示)如图所示请指出数轴上A、B两点所表示的数;直线表示一条笔直公路,向东为正方向,原点为学校位置,A、B是位于公路旁两学生家的位置,你能说出它们的位置吗?这说明了什么?引申:确定一个点在直线上的位置,只需要一个数据,这个实数可称为点在数轴上的坐标。

怎样确定平面上一个点的位置呢?二、观察交流,构建新知。

观察、交流、思考:(1)确定平面上一点的位置需要什么条件?(2)既然确定平面上一点的位置需要两个数,那么能否用两条数轴建立模型来表示平面上任一点的位置呢?教师在学生回答的基础上,边操作边讲出:为了确定平面上一个点的位置,我们先在平面内画两条互相垂直并且原点重合的数轴,水平的数轴叫x 轴或横轴,取向右为正方向,垂直的数轴叫y轴或纵轴,取向上为正方向,两轴交点O为原点,这样就建立了平面直角坐标系。

这个平面叫做坐标平面。

有了坐标平面,平面内的点就可以用一个有序实数对来表示。

引导观察:如图中点P可以这样表示:由P向x轴作垂线,垂足M在x 轴上的坐标是-2,点P向y轴作垂线,垂足N在y轴的坐标是3,于是就说点P的横坐标是-2,纵坐标3,把横坐标写在纵坐标前面记作(-2,3),即P点坐标(-2,3)。

平面上点的坐标教案新部编本(沪科版八上)

平面上点的坐标教案新部编本(沪科版八上)

教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校12.1 平面上点的坐标(第1课时)一、教学内容本节主要学习平面上点坐标的有关概念,能从平面直角坐标系中写出点的坐标,及能根据坐标确定坐标中点的位置。

二、教学目标1、通过实际问题抽象出平面直角坐标系及其相关概念,使学生认识平面直角坐标系原点、横轴和纵轴等,会由坐标描点,由点写出坐标;让学生体会到平面上的点与有序实数对之间的对应关系;2、经历画平面直角坐标系,由点写出坐标和由坐标描点的过程,进一步渗透数形结合的数学思想;3、培养学生自主探究与合作交流的学习习惯。

三、教学重点正确认识平面直角坐标系,会准确地由点写出坐标,由坐标描点。

四、教学难点各象限内坐标的符号及各坐标轴上点坐标的特点,平面上的点与有序实数对之间的对应关系。

五、教学关键:充分体会有序实数对在实际中的应用六、教学准备:多媒体教学课件、三角尺七、教学方法:探讨、合作八、教学过程:(一)设置问题情境:1、回顾一下数轴的概念,及实数与数轴有怎样的关系?(学生回答)2、情境:(多媒体显示)如图所示请指出数轴上A、B两点所表示的数;直线表一条笔直公路,向东为正方向,原点为学校位置,A、B是位于公路旁两学生家的位置,你能说出它们的位置吗?这说明了什么?引申:确定一个点在直线上的位置,只需要一个数据,这个实数可称为点在数轴上的坐标。

怎样确定平面上一个点的位置呢?(二)观察交流,构建新知观察、交流、思考,回答教科书第4页的两个问题。

(学生活动,教师指导)思考:1、确定平面上一点的位置需要什么条件?2、既然确定平面上一点的位置需要两个数,那么能否用两条数轴建立模型来表示平面上任一点的位置呢?教师在学生回答的基础上,边操作边讲出:为了确定平面上一个点的位置,我们先在平面内画两条互相垂直并且原点重合的数轴,水平的数轴叫x轴或横轴,取向右为正方向,垂直的数轴叫y轴或纵轴,取向上为正方向,两轴交点O为原点,这样就建立了平面直角坐标系。

安徽省固镇县八年级数学上册 11.1 平面上的点坐标(2)教案 (新版)沪科版

安徽省固镇县八年级数学上册 11.1 平面上的点坐标(2)教案 (新版)沪科版
4,若P(2a+1,a-3)在第一象限,则a的 取值范围是_______.
若P在X轴上,则a=_______,P点坐标是(__________)
点P一定不在第_______象限.
5,例2,3.阅读书本上第7页例2, 自己选择一个你较喜欢的方式建立一个平面直角坐标系,再写出A,B,C,D四 个点的坐标.看一看你的坐标与周围同学的坐标相同吗?
重难点
重点:进一步理解点 的坐标的数值变化 与点的位置变化的关系.
难点:进一步理解点的坐标的数值变化与点的位置变化的关系。








一、复习引入
1,什么叫做平面直角坐标系?横轴?纵轴?坐标原点?
2,怎样确定平面直角坐标系中的一个点?
3,平面直角坐标系中,各象限内的点分别有什么特征?
4,平面直角坐标系中的点与有序实数对有什么关系?
5,若点C在第二象限,且|x|=2,|y|=4求点C的坐标
6,若 P(2a+1,a-3)在第一象限,则a的取值范围是_______.
若P在X轴上,则a=_______,P点坐标是(__________)
点P一定不在第_______象限.
二、学习目标
1.进一步探索和掌握坐标系中点的的坐标特点,了解与坐标轴平行的直线上点的坐标的特征
2.理解点的坐标的数值变化与点的位置变化的关系。
三、自学提纲
1,在平面直角坐标系中描出下列各点:
(1)A(1,4),B(4,1),它们是同一点吗?
(2)C(-1,0),D(3,0),这两个点在哪个轴上?
(3)E(0,4),F(0,-3),这两个点在哪个轴上?
(4)G(-1,2),H(3,2),直线GH与x轴有什么 位置关系?与y轴呢?

【沪科版教材】八年级数学上册《11.1 第2课时 坐标平面内的图形》课件PPT

【沪科版教材】八年级数学上册《11.1 第2课时 坐标平面内的图形》课件PPT
B
4 x 的坐标分别为: A(0,0), B(4,0), C(4,4), D(0,4).
想一想:还可以建立其他平面
直角坐标系,表示正方形的四
y
个顶点A,B,C,D的坐标吗?
D
C A(0,-4), B(4,-4),C(4,0), D(0,0).
A(-4,0), B(0,0),C(0,4), D(-4,4).
3.已知点A、B在平面直角坐标系中的位置如图所示,求
三角形AOB的面积.y Nhomakorabea解:由图可知A(-1,2) , B(3,-2)
4
得C(1,0) , D(3,0) ,E(-1,0).
3
A2
由点的坐标可知 AE=2 ,OC=1, 1 E
C
D
BD=2 .
O -5 -4 -3 -2 -1
1 2 3 45
x
S△ AOB = S△AOC+S△BOC
例3:如图,已知点A(2,-1),B(4,3),C(1,2),
求△ABC的面积.
解:如图,过点A作x轴的平行线,过点C
作y轴的平行线,两条平行线交于点E,过
点B分别作x轴、y轴的平行线,分别交EC
的延长线于点D,交EA的延长线于点F.
∵A(2,-1),B(4,3),C(1,2),
∴BD=3,CD=1,CE=3,AE=1,AF=2,BF=4,
∴S△ABC=S长方形BDEF-S△BDC-S△CEA-S△BFA
=BD·DE- 1 DC·DB- 1 CE·AE-1 AF·BF
2
2
2
=12-1.5-1.5-4=5.
方法总结
本题主要考查如何利用简单方法求坐标系中图形的面积. 已知三角形三个顶点坐标,求三角形面积通常有三种方法: 方法一:直接法,计算三角形一边的长,并求出该边上的高; 方法二:补形法,将三角形面积转化成若干个特殊的四边形和 三角形的面积的和与差; 方法三:分割法,选择一条恰当的直线,将三角形分割成两个 便于计算面积的三角形.

沪科版数学八年级上册精品教案11.1 平面内点的坐标

沪科版数学八年级上册精品教案11.1 平面内点的坐标

11.1 平面内点的坐标(第1课时)项目内容课题11.1 平面内点的坐标(第1课时)修改与创新教学目标1.认识并利用有序实数对来表示点的位置。

2.认识并能画出平面直角坐标系,能在方格纸上建立适当的直角坐标系描述物体的位置。

3.在给定的直角坐标系中,会根据坐标描出点的位置,由点的位置写出它的坐标。

4.让学生感受到可以用数字表示图形的位置,将几何问题可以转化为代数问题,形成数形结合的意识。

5.通过用有序实数对来表示实际问题的情境,经历建立数学模型解决实际问题的过程;体验有序数对在现实生活中应用的广泛性。

教学重、难点重点:在给定的直角坐标系中会根据坐标描出点的位置,由点的位置写出它的坐标。

难点:平面直角坐标系的实际应用。

教学准备多媒体课件教学过程一、创设问题情境,引入课题动物学家为了掌握大熊猫在野外活动情况,便在它的身上安装发射器。

通过GPS(全球卫星定位系统)来确定其位置。

用GPS观测大熊猫的结果如下图所示,你能说出此时大熊猫所在的位置吗?说明:用学生比较熟悉的事例引入,容易引起学生的注意。

二、师生共同参与教学活动1.设计问题一:(1)你去过电影院吗?还记得在电影院里是怎么找座位的吗?(2)在电影院中,每一个座位都编了号码,每一张电影票都对应一个位置,我们应该对号入座。

电影票上的数字一般是怎样排列的?(3)如果电影票上只有一个数字,结果将会怎样?如果将两个数字的顺序调换,结果又会怎样?手上拿着“7排9号”的同学能坐到“9排7号”的位置上吗?说明:概念是建立在现实生活情境中,并不是枯燥无味的。

这样的教学设计体现了新的教学理念。

让学生自己联系实际来理解“有序”的含义。

2.设计问题二:下图是某教室中学生的平面图,你能描述王小明和王健同学的位置吗?说明:解决此问题之后,还可以在课堂上请学生说出自己座位在教室中的位置该如何描述,加深学生对本节知识的理解。

3.设计问题三-----议一议:下面是根据教室平面图写的通知的内容,你明白它的意思吗?“今天以下座位的同学放学后参加数学问题讨论:(1,5),(2,4),(4,2),(3,3),(5,6)。

沪科版-数学-八年级上册-《平面内点的坐标(2)》导学案

沪科版-数学-八年级上册-《平面内点的坐标(2)》导学案

11.1 平面内点的坐标(2)学习目标:1、通过找点、连线、观察,确定图形的大致形状并能计算图形的面积.2、会根据实际情况建立适当的坐标系.3、通过点的位置关系探索坐标之间的关系以及根据坐标之间的关系探索点的位置关系,体会平面直角坐标系在实际中的应用.学习重点::会根据实际情况建立适当的坐标系,用平面直角坐标系表示具体的地理位置.学习难点:通过点的位置关系探索坐标之间的关系以及根据坐标之间的关系探索点的位置关系一、学前准备B(2,1),C(2,-3)各点,并按次序A→B→C→A将所描出的点连接起来;说出得到的是什么图形;并计算它的面积.2.如图,矩形ABCD的长与宽分别是6,4,建立适当的直角坐标系,并写出各个顶点的坐标。

3. 如图(1)写出坐标:A( ),B( ),C( ),D( )(2)对称点的坐标特点:点A与点B关于____轴对称, 两个点的横坐标_____,纵坐标互为________点A与点C关于____轴对称, 两个点的纵坐标_____,横坐标互为________点A与点D关于______对称, 两个点的横、纵坐标分别互为________(3)平面直角坐标系中的点到坐标轴的距离:点P(x,y)到x轴的距离是_____,到y轴的距离是______.练一练:1.已知点P关于x轴的对称点P1的坐标是(2,3),那么点P关于原点的对称点P2的坐标是()A.(-3,-2) B.(2,-3)C.(-2,-3)D.(-2,3)2.点A(2,3)到x轴的距离为;点B(-4,0)到y轴的距离为;预习疑难摘要_________________________________________________________________________________________________________________________________________________________________________________________________二、探究活动 (一)师生探究·解决问题例1. 在平面直角坐标系中描出A(-1,2), B(-2,-1),C(2,-1),D(3,2)各点,并按次序 A→B→C→D→A 将所描出的点连接起来; 说出得到的是什么图形;并计算它的面积.例2 如图,正方形ABCD 的边长为4,请建立一个平面直角坐标系,并写出正方形的四个顶点A ,B ,C ,D 在这个平面直角坐标系中的坐标.(二)独立思考·巩固升华1.矩形ABCD 中,三点的坐标分别是(0,0);(5,0);(5,3).则第四点的坐标是( ) A .(0,3)B .(3,0)C .(0,5)D .(5,0)2.点C 到x 轴的距离为1,到y 轴的距离为3,且在第三象限,则C 点坐标是 __ 三、自我测试1. (1)假如你想让你的同学在看不到图形的情况下,准确地画出如图所示小船图案,你怎样来描述 (2)计算图中小船图案面积yx1234–1–2–3–41234–1–2–3–4O2. 建立一个平面直角坐标系,.用坐标表示图中各点的位置四、应用与拓展1.已知点A(-4,2),点B(3,2),那么A、B的直线与坐标轴有的位置关系是______________________________________________________.2. 已知点C(2,-4),点D(2,3),那么C、D的直线与坐标轴有的位置关系是_______________________________________________________.五、反思与修正。

2022年沪科版八上《 平面内点的坐标2》精品导学案

2022年沪科版八上《 平面内点的坐标2》精品导学案

11.1平面内点的坐标〔二〕教学目标知识与技能1、在给定的直角坐标系中,会根据坐标描出点的位置;2、能建立适当的直角坐标系,描述物体的位置.过程与方法1、经历画坐标系、描点,由点找坐标的过程和图形的坐标变化与图形平移之间关系的探索过程,开展学生的形象思维能力与数形结合意识;2、通过平面直角坐标确定地理位置,提高学生解决问题的能力.情感态度与价值观明确数学理论来源于实践,反过来又能指导实践,数与形是可以相互转化的,进一步开展学生的辩证唯物主义思想.教学重点描出点的位置和建立坐标系.教学难点适当地建立坐标系是难点.教学过程一、复习导入〔投影1〕写出图中点A,B,C,D,E的坐标..由点的位置可以写出它的坐标,反之,点的坐标怎样确定点的位置呢?二、例题例2: 在以下图的直角坐标系中描出以下各组点,并将各组内的线段依次连接起来.1、D(-3,5),E(-7,3),C(1,3),D (-3,5)2、F(-6,3),G(-6,0),A(0,0),B(0,3);观察所描出的图形它像什么?并解答下列问题:〔1〕图中哪些点在坐标上,它们的坐标有什么特点?〔2〕线段EC与X轴有什么位置关系?点E和点C的坐标有什么特点?线段EC上的其它点的坐标呢?〔3〕点F和点G的横坐标有什么共同特点?线段FG与Y轴有怎样的位置关系?解:连接起来的图形像“房子〞.〔1〕线段AG上的点都在X轴上,它们的纵坐标都等于0;线段AB上的点都在Y轴上,它们的纵坐标都等于0.〔2〕线段CE平行于X轴,点E和C的纵坐标相同.线段EC上的其它点的纵坐标相同,都是3.〔3〕点F和点G的横坐标相同,线段FG与Y轴平行三、建立直角坐标系探究:如图,正方形ABCD的边长为6.(1)如果以点A为原点,AB所在的直线为x轴,建立平面坐标系,那么y轴是哪条线y轴是AD所在直线.(2)写出正方形的顶点A,B,C,D的坐标.A(0,0),B(0,6),C(6,6),D(6,0).(3)请你另建立一个平面直角坐标系,此时正方形的顶点A,B,C,D的坐标又分别是多少与同学交流一下.可以看到建立的直角坐标系不同,那么各点的坐标也不同.你认为怎样建立直角坐标系才比拟适当?要尽量使更多的点落在坐标轴上.四、课堂练习21-1-2-3-4-2241234-1-2-3-412-1-2-3xy01、课本随堂练习题.2、在平面直角坐标系中,顺次连结A(-3,4),B(-6,-2),C(6,-2),D(3,4)四点, 所组成的图形是________. 五、课堂小结1、点的位置可以写出它的坐标,点的坐标可以描出点的位置.点与有序数对〔坐标〕是一一对应的关系.2、为了方便地描述物体的位置,需要建立适当的直角坐标系. 作业:练习 1、2题二、学习重难点:重点: 探究图形在平面直角标系中经过平移变换,其对应点之间的坐标关系. 难点:应用坐标系中的平移规律,解决简单的问题. 三、学法指导:自主学习、合作讨论、交流展示 1.通过观察教材图11-13三角形在坐标系中的平移,发现图形在坐标系中经过平移变换,对应点的坐标之间的规律,能利用总结的规律 解决简单的问题.2.找出自己的疑惑和需要讨论的问题,随时记录在课本和预习案上,准备课上讨论质疑. 预习检测1.A 是数轴上一个点表示数5,现在我们把A 往左平移3个单位得到B ,向右平移2个单位得到C ,你能说出B 和C 各表示什么数吗?B 是_______, C 是_________。

沪科版数学八年级上册《平面上点的坐标二)》教学设计

沪科版数学八年级上册《平面上点的坐标二)》教学设计

第11章平面直角坐标系11.1 平面上点的坐标第2课时平面上点的坐标(二)教学目标【知识与技能】进一步学习和应用平面直角坐标系,认识坐标系中的图形.【过程与方法】通过探索平面上的点连接成的图形,形成二维平面图形的概念,发展抽象思维能力.【情感、态度与价值观】培养学生的合作交流意识和探索精神,体验通过二维坐标来描述图形顶点,从而描述图形的方法.重点难点【重点】理解平面上的点连接成的图形,计算围成的图形的面积.【难点】不规则图形面积的求法.教学过程一、创设情境,导入新知师:上节课我们学习了平面直角坐标系的概念,也学习了已知点的坐标,怎样在平面直角坐标系中把这个点表示出来.下面请大家在方格纸上建立一个平面直角坐标系,并在上面标出A(5,1),B(2,1),C(2,-3)这三个点.学生作图.教师边操作边讲解:二、合作探究,获取新知师:现在我们把这三个点用线段连接起来,看一下得到的是什么图形?生甲:三角形.生乙:直角三角形.师:你能计算出它的面积吗?生:能.教师挑一名学生:你是怎样算的呢?生:AB的长是5-2=3,BC的长是1-(-3)=4,所以三角形ABC的面积是×3×4=6.师:很好!教师边操作边讲解:大家再描出四个点:A(-1,2),B(-2,-1),C(2,-1),D(3,2),并将它们依次连接起来看看形成的是什么图形?学生完成操作后回答:平行四边形.师:你能计算它的面积吗?生:能.教师挑一名学生:你是怎么计算的呢?生:以BC为底,A到BC的垂线段AE为高,BC的长为4,AE的长为3,平行四边形的面积就是4×3=12.师:很好!刚才是已知点,我们将它们顺次连接形成图形,下面我们来看这样一个连接成的图形:教师多媒体出示下图:师:如果我们取x轴正半轴上的点为起始点,按逆时针顺序,你能说出这个图形是由哪些点顺次连接成的吗?生:能.(6,0),(4,2),(4,4),(2,4),(0,6),(-2,4),(-4,4)……师:很好!你怎样向另一个同学描述这样一个八角星,让他画出来呢?生:在坐标系里画出点(6,0),(4,2),(4,4),(2,4),(0,6),(-2,4),(-4,4),……,然后把它们顺次连接成一个封闭的图形.三、练习新知师:我们现在已经建立了点与图形之间的联系,能用点来表示图形了.我们来看这样一个例子,已知△ABC三个顶点的坐标分别为A(-1,1),B(4,1),C(6,4),求△ABC的面积.教师找一名学生板演,其余学生在下面做,然后集体订正得到:由图可知,△ABC的面积S=×5×3=7.5.四、课堂小结师:我们今天学习了哪些新知识?有什么收获?生:我们今天学了由点连接成的图形,求封闭图形的面积.教师补充完善.教学反思本节课开始时我给出三点的坐标,让学生自己建立平面直角坐标系,并且在其中描出这些点,既复习了上节课的内容,又引出了本节课所要讲的知识.在画出三角形和平行四边形后,我引导学生去利用网格计算封闭图形的面积.通过八角星的例子引导学生自己去学习找点的位置和它们的坐标之间的关系,形成数形结合的思想,用数字特征去描述它们之间的关系.11.2 图形在坐标系中的平移教学目标【知识与技能】研究在同一坐标系中,图形的平移与点的坐标变化之间的关系,发展学生的数形结合思想和意识.【过程与方法】经历图形的平移过程,探究图形的平移与点的坐标变化之间的关系.【情感、态度与价值观】让学生体验探究图形的平移与坐标变化之间的关系,感受数学与图形的平移、物体的运动等有实际意义的事情之间的关联,体会数学在现实生活中的用途.重点难点【重点】经历图形平移和坐标变化的过程,发展学生的数形结合思想和意识.【难点】归纳出图形平移与坐标变化之间的关系.教学过程一、创设情境,导入新知师:在上一节课,我们把平面直角坐标系中的点连接成了封闭的图形,现在已知A(-2,4),B(-4,3),C(1,1),用线段把这三点连接成一个封闭图形,是什么形状的图形?生:三角形.师:对.这节课我们把这个图形在同一坐标系中平移,探究平移后的顶点坐标与原顶点坐标之间的关系.教师板书课题.二、合作探究,获取新知教师边操作边讲解:我们把这个三角形在平面直角坐标系中向右平移2个单位,看看得到的图形与原图形的顶点坐标之间会有什么关系.生:横坐标增加了2,纵坐标不变.师:对.若是向左平移2个单位呢?坐标会有什么变化?生:横坐标减2,纵坐标不变.师:很好!若把这个三角形向上平移3个单位,这个三角形的顶点坐标又有什么改变?生:横坐标不变,纵坐标加3.师:对.向下平移3个单位呢?生:横坐标不变,纵坐标减3.师:同学们回答得很好!已知一个图形的顶点坐标和它发生的位移,即它移动的方向和距离,我们根据刚才得出的结论,可以写出它位移后的顶点的坐标,画出它位移后的图形.如果已知位移前的图形和位移后的图形,你能写出它的位移过程吗?教师边操作边讲解:已知平移前的三角形三个顶点的坐标分别是(-3,4),(-2,7),(1,2),平移后顶点的坐标是(0,2),(1,5),(4,0),请同学们写出它平移的过程.教师找一名学生板演,其余同学在下面写.师:我们可以分别看横、纵坐标的变化,横坐标都增加了3,所以在沿x轴方向上发生了怎样的位移?生:向右平移了3个单位.师:对,你们观察一下纵坐标的变化,说一说它在沿y轴方向上发生了怎样的位移?生:纵坐标减少了2,向下平移了2个单位.师:对.所以我们得出它位移的过程是先向右平移3个单位再向下平移2个单位,或者是先向下平移2个单位再向右平移3个单位.三、例题讲解【例】如图,将△ABC先向右平移6个单位,再向下平移2个单位得到△A1B1C1.写出各顶点变动前后的坐标.解:用箭头代表平移,则有:A(-2,6)→(4,6)→A1(4,4),B(-4,4)→(2,4)→B1(2,2),C(1,1)→(7,1)→C1(7,-1).教师多媒体出示:点(x,y)向平移a(a>0)个单位⇔平移后的坐标为师:任意一点(x,y)向某一个方向平移后点的坐标会是怎样的呢?请同学们思考以上四个小题.学生思考交流后,得到结论:点(x,y)向左平移a(a>0)个单位⇔平移后的坐标为(x-a,y);点(x,y)向右平移a(a>0)个单位⇔平移后的坐标为(x+a,y);点(x,y)向上平移a(a>0)个单位⇔平移后的坐标为(x,y+a);点(x,y)向下平移a(a>0)个单位⇔平移后的坐标为(x,y-a).四、练习新知师:我们现在来做一道题目,练习一下.教师多媒体出示:已知三角形ABC,它的三个顶点A、B、C的坐标分别为(-5,3),(-2,4),(0,2),它平移后的三角形为△A'B'C',A'点的坐标是(3,-1),求B'点和C'点的坐标.教师找一名学生板演,其他同学在下面做,然后集体订正得到: B'点的坐标为(6,0),C'的坐标为(8,-2).五、课堂小结师:你今天学习了哪些新知识?有什么收获?生:学习了图形的平移和位移变化之间的关系.师:你还有哪些疑问?学生提问,教师解答.教学反思图形由静到动,静时我们用顶点坐标来描述它,动后我们也可以描述这个过程.在学生的前置性学习部分,通过让学生观察把一个已知的三角形向右平移后得到新的三角形,并比较平移前后三个顶点的坐标的变化,使学生亲身经历了知识的形成过程,不但改变了学生死记硬背的学习方式,还培养了他们自主探究、合作交流等学习习惯,进一步激发了学生学习数学的兴趣.本节课是在学生学习了平移的概念和性质的基础上,探究图形在坐标系内平移的变化规律的.主要是引导学生运用分类思想,依次经过点和图形的平移的观察、画图、猜想、验证、归纳、比较、分析等活动,最终探究出点的坐标变化与点平移的关系以及图形上各个点的坐标变化与图形平移的关系.。

八年级数学上册第11章平面直角坐标系11.1平面内点的坐标第2课时坐标平面内的图形教案新版沪科版

八年级数学上册第11章平面直角坐标系11.1平面内点的坐标第2课时坐标平面内的图形教案新版沪科版

第2课时坐标平面内的图形◇教学目标◇【知识与技能】1.能正确地画出平面直角坐标系;2.在给定的平面直角坐标系中,会根据坐标描出点的位置.【过程与方法】1.经历画坐标系、描点、连线、看图以及由点找坐标等过程,发展学生的数形结合思想,培养学生的合作交流能力;2.通过由点确定坐标到根据坐标描点的转化过程,进一步培养学生的转化意识.【情感、态度与价值观】将现实的题材呈现给学生,揭示平面直角坐标系与现实世界的联系.◇教学重难点◇【教学重点】能够根据点的坐标确定平面内点的位置.【教学难点】体会点的坐标与点到坐标轴的距离之间的关系.◇教学过程◇一、情境导入由点找坐标是已知点在平面直角坐标系中的位置,根据这点在方格纸上对应的x轴、y 轴上的数字写出它的坐标,反过来,已知坐标,在平面直角坐标系中找点,你能找到吗?二、合作探究典例在图中的平面直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来.(1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);(2)(-9,3),(-9,0),(-3,0),(-3,3);(3)(3.5,9),(2,7),(3,7),(4,7),(5,7),(3.5,9);(4)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);(5)(2,5),(0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5).观察所得的图形,你觉得它像什么?[解析]如图所示,这个图形像一栋“房子”,旁边还有一棵“大树”.在图中的平面直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来观察所得的图形,看一看像什么?(1)(2,0),(4,0),(6,2),(6,6),(5,8),(4,6),(2,6),(1,8),(0,6),(0,2),(2,0);(2)(1,3),(2,2),(4,2),(5,3);(3)(1,4),(2,4),(2,5),(1,5),(1,4);(4)(4,4),(5,4),(5,5),(4,5),(4,4);(5)(3,3).[解析]如图所示,看起来像“猫脸”.在图中的平面直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来,观察所得的图形,看一看像什么?(1)(0,0),(1,3),(2,0),(3,3),(4,0);(2)(0,3),(1,0),(2,3),(3,0),(4,3).[解析]如图所示,观察所得的图形,分别像字母“M”和“W”,合起来看像“活动门”.三、板书设计坐标平面内的图形坐标平面内的图形在坐标平面内描点作图坐标平面内图形面积的计算建立适当的直角坐标系描述图形的位置◇教学反思◇引导学生去学习找点的位置和它们的坐标之间的关系,形成数形结合的思想,用数字特征去描述它们之间的关系.。

沪科版八年级上册数学11.1 第2课时 坐标平面内的图形学案

沪科版八年级上册数学11.1 第2课时 坐标平面内的图形学案

12.1 平面内点的坐标第2课时坐标平面内的图形学习目标:1、通过找点、连线、观察,确定图形的大致形状并能计算图形的面积.2、会根据实际情况建立适当的坐标系.3、通过点的位置关系探索坐标之间的关系以及根据坐标之间的关系探索点的位置关系,体会平面直角坐标系在实际中的应用.学习重点::会根据实际情况建立适当的坐标系,用平面直角坐标系表示具体的地理位置.学习难点:通过点的位置关系探索坐标之间的关系以及根据坐标之间的关系探索点的位置关系一、学前准备B(2,1),C(2,-3)各点,并按次序A→B→C→A将所描出的点连接起来;说出得到的是什么图形;并计算它的面积.2.如图,矩形ABCD的长与宽分别是6,4,建立适当的直角坐标系,并写出各个顶点的坐标。

3.(1)写出坐标:A( ),B( ),C( ),D( )(2)对称点的坐标特点:点A与点B关于____轴对称,两个点的横坐标_____,纵坐标互为________ 点A与点C关于____轴对称,两个点的纵坐标_____,横坐标互为________ 点A与点D关于______对称,两个点的横、纵坐标分别互为________(3)平面直角坐标系中的点到坐标轴的距离:点P(x,y)到x轴的距离是_____,到y轴的距离是______.练一练:的坐标是(2,3),那么点P关于原点的对称点1.已知点P关于x轴的对称点P1P的坐标是()2A.(-3,-2)B.(2,-3)C.(-2,-3)D.(-2,3)2.点A(2,3)到x轴的距离为;点B(-4,0)到y轴的距离为;预习疑难摘要________________________________________________________ ____________________________________________________________________ _____________________________________________________________________________ 二、探究活动例1. 在平面直角坐标系中描出A(-1,2),B(-2,-1),C(2,-1),D(3,2)各点,并按次序A→B→C→D→A将所描出的点连接起来;说出得到的是什么图形;并计算它的面积.例2. 某地为了发展城市群,在现有的四个中小城市A、B、C、D附近新建机场E,试建立适当的直角坐标系,并写出各点的坐标。

2019年八年级数学上册11-1平面上点的坐标导学案2沪科版

2019年八年级数学上册11-1平面上点的坐标导学案2沪科版

0,
3/3
4
y
C
E
3 2 1
D
x
1 2 3 4
–4
–3
–2
–1
O
–1 –2
B
ห้องสมุดไป่ตู้
A
–3 –4
(二)独立思考·巩固升华 1.矩形 ABCD 中,三点的坐标分别是 (0,0);(5,0);(5,3).则第四点的坐标是(

A.(0,3) B.(3,0) C.(0,5) D.(5,0) 2.点 C 到 x 轴的距离为 1,到 y 轴的距离为 3,且在第三象限,则 C 点坐标是 __ 三、释疑 下图是一个“小船”的图案,画图时只需要连接坐标系中的某些点即可,现在请同学 们先细心地的算一算“小船”的面积;假如你想让你的同学在不看图的情况下,准确 的 画 出 如 图 所 示 的 “ 小 船 ” 图 案 , 你 该 如 何 描 述 它 ?
2019 年八年级数学上册 11-1 平面上点的坐标导学案 2 沪科版
1/3
◆[初始化] ◆[网格线] ◆[刻度线] ◆[刻度值] ◆[等单位长] ◆[坐标系/轴] ◆[修改标签] ◆[控制台]
学习目标: 1、通过找点、连线、观察,确定图形的大致形状并能计算图形的面积. 2、会根据实际情况建立适当的坐标系. 3 、通过点的位置关系探索坐标之间的关系以及根据坐标之间的关系探索点的位置关 系,体会平面直角坐标系在实际中的应用.教学重点:: 根据实际情况建立适当的坐标系,用平面直角坐标系表示具体的地理位置. 教学难点: 通过点的位置关系探索坐标之间的关系以及根据坐标之间的关系探索点的位置关系 ◆[初始化] ◆[网格线] 导学过程: ◆[刻度线] ◆[刻度值] y 一、自学 4 ◆[等单位长] ◆[坐标系/轴] 1.在平面直角坐标系中描出 A(5,1), 3 ◆[修改标签] B(2,1),C(2,-3)各点,并按次序 ◆[控制台] 2 A→B→C→A 将所描出的点连接起来; 1 x 说出得到的是什么图形;并计算它的面积 . –4 –3 –2 –1 O 1 2 3 4 2.如图,矩形 ABCD 的长与宽分别是 6,4, –1 A 建立适当的直角坐标系,并写出各个顶点 –2 的坐标。 –3 二、交流 –4 (一)师生探究·解决问题 D B C 例 1. 在平面直角坐标系中描出 A(-1,2), B(-2,-1),C(2,-1),D(3,2) 各点,并按次序 A→B→C→D→A 将所描出的点连接起来; 说出得到的是什么图形;并计算它的面积. 例 2. 某地为了发展城市群,在现有的四个中小城市 A、B、C、D 附近新建机场 E,试 建立适当的直角坐标系,并写出各点的坐标。

沪科版八年级上册数学全册教案(2021年8月修订)

沪科版八年级上册数学全册教案(2021年8月修订)
一、情境导入 我们已经学过了数轴,知道数轴上的点与实数一一对应,在建立了数轴之后,我们就 可以确定直线上点的位置,如图.
那么,如何确定平面内点的位置呢?
二、合作探究 探究点一:认识平面直角坐标系
如图所示,点 A、点 B 所在的位置是( )
A.第二象限,y 轴上 B.第四象限,y 轴上 C.第二象限,x 轴上 D.第四象限,x 轴上 解析:根据点在平面直角坐标系中的位置来判定.点 A 在第四象限,点 B 在 x 轴正半 轴上.故选 D. 方法总结:两坐标轴上的点不属于任何一个象限,象限是按逆时针方向排列的.
【类型五】 已知点的坐标在坐标系中描点 在如图的直角坐标系中描出下列各点:
A(4,3),B(-2,3),C(-4,-1),D(2,-3).
解析:本题关键就是已知点的坐标,如何描出点的位置,以描点 B(-2,3)为例,即 在 x 轴上找到坐标-2,过-2 对应的点作 x 轴的垂线,再在 y 轴上找到坐标 3,过 3 对应 的点作 y 轴的垂线,与前垂线的交点即为 B(-2,3),同理可描出其他三个点.
解:如图所示:
方法总结:在直角坐标系中描出点 P(a,b)的方法:先在 x 轴上找到数 a 对应的点 M, 在 y 轴上找到数 b 对应的点 N,再分别由点 M、点 N 作 x 轴、y 轴的垂线,两垂线的交点就 是所要描出的点 P.已知坐标平面上的点的坐标,描出对应点的位置,反过来在坐标平面上 给一点,找出它对应的坐标,熟练掌握平面直角坐标系是解题的关键.
的负半轴上,则纵坐标为-2;由点 P 到 y 轴的距离为 1,可知点 P 的横坐标的绝对值为 1,又因为垂足在 x 轴的正半轴上,则横坐标为 1.故点 P 的坐标是(1,-2).故选 B.
方法总结:本题的易错点有三处:①混淆距离与坐标之间的区别;②不知道与“点 P 到 x 轴的距离”对应的是纵坐标,与“点 P 到 y 轴的距离”对应的是横坐标;③忽略坐标 的符号出现错解.若本例题只已知距离而无附加条件,则点 P 的坐标有四个.

沪科版2019年秋八年级数学上册全一册教案

沪科版2019年秋八年级数学上册全一册教案

第十一章平面直角坐标系11.1平面内点的坐标第1课时平面直角坐标系◇教学目标◇【知识与技能】1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等的概念;2.理解坐标平面内的点与有序实数对的一一对应关系;3.能在方格纸中建立平面直角坐标系来描述点的位置.【过程与方法】1.通过画坐标系,由点找坐标等过程,发展学生的数形结合意识、合作交流意识;2.通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,培养学生的探索意识.【情感、态度与价值观】让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心.◇教学重难点◇【教学重点】理解平面直角坐标系的有关知识;在给定的平面直角坐标系中,会根据点的位置写出它的坐标.【教学难点】坐标轴上的数字与坐标系中的坐标之间的关系.◇教学过程◇一、情境导入假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图,根据示意图(如图),回答以下问题:(1)你是怎样确定各个景点位置的?(2)“大成殿”在“中心广场”南、西各多少个格?“碑林”在“中心广场”北、东各多少个格?(3)如果以“中心广场”为原点作两条互相垂直的数轴,分别取向右、向上的方向为数轴的正方向,一个方格的边长看作一个单位长度,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?二、合作探究1.平面直角坐标系、横轴、纵轴、横坐标、纵坐标、原点的定义和象限的划分.在了解有关平面直角坐标系的知识后,再返回刚才讨论的问题.结论:如果以“中心广场”为原点作两条互相垂直的数轴,分别取向右、向上的方向为数轴的正方向,一个方格的边长看作一个单位长度,则“碑林”的位置是(3,1),“大成殿”的位置是(-2,-2).问题:在(3)的条件下,你能把其他景点的位置表示出来吗?结论:能,钟楼的位置是(-2,1),雁塔的位置是(0,3),影月湖的位置是(0,-5),科技大学的位置是(-5,-7).2.例题讲解典例写出图中多边形ABCDEF各顶点的坐标.此图中各顶点的坐标是否永远不变?你能举个例子吗?[解析]多边形ABCDEF各顶点的坐标分别为A(-2,0),B(0,-3),C(3,-3),D(4,0),E(3,3),F(0,3).不是.当坐标轴的位置发生变动时,各点的坐标相应地变化.若以线段BC所在的直线为x轴,纵轴(y轴)位置不变,如图,则六个顶点的坐标分别为A(-2,3),B(0,0),C(3,0),D(4,3),E(3,6),F(0,6).再思考这个结论是否是永恒的.结论:不是.还能再改变坐标轴的位置,得出不同的坐标.继续进行坐标轴的变换,总结一下共有多少种不同的变换方式.3.想一想在上例中,(1)点B与点C的纵坐标相同,线段BC的位置有什么特点?(2)线段测定位置有什么特点?(3)坐标轴上点的坐标有什么特点?【归纳总结】(1)坐标轴上的点的坐标中至少有一个是0;横轴上的点的纵坐标为0,纵轴上的点的横坐标为0.(2)x轴、y轴把坐标平面分成四个象限,但是坐标轴上的点不属于任何一个象限.(3)各个象限内的点的坐标特征:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).变式训练如图,确定点A,B,C,D,E,F,G的坐标.[解析]点A(-1,-1),点B(0,-3),点C(2,-5),点D(4,-1),点E(3,2),点F(-2,3),点G(2,-2).三、板书设计平面直角坐标系1.平面直角坐标系:横轴、纵轴、横坐标、纵坐标、原点.2.象限的划分.◇教学反思◇学生在实际生活中经常遇到物体位置的问题,可能想不到这些问题与数学的联系,老师在这节课上应引导学生建立平面直角坐标系来表示物体的位置,让学生参与到探索获取新知的活动中,主动学习思考,感受数学的魅力,增强学生学习数学的兴趣.第2课时坐标平面内的图形◇教学目标◇【知识与技能】1.能正确地画出平面直角坐标系;2.在给定的平面直角坐标系中,会根据坐标描出点的位置.【过程与方法】1.经历画坐标系、描点、连线、看图以及由点找坐标等过程,发展学生的数形结合思想,培养学生的合作交流能力;2.通过由点确定坐标到根据坐标描点的转化过程,进一步培养学生的转化意识.【情感、态度与价值观】将现实的题材呈现给学生,揭示平面直角坐标系与现实世界的联系.◇教学重难点◇【教学重点】能够根据点的坐标确定平面内点的位置.【教学难点】体会点的坐标与点到坐标轴的距离之间的关系.◇教学过程◇一、情境导入由点找坐标是已知点在平面直角坐标系中的位置,根据这点在方格纸上对应的x轴、y 轴上的数字写出它的坐标,反过来,已知坐标,在平面直角坐标系中找点,你能找到吗?二、合作探究典例在图中的平面直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来.(1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);(2)(-9,3),(-9,0),(-3,0),(-3,3);(3)(3.5,9),(2,7),(3,7),(4,7),(5,7),(3.5,9);(4)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);(5)(2,5),(0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5).观察所得的图形,你觉得它像什么?[解析]如图所示,这个图形像一栋“房子”,旁边还有一棵“大树”.变式训练1在图中的平面直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来.观察所得的图形,看一看像什么?(1)(2,0),(4,0),(6,2),(6,6),(5,8),(4,6),(2,6),(1,8),(0,6),(0,2),(2,0);(2)(1,3),(2,2),(4,2),(5,3);(3)(1,4),(2,4),(2,5),(1,5),(1,4);(4)(4,4),(5,4),(5,5),(4,5),(4,4);(5)(3,3).[解析]如图所示,看起来像“猫脸”.变式训练2在图中的平面直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来,观察所得的图形,看一看像什么?(1)(0,0),(1,3),(2,0),(3,3),(4,0);(2)(0,3),(1,0),(2,3),(3,0),(4,3).[解析]如图所示,观察所得的图形,分别像字母“M”和“W”,合起来看像“活动门”.【归纳总结】在平面直角坐标系中,通过找点、连线、观察,确定图形的大致形状,进一步掌握平面直角坐标系的基本内容.三、板书设计坐标平面内的图形坐标平面内的图形◇教学反思◇引导学生去学习找点的位置和它们的坐标之间的关系,形成数形结合的思想,用数字特征去描述它们之间的关系.11.2图形在坐标系中的平移◇教学目标◇【知识与技能】1.能在平面直角坐标系中用坐标的方法研究图形的变换,掌握图形在平移过程中各点坐标的变化规律,理解图形在平面直角坐标系上的平移实质上就是点坐标的对应变换;2.运用图形在平面直角坐标系中平移的点坐标的变化规律进行简单的平移作图.【过程与方法】经历观察、分析、抽象、归纳等过程,经历与他人合作交流的过程.【情感、态度与价值观】让学生发现数学与图形的平移、物体的运动等有实际意义的事情之间的关系,体会数学在现实生活中的用途.◇教学重难点◇【教学重点】掌握用坐标系的变化规律来描述平移的过程.【教学难点】根据图形的平移过程,探索、归纳出坐标的变化规律.◇教学过程◇一、情境导入(1)平移的概念是什么?(2)下象棋时,棋子的移动,什么在变,什么不变?在棋盘上推动棋子是否可以看成图形在平面上的平移?二、合作探究1.探究点的平移与坐标的变化:2.探究图形的平移与其坐标变化的关系:(1)左、右平移:原图形上的点(x,y)(x a,y);原图形上的点(x,y)(x a,y).(2)上、下平移:原图形上的点(x,y)(x,y b);原图形上的点(x,y)(x,y b).3.归纳出平移规律:(1)三角形的平移,是通过三角形任意一点坐标的变化而得到的.(2)在平面直角坐标系中,沿横轴平移,图形上每一点的纵坐标不变,而横坐标增减,简记为“左减右加”;沿纵轴平移,横坐标不变,纵坐标增减,简记为“上加下减”.(3)“左减右加,上加下减”也可这样理解:按x轴(y轴)正方向平移,则横(纵)坐标加上平移的单位数量,按x轴(y轴)负方向平移,则横(纵)坐标减去平移的单位数量.典例1如图,将三角形ABC先向右平移6个单位,再向下平移2个单位得到三角形A1B1C1,写出各顶点变动前后的坐标.[解析]用箭头代表平移,有A(-2,6)→(4,6)→A1(4,4),B(-4,4)→(2,4)→B1(2,2),C(1,1)→(7,1)→C1(7,-1).变式训练将三角形ABC先向左移动3个单位,再向上移动2个单位,得到三角形A2B2C2,写出三角形A2B2C2的各顶点坐标.[解析]点A2(-5,8),点B2(-7,6),点C(-2,3).典例2说一说,下列由点A到点B是怎样平移的?(1)A(x,y)→B(x-1,y+2);(2)A(x,y)→B(x+3,y-2);(3)A(x+3,y-2)→B(x,y).[解析](1)将点A先向左平移1个单位,再向上平移2个单位,即可得到点B.(2)将点A先向右平移3个单位,再向下平移2个单位,即可得到点B.(3)将点A先向左平移3个单位,再向上平移2个单位,即可得到点B.【技巧点拨】由坐标的变化确定平移的过程:横坐标变大(小)向右(左)移,纵坐标变大(小)向上(下)移.平移的距离,是平移前后相应坐标差的绝对值.三、板书设计图形在坐标系中的平移1.点的平移与坐标的变化.2.图形的平移与其坐标变化的关系.3.平移规律.◇教学反思◇本节课的主要内容是平移的变化规律“左减右加”“上加下减”,让学生在理解的基础上加以消化掌握,不能死记硬背,只要正确作出图形即可知道变化情况.方位角和距离的讲解要补充并强化.教学时注重与中考知识点链接,训练学生的逆向思维能力.第十二章一次函数12.1函数第1课时函数及其相关概念◇教学目标◇【知识与技能】1.使学生了解函数的意义,会举出函数的实例,并能写出简单的函数表达式;2.了解常量、变量,能分清实例中出现的常量、变量、自变量与因变量.【过程与方法】1.通过常量、变量、函数概念的学习,培养学生会运用运动、变化的观点思考问题;2.通过函数的教学,培养学生观察、分析的能力.【情感、态度与价值观】通过例题向学生进行生动具体的“知识来源于实践,反过来又作用于实践”的辩证唯物主义教育.◇教学重难点◇【教学重点】了解函数、常量、变量,能指出实例中的常量、变量,并能写出简单的函数表达式.【教学难点】对函数意义的正确理解.◇教学过程◇一、情境导入某粮店在一段时间内出售同一种大米,在整个的售米过程中出现了哪些量?其中哪些量是变化的?这其中有没有不变的量?结论:共出现了米的千克数、每千克米的价格、总价三个量,其中千克数和总价是变化的,但每千克米的价钱即单价是不变的.二、合作探究从上面的例子我们可以看到,在某一具体变化过程中,有些量是可以取不同的数值的,如上例中的大米的千克数、总价,我们称之为变量;而有些量在整个过程中都保持不变,例如米的单价,我们称之为常量.注意:常量和变量并不是绝对的,而是相对的.问题1:从大连到北京,如果乘坐火车,且火车的速度保持不变,在这一过程中,哪些量是变量?哪些量是常量?结论:随着时间的不同,距北京的距离不同;但速度是不变的.问题2:从大连到北京,如果我们一部分人坐火车,一部分人乘飞机,在这一过程中,哪些量是变量,哪些量是常量?结论:距离不变,但随着两种交通工具速度的不同,到北京的时间也不同.在日常生活中,工农业生产和科学实验中,常量和变量是普遍存在的,但数学所要研究的是某一变化过程中的两个量之间的关系,即它们是怎样互相制约、互相联系的.例如:大米的千克数与总价,圆的半径与面积之间的关系,这就是数学中一个很重要的基本概念——函数.问题3:若每千克大米售价2.40元,用字母n表示大米的千克数,字母m表示总价,那么n 与m之间有怎样的关系式?结论:对于每一个n的值,总价m都有唯一的确定值与它相对应.m=2.4n.问题4:若已知圆的半径为r,半径r与面积S有怎样的关系?结论:对于每一个半径r的值,面积S都有唯一的确定值与它相对应.S=πr2.。

沪科课标版初中数学八年级上册第十一章11.1 平面内点的坐标教学设计-文档资料

沪科课标版初中数学八年级上册第十一章11.1 平面内点的坐标教学设计-文档资料
问题解决
使学生学会利用数形结合的思想方法去解决一些与几何图形有关的问题.
情感态度
使学生充分经历新知识的探究过程,进一步培养学生自主探究与合作交流的能力.
教学重点
引导学生进一步探究平面直角坐标系内的点的坐标特征.
教学难点
各象限内点的坐标的符号特征及各坐标轴上的点的坐标特征,引导学生学会利用数形结合的思想方法去解决一些与几何图形有关的问题.
观察你所求出的这些点的坐标,回答下列问题:
(1)这些点分别位于哪个象限或坐标轴?
(2)请仔细观察你所写出的这些点的横、纵坐标的符号,你能归纳出在四个象限内的点的横、纵坐标各有什么特征吗?
学生自主交流:学生通过自主探究和合作交流得到:各个象限点及坐标轴的符号的特点
.
设计这一情境的目的一方面是为了复习上节课的内容,另一方面也是为了引入新课做.
授课类型
新授课
Hale Waihona Puke 课时1课时教具多媒体课件
教学活动
教学步骤
师生活动
设计意图
回顾
复习提问
(1)两条相交的数轴一定能组成平面直角坐标系吗?
(2)坐标平面内的点与__________一一对应。
(3)(2,3)与(3,2)所表示的两个点相同吗?
通过回顾,了解学生对知识的掌握程度.
活动
一:
创设
情境
导入
新课
活动1:例1、说出平面直角坐标系中的A、B、C、E、F、G、H、O、T各点的坐标.
(续表)
活动
二:
实践
探究
交流
新知
活动2:
练一练
1.点P(m+2,m-1)在x轴上,则点P的坐标是.
2.点P(m+2,m-1)在y轴上,则点P的坐标是.

沪科版数学八年级上册第2课时 坐标平面内的图形课件

沪科版数学八年级上册第2课时 坐标平面内的图形课件
(1)A(5,1),B(2,1),C(2,-3); (2)A(-1,2),B(-2,-1),C(2,-1),D 状元成才路 (3,2).
状元成才路
(1)A(5,1),B(2,1),C(2,-3)
y
4
解(1)得到的是
2
B•
一个直角三角形,如 • A 图所示,它的面积是
-4 -2 O -2
-4
状元成才路
y
6•
像一个箭头
4
••
2
••
状元成才路
-6 -4 -2 O 2 4 6 x
-2


-4
-6
2.如图,建立平面直角坐标系,使点B,C 的坐标分别为(0,0)和(4,0),写出点A、 D、E、G的坐标,并指出它们所在的象限。
状元成才路
y状元成才路 G(1,5)
(-2,3)
A
F
E(5,3)
状元成才路
B(0,0)
的?说出这些点的坐标.
A 6

y
•O •P 4
N•
2
B• C• •D
M-6• -4 -2 L•
O2 -2
4 6 •E x
•F
状元成才路
K • J • -4
•H •G
-6 I
状元成才路
2.在一位同学不看图的情况下,你如何向 他描述,让他能画出这个图.
在平面直角坐标系中描出下列各点,并将 各组内的点用线段依次连接起来得到一个封闭 图形.
张明O 50

(-100,-50)
王玲 (0,-150)
►在有欢声笑语的校园里,满地都是雪,像一块大地毯。房檐上挂满了冰 凌,一根儿一根儿像水晶一样,真美啊!我们一个一个小脚印踩在大地毯 上,像画上了美丽的图画,踩一步,吱吱声就出来了,原来是雪在告我们: 和你们一起玩儿我感到真开心,是你们把我们这一片寂静变得热闹起来。 对了,还有树。树上挂满了树挂,有的树枝被压弯了腰,真是忽如一夜春 风来,千树万树梨花开。真好看呀! ►冬天,一层薄薄的白雪,像巨大的轻软的羊毛毯子,覆盖摘在这广漠的 荒原上,闪着寒冷的银光。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册--平面内点的坐标第2课时 坐标平面内的图形 学案(沪科版)
学习目标:
1、通过找点、连线、观察,确定图形的大致形状并能计算图形的面积.
2、会根据实际情况建立适当的坐标系.
3、通过点的位置关系探索坐标之间的关系以及根据坐标之间的关系探索点的位置关系,体会平面直角坐标系在实际中的应用. 学习重点::
会根据实际情况建立适当的坐标系,用平面直角坐标系表示具体的地理位置. 学习难点:
通过点的位置关系探索坐标之间的关系以及根据坐标之间的关系探索点的位置关系 一、学前准备
1.在平面直角坐标系中描出A(5,1), B(2,1),C(2,-3)各点,并按次序 A →B →C →A 将所描出的点连接起来; 说出得到的是什么图形;并计算它的面积.
2.如图,矩形ABCD 的长与宽分别是6,4,建立适当的直角坐标系,并写出各个顶点的坐标。

D C
3.
(1)写出坐标:A( ),B( ),C( ),D( )
(2)对称点的坐标特点:
点A与点B关于____轴对称, 两个点的横坐标_____,纵坐标互为________ 点A与点C关于____轴对称, 两个点的纵坐标_____,横坐标互为________ 点A与点D关于______对称, 两个点的横、纵坐标分别互为________ (3)平面直角坐标系中的点到坐标轴的距离:
点P(x,y)到x轴的距离是_____,到y轴的距离是______.
练一练:
1.已知点P关于x轴的对称点P
1的坐标是(2,3),那么点P关于原点的对称点P
2
的坐标是
()
A.(-3,-2)B.(2,-3) C.(-2,-3) D.(-2,3)
2.点A(2,3)到x轴的距离为;点B(-4,0)到y轴的距离为;
预习疑难摘要________________________________________________________
____________________________________________________________________
_____________________________________________________________________________ 二、探究活动
(一)师生探究·解决问题
例1. 在平面直角坐标系中描出A(-1,2),
B(-2,-1),C(2,-1),D(3,2)各点,并按次序
A→B→C→D→A将所描出的点连接起来;
说出得到的是什么图形;并计算它的面积.
例2. 某地为了发展城市群,在现有的四个中小城市A、B、C、D附近新建机场E,试建立适当的直角坐标系,并写出各点的坐标。

D
(二)独立思考·巩固升华
1.矩形ABCD中,三点的坐标分别是(0,0);(5,0);(5,3).则第四点的坐标是()A.(0,3)B.(3,0) C.(0,5) D.(5,0)
2.点C到x轴的距离为1,到y轴的距离为3,且在第三象限,则C点坐标是 __
三、自我测试
1. (1)
画出如图所示小船图案,
(2)计算图中小船图案面积
2.
四、应用与拓展
1.已知点A(-4,2),点______________________________________________________.
2. 已知点C(2,-4),点D(2,3),那么C 、D 的直线与坐标轴有的位置关系是 _______________________________________________________.。

相关文档
最新文档