(分离常数法与分离参数法)
重难点2-1-函数值域的常见求法8大题型(原卷版)
重难2-1 函数值域的求法8大题型函数的值域是函数概念中三要素之一,是高考中的必考内容,具有较强的综合性,贯穿整个高中数学的始终。
在高考试卷中的形式千变万化,但万变不离其宗,真正实现了常考常新的考试要求,考生在复习过程中首先要掌握一些简单函数的值域求解的基本方法,其次要多看多练在其他板块中涉及值域类型的内容。
一、求函数值域的常见方法1、直接法:对于简单函数的值域问题,可通过基本初等函数的图象、性质直接求解;2、逐层法:求12(())n f f f x 型复合函数的值域,利用一些基本初等函数的值域,从内向外逐层求函数的值域;3、配方法:配方法是二次型函数值域的基本方法,即形如“(0)x y ax bx c a =++≠”或“2[()]()(0)y a f x bf x c a =++≠”的函数均可用配方法求值域;4、换元法:利用换元法将函数转化为易求值域的函数,常用的换元有 (1)y cx d=+或cx d y ax b +=+的结构,可用cx d t +=”换元;(2)y ax b cx d =+±+,,,a b c d 均为常数,0,0a c ≠≠),可用“cx d t +=”换元;(3)22y bx a x =-型的函数,可用“cos ([0,])x a θθπ=∈”或“sin ([,])22x a ππθθ=∈-”换元;5、分离常数法:形如(0)ax by ac cx d+=≠+的函数,应用分离常数法求值域,即2()ax b a bc ady d cx d c c x c+-==+++,然后求值域;6、基本不等式法:形如(0)by ax ab x =+>的函数,可用基本不等式法求值域,利用基本不等式法求函数的值域时,要注意条件“一正、二定、三相等”,即利用a b +≥求函数的值域(或最值)时,应满足三个条件:①0,0a b >>;②a b+(或ab )为定值;③取等号的条件为a b =,三个条件缺一不可;7、函数单调性法:确定函数在定义域上的单调性,根据函数单调性求出函数值域(或最值)(1)形如0)y ax b ac =+<的函数可用函数单调性求值域;(2)形如by ax x=+的函数,当0ab >时,若利用基本不等式等号不能成立时,可考虑利用对勾函数求解; 当0ab <时,by ax x=+在(,0)-∞和(0,)+∞上为单调函数,可直接利用单调性求解。
高中数学第三章函数的概念与性质常考点(带答案)
高中数学第三章函数的概念与性质常考点单选题1、已知f (x )是一次函数,2f (2)−3f (1)=5,2f (0)−f (−1)=1,则f (x )=( ) A .3x +2B .3x −2C .2x +3D .2x −3 答案:B分析:设函数f (x )=kx +b(k ≠0),根据题意列出方程组,求得k,b 的值,即可求解. 由题意,设函数f (x )=kx +b(k ≠0),因为2f (2)−3f (1)=5,2f (0)−f (−1)=1,可得{k −b =5k +b =1,解得k =3,b =−2,所以f (x )=3x −2. 故选:B.2、下列函数中是增函数的为( )A .f (x )=−xB .f (x )=(23)xC .f (x )=x 2D .f (x )=√x 3答案:D分析:根据基本初等函数的性质逐项判断后可得正确的选项. 对于A ,f (x )=−x 为R 上的减函数,不合题意,舍. 对于B ,f (x )=(23)x为R 上的减函数,不合题意,舍.对于C ,f (x )=x 2在(−∞,0)为减函数,不合题意,舍. 对于D ,f (x )=√x 3为R 上的增函数,符合题意, 故选:D.3、下列图形能表示函数图象的是( )A .B .C.D.答案:D分析:根据函数的定义,判断任意垂直于x轴的直线与函数的图象的交点个数,即可得答案.由函数的定义:任意垂直于x轴的直线与函数的图象至多有一个交点,所以A、B显然不符合,C在x=0与函数图象有两个交点,不符合,只有D符合要求.故选:D4、已知f(x+1)=x−5,则f(f(0))=()A.−9B.−10C.−11D.−12答案:D分析:根据f(x+1)=x−5,利用整体思想求出f(x)的解析式,求得f(0),从而即求出f(f(0)).解:因为f(x+1)=x−5=(x+1)−6,所以f(x)=x−6,f(0)=−6,所以f(f(0))=f(−6)=−12.故选:D.5、“当x∈(0,+∞)时,幂函数y=(m2−m−1)x m2−2m−3为减函数”是“m=−1或2”的()条件A.既不充分也不必要B.必要不充分C.充分不必要D.充要答案:C分析:根据幂函数的定义和性质,结合充分性、必要性的定义进行求解即可.当x∈(0,+∞)时,幂函数y=(m2−m−1)x m2−2m−3为减函数,所以有{m 2−m−1=1m2−2m−3<0⇒m=2,所以幂函数y =(m 2−m −1)x m 2−2m−3为减函数”是“m =−1或2”的充分不必要条件,故选:C6、下列函数中与y =x 是同一个函数的是( ) A .y =(√x)2B . C .y =√x 2D .m =n 2n答案:B分析:根据函数相等的定义是:定义域相同且对应关系相同,逐个分析可得答案. 对于A ,y =(√x)2的定义域为[0,+∞),与y =x 的定义域为R 不同,故A 不正确; 对于B ,与y =x 是同一函数,故B 正确;对于C ,y =√x 2=|x|与y =x 的对应关系不同,故C 不正确; 对于D ,m =n 2n=n(n ≠0)与y =x 的定义域不同,故D 不正确.故选:B7、若函数f(2x +1)=x 2−2x ,则f(3)等于( ) A .−1B .0C .1D .3 答案:A分析:换元法求出函数的解析式,代入计算即可求出结果. 令2x +1=t ,得x =t−12,所以f(t)=(t−12)2−2×t−12=14t 2−32t +54,从而f(3)=14×32−32×3+54=−1.故选:A.8、定义在R 上的偶函数f(x)满足:对任意的x 1,x 2∈[0,+∞),(x 1≠x 2),有f (x 2)−f (x 1)x 2−x 1<0,且f(2)=0,则不等式xf(x)>0的解集是( ) A .(−2,2)B .(−2,0)∪(2,+∞)C .(−∞,−2)∪(0,2)D .(−∞,−2)∪(2,+∞) 答案:Cv u =v u =分析:依题意可得f(x)在[0,+∞)上单调递减,根据偶函数的性质可得f (x )在(−∞,0)上单调递增,再根据f(2)=0,即可得到f (x )的大致图像,结合图像分类讨论,即可求出不等式的解集; 解:因为函数f(x)满足对任意的x 1,x 2∈[0,+∞),(x 1≠x 2),有f (x 2)−f (x 1)x 2−x 1<0,即f(x)在[0,+∞)上单调递减,又f (x )是定义在R 上的偶函数,所以f (x )在(−∞,0)上单调递增, 又f(2)=0,所以f (−2)=f (2)=0,函数的大致图像可如下所示:所以当−2<x <2时f (x )>0,当x <−2或x >2时f (x )<0, 则不等式xf(x)>0等价于{f(x)>0x >0或{f(x)<0x <0,解得0<x <2或x <−2,即原不等式的解集为(−∞,−2)∪(0,2); 故选:C 多选题9、下列函数中,满足f (2x )=2f (x )的是( ) A .f (x )=|x|B .f (x )=x-|x| C .f (x )=x+1D .f (x )=-x答案:ABD解析:根据题意满足f(2x)=2f(x),依次验证即可.在A中,f(2x)=|2x|=2|x|,2f(x)=2|x|,满足f(2x)=2f(x);在B中,f(2x)=2x-|2x|=2(x-|x|)=2f(x),满足f(2x)=2f(x);在C中,f(2x)=2x+1,2f(x)=2(x+1)=2x+2,不满足f(2x)=2f(x);在D中,f(2x)=-2x=2(-x)=2f(x),满足f(2x)=2f(x).故选:ABD.小提示:本题考查函数的表示法,属于基础题.10、已知函数f(x)=bx+ax+2在区间(−2,+∞)上单调递增,则a,b的取值可以是()A.a=1,b>32B.a>4,b=2C.a=−1,b=2D.a=2,b=−1答案:AC分析:分离常数得f(x)=b+a−2bx+2,若f(x)在(−2,+∞)单调递增,则满足a−2b<0,检验选项即可求解.f(x)=bx+ax+2=b+a−2bx+2在(−2,+∞)上单调递增,则满足:a−2b<0,即a<2b,故a=1,b>32满足,a=−1,b=2满足,故选:AC11、设函数f(x)={ax−1,x<ax2−2ax+1,x≥a,f(x)存在最小值时,实数a的值可能是()A.−2B.−1C.0D.1答案:ABC分析:根据函数解析式,分a>0、a=0、a<0三种情况讨论,当a<0时根据二次函数的性质只需函数在断点处左侧的函数值不小于右侧的函数值即可;解:因为f(x)={ax−1,x<ax2−2ax+1,x≥a,若a>0,当x<a时f(x)=ax−1在(−∞,a)上单调递增,当x→−∞时f(x)→−∞,此时函数不存在最小值;若a=0,则f(x)={−1,x<0x2+1,x≥0,此时f(x)min=−1,符合题意;若a <0,当x <a 时f (x )=ax −1在(−∞,a )上单调递减, 当x ≥a 时f (x )=x 2−2ax +1,二次函数y =x 2−2ax +1对称轴为x =a ,开口向上,此时f (x )在[a,+∞)上单调递增, 要使函数f (x )存在最小值,只需{a <0a 2−1≥a 2−2a 2+1,解得a ≤−1,综上可得a ∈(−∞,−1]∪{0}. 故选:ABC12、已知函数f (x )={log 12(x +1),x ≥0,f(x +1),x <0,若函数g (x )=f (x )−x −a 有且只有两个不同的零点,则实数a 的取值可以是( ) A .-1B .0C .1D .2 答案:BCD分析:作出函数f (x )的图象如下图所示,将原问题转化为函数f (x )的图象与直线y =x +a 有两个不同的交点,根据图示可得实数a 的取值范围. 根据题意,作出f(x)的图像如下所示:令g(x)=0,得f(x)=x +a ,所以要使函数g(x)=f(x)−x −a 有且只有两个不同的零点, 所以只需函数f(x)的图像与直线y =x +a 有两个不同的交点, 根据图形可得实数a 的取值范围为(−1,+∞), 故选:BCD .小提示:方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 13、下列说法正确的是( )A .若定义在R 上的函数f(x)满足f(3)>f(2),则函数f(x)是R 上的增函数;B .若定义在R 上的函数f(x)满足f(3)>f(2),则函数f(x)是R 上不是减函数;C .若定义在R 上的函数f(x)在区间(−∞,0]上是增函数,在区间[0,+∞)上也是增函数,则函数f(x)在R 上是增函数;D .若定义在R 上的函数f(x)在区间(−∞,0]上是增函数,在区间(0,+∞)上也是增函数,则函数f(x)在R 上是增函数. 答案:BC分析:对ABC 按函数单调性的定义进行验证,对于选项D ,举反例f (x )={−x +1,x ≤0x −1,x >0进行否定即可.A :若函数f(x)在R 上为增函数,则对于任意的x 1,x 2∈R 且x 1<x 2,则f (x 1)<f (x 2)定成立,若f(3)>f(2)成立,不具有一般性,比如f (2)>f (0)不一定成立,所以函数f(x)在R 上不一定是增函数,A 错误;B :函数f(x)在R 上为减函数,则对于任意的x 1,x 2∈R 且x 1<x 2,则f (x 1)<f (x 2)定成立,所以, f(3)<f(2)一定成立,所以,若f(3)>f(2),函数f(x)是R 上不是减函数,故B 正确;C :若定义在R 上的函数f(x)在区间(−∞,0]上是增函数,在区间[0,+∞)上也是增函数,则满足对于任意的x 1,x 2∈R 且x 1<x 2,则f (x 1)<f (x 2)定成立,所以, 则函数f(x)在R 上是增函数;符合增函数的定义.故C 正确;D :设函数f (x )={−x +1,x ≤0x −1,x >0是定义在R 上的函数,且f(x)在区间(−∞,0]上是增函数,在区间(0,+∞)上也是增函数,而-1<1但f (−1)=f (1),不符合增函数的定义,所以,函数f (x )在R 上不是增函数.故D 错误. 故选:BC 填空题14、已知幂函数f(x)=(m 2−m −1)x m 的图象关于y 轴对称,则f(m)=___________.答案:4分析:根据幂函数的知识求得m 的可能取值,根据f (x )图象关于y 轴对称求得m 的值,进而即得. 由于f (x )是幂函数,所以m 2−m −1=1,解得m =2或m =−1. 当m =2时,f (x )=x 2,图象关于y 轴对称,符合题意.当m =−1时,f (x )=x −1=1x ,图象关于原点对称,不符合题意.所以m 的值为2,∴. f(x)=x 2,f(2)=22=4. 所以答案是:4.15、某同学设想用“高个子系数k ”来刻画成年男子的高个子的程度,他认为,成年男子身高160cm 及其以下不算高个子,其高个子系数k 应为0;身高190cm 及其以上的是理所当然的高个子,其高个子系数k 应为1,请给出一个符合该同学想法、合理的成年男子高个子系数k 关于身高x (cm )的函数关系式___________. 答案:k ={0,0<x ≤160,130(x −160),160<x <190,1,x ≥190.,(只要写出的函数满足在区间[160,190]上单调递增,且过点(160,0)和(190,1)即可.答案不唯一)分析:由题意,个数越高,系数k 越大,因此在[160,190]上的函数是增函数即可,初始值(160,0),(190,1),设出函数式代入求解.由题意函数k(x)是[160,190]上的增函数,设k(x)=ax +b(a >0),x ∈[160,190], 由{160a +b =0190a +b =1 ,解得{a =130b =−163 ,所以k(x)=130x −163, 所以k ={0,0<x ≤160,130(x −160),160<x <190,1,x ≥190.所以答案是:k ={0,0<x ≤160,130(x −160),160<x <190,1,x ≥190.注:在[160,190]上设其他函数式也可以,只要是增函数,只有两个参数.如y =b −ax(a >0),y =ax 2+b (a >0)等等.小提示:思路点睛:本题考查函数的应用,解题时注意题目的要求,只要写出的函数满足在区间[160,190]上单调递增,且过点(160,0)和(190,1)即可,因此函数模型可以很多,答案也不唯一. 16、求函数y =2x −1−√1−2x 的值域______. 答案:(−∞,0]##{y|y ≤0}分析:先对根式整体换元(注意求新变量的取值范围),把原问题转化为一个二次函数在闭区间上求值域的问题即可.令√1−2x =t ≥0,则2x =1−t 2,所以y =−t 2−t =−(t +12)2+14.又t ≥0,所以y ≤0,即函数y =2x −1−√1−2x 的值域是(−∞,0]. 所以答案是:(−∞,0]. 解答题17、函数f(x)是定义在R 上的偶函数,当x ≥0时,f(x)=x 2−2x . (1)求函数f(x)在x ∈(−∞,0)的解析式; (2)当m >0时,若|f(m)|=1,求实数m 的值. 答案:(1)f(x)=x 2+2x ;(2)1或1+√2.分析:(1)根据偶函数的性质,令x ∈(−∞,0),由f(x)=f(−x)即可得解; (2)m >0,有|m 2−2m |=1,解方程即可得解. (1)令x ∈(−∞,0),则−x ∈(0,+∞), 由f(x)=f(−x),此时f(x)=x 2+2x ; (2)由m >0,|f(m)|=|m 2−2m |=1, 所以m 2−2m =±1,解得m =1或m =1+√2或m =1−√2(舍). 18、设常数a ∈R ,函数f(x)=(a −x)|x|. (1)若a =1,求f (x )的单调区间;(2)若f (x )是奇函数,且关于x 的不等式mx 2+m >f [f (x )]对所有的x ∈[-2,2]恒成立,求实数m 的取值范围. 答案:(1)调增区间为[0,12],单调减区间为(-∞,0),(12,+∞);(2)(165,+∞).分析:(1)当a =1时,求得f(x)={(1−x)x,x ≥0(x −1)x,x <0,根据二次函数的单调性求出x <0与x ≥0的单调区间即可得解;(2)由f (x )是奇函数求出a ,再求得f[f(x)]=x 3|x|,将给定不等式分离参数并构造函数,求其最大值即可作答. (1)当a =1时,f(x)=(1−x)|x |={(1−x)x,x ≥0(x −1)x,x <0,当x ≥0时,f(x)=(1−x)x =−(x −12)2+14,则f (x )在[0,12]内是增函数,在(12,+∞)内是减函数, 当x <0时,f(x)=(x −1)x =(x −12)2−14,则f (x )在(-∞,0)内是减函数;综上可知,f (x )的单调增区间为[0,12],单调减区间为(-∞,0),(12,+∞);(2)因f (x )是奇函数,必有f (-1)=-f (1),即(a +1)·1=-(a -1)·1,解得a =0,此时f(x)=−x|x|,它是奇函数, 因此,a =0,f(x)=−x|x|,则f[f(x)]=x 3|x|,于是有∀x ∈[−2,2],mx 2+m >f[f(x)]⇔mx 2+m >x 3|x|⇔m >x 3|x|x 2+1, 而x ∈[−2,2]时,x 2+1∈[1,5],并且x 3|x|x 2+1≤x 4x 2+1=x 4−1+1x 2+1=(x 2+1)+1x 2+1−2,令x 2+1=t ∈[1,5],则ℎ(t)=t +1t−2在[1,5]上单调递增,当t =5时,(t +1t−2)max =165,因此,当x =2时,(x 3|x|x 2+1)max =165,则m >165,所以实数m 的取值范围是(165,+∞).。
成都武侯外国语学校必修一第四单元《函数应用》检测(答案解析)
一、选择题1.关于x 的方程x x a a -=有三个不同的实根,则实数a 的取值范围是( )A .(0,4)B .(4,0)-C .(4,4)-D .(,4)(4,)-∞-⋃+∞2.已知函数()f x 满足(2)()f x f x +=,且其图像关于直线1x =对称,若()0f x =在[0,1] 内有且只有一个根12x =,则()0f x =在区间[0,2017] 内根的个数为( ) A .1006B .1007C .2016D .20173.已知函数,01()11,10(1)x x f x x f x ≤<⎧⎪=⎨--<<⎪+⎩,()()4g x f x mx m =--,其中m 是非零的实数,若函数()g x 在区间(1,1)-内有且仅有两个零点,则实数m 的取值范围是( ) A .1,(0,1)5⎛⎫-∞-⋃ ⎪⎝⎭B .1(,1),5⎛⎫-∞-⋃+∞ ⎪⎝⎭C .1(,1)0,5⎛⎫-∞-⋃ ⎪⎝⎭D .1,(1,)5⎛⎫-∞-⋃+∞ ⎪⎝⎭4.已知函数2,0()()21,0x e a x f x a R x x ⎧+=∈⎨->⎩,若函数()f x 在R 上有两个零点,则a 的取值范围是( ) A .(,1)-∞- B .[2,0)- C .(1,0)- D .[1,0)-5.设,m n R ∈,定义在区间[],m n 上的函数()()2log 4f x x =-的值域是[]0,2,若关于t 的方程||1102t m ⎛⎫++= ⎪⎝⎭()t R ∈有实数解,则m n +的取值范围是( )A .[]0,3B .(]3,2--C .[]3,1--D .[)1,26.设函数()243,023,0x x x f x x x ⎧-+≥=⎨+<⎩,若互不相等的实数1x 、2x 、3x ,满足()()()123f x f x f x ==,则123x x x ++的取值范围是( )A .5,62⎛⎫ ⎪⎝⎭B .5,42⎛⎤⎥⎝⎦C .()2,4D .()2,67.已知函数22,()11,x x x a f x x a x⎧--≤⎪=⎨->⎪⎩,若函数图象与x 轴有且仅有一个交点,则实数a的取值范围是( )A .(),1-∞-B .()[),11,2-∞-⋃C .[)1,2D .(]()1,12,-+∞8.若函数2()x f x x e a =-恰有3个零点,则实数a 的取值范围是( ) A .24(,)e+∞ B .24(0,)eC .2(0,4)eD .(0,)+∞9.具有性质:1()()f f x x=-的函数,我们称为满足“倒负”变换的函数.给出下列函数:①1ln 1x y x -=+;②2211x y x -=+;③,01,{0,1,1, 1.x x y x x x<<==->其中满足“倒负”变换的函数是( ) A .①②B .①③C .②③D .①10.已知函数f (x )=1,01,0x x x⎧⎪⎨>⎪⎩则使方程x +f (x )=m 有解的实数m 的取值范围是( ) A .(1,2)B .(-∞,-2]C .(-∞,1)∪(2,+∞)D .(-∞,1]∪[2,+∞)11.已知函数,0()ln ,0x e x f x x x ⎧≤=⎨>⎩,若函数g (x )=f (x )+2x +ln a (a >0)有2个零点,则数a 的最小值是( )A .1eB .12C .1D .e12.把物体放在冷空气中冷却,如果物体原来的温度为1θC ,空气的温度是0θC ,那么t 分钟后物体的温度θ(单位C )可由公式:()010kt e θθθθ-=+-求得,其中k 是一个随着物体与空气的接触状况而定的正常数.现有100℃的物体,放在20C 的空气中冷却,4分钟后物体的温度是60C ,则再经过( )分钟,物体的温度是40C (假设空气的温度保持不变). A .2B .4C .6D .8二、填空题13.若函数4y ax a =+存在零点,则实数a 的取值范围是______.14.已知()f x 是定义在[)1,+∞上的函数,且()123,1211,222x x f x f x x ⎧--≤<⎪=⎨⎛⎫≥ ⎪⎪⎝⎭⎩,则函数2()3y xf x =-在区间()1,2015上零点的个数为 .15.若函数()23xf x x --+=的零点为0x ,满足()01x k k ∈+,且k ∈Z ,则k =_____.16.已知()f x 是以2e 为周期的R 上的奇函数,当()0,x e ∈,()ln f x x =,若在区间[],2e e -,关于x 的方程()1f x kx =+恰好有4个不同的解,则k 的取值集合是__________.17.关于x 的方程()142650xx k k k +⋅-⋅+-=在区间[0]1,上有解,则实数k 的取值范围是________.18.函数()()2121x x f x x x ⎧≤⎪=⎨->⎪⎩,,,如果方程()f x b =有四个不同的实数解1x ,2x ,3x ,4x ,则1234x x x x +++=______.19.设函数31()(2)()2xf x x =+-的零点在区间(,1)n n +(n Z ∈)上,则n =______.20.已知函数()3cos f x x x =-,若不等式()12f x kx b kx b +≤≤+对一切实数x 恒成立,则21b b -的最小值为__________.三、解答题21.已知函数()f x 为偶函数,当0x ≥时,()11x x e f x e -=+.(1)求当0x <时,函数()f x 的解析式; (2)判断函数()f x 在(),0-∞上的单调性并证明;(3)设函数()()()2g x f ax f x a =--+,使函数()g x 有唯一零点的所有a 构成的集合记为M ,求集合M .22.某厂家拟定在2020年举行促销活动,经调查测算,该产品的年销量(即该厂的年产量)x 万件与年促销费用m (m ≥0)万元满足x =3-1km + (k 为常数).如果不搞促销活动,那么该产品的年销量只能是1万件.已知2020年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2020年该产品的利润y 万元表示为年促销费用m 万元的函数; (2)该厂家2020年的促销费用投入多少万元时,厂家利润最大? 23.已知函数f (x )=a x +21x x -+(a >1). (1)求证:f (x )在(﹣1,+∞)上是增函数; (2)若a =3,求方程f (x )=0的正根(精确到0.1).24.某工厂准备引进一种新型仪器的生产流水线,已知投资该生产流水线需要固定成本1000万元,每生产x 百台这种仪器,需另投入成本f (x )万元,()f x =2550500,040,100,25003013000,40,100.x x x x N x x x N x ⎧++<<∈⎪⎨+-≥∈⎪⎩假设生产的仪器能全部销售完,且售价为每台3万元.(1)求利润g (x )(万元)关于产量x (百台)的函数关系式; (2)当产量为多少时,该工厂所获利润最大?并求出最大利润.25.已知奇函数()()410,12xf x a a a a=->≠+. (1)求a 的值,并求函数()f x 的值域;(2)若函数()()12xy m mf x =+-在区间(]2,log 3x ∈-∞上有两个不同的零点,求m的取值范围.26.倡导环保意识、生态意识,构建全社会共同参与的环境治理体系,让生态环保思想成为社会生活中的主流文化.某化工企业探索改良工艺,使排放的废气中含有的污染物数量逐渐减少.已知改良工艺前所排放的废气中含有的污染物数量为32/mg m ,首次改良后排放的废气中含有污染物数量为31.94/mg m ,设改良工艺前所排放的废气中含有的污染物数量为0r ,首次改良工艺后所排放的废气中含的污染物数量为1r ,则第n 次改良后所排放的废气中的污染物数量n r 可由函数模型()()0.5*0015,n pn r r r r p R n N +=--∈∈给出,其中n 是指改良工艺的次数.(1)试求改良后n r 的函数模型;(2)依据国家环保要求,企业所排放的废气中含有的污染物数量不能超过30.08/mg m .试问:至少进行多少次改良工艺后才能使企业所排放的废气中含有污染物数量达标?(参考数据:取lg 20.3=)【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】画出函数()22,(),()x ax x a f x x x a x ax x a ⎧-≥=-=⎨-+<⎩与y a =图象可得【详解】数形结合法:画出函数()22,(),()x ax x a f x x x a x ax x a ⎧-≥=-=⎨-+<⎩与y a =图象可得由图可得:204a a <<解得4a > 或204a a >>-解得4a故选:D 【点睛】数形结合法:画出相应的函数图象,通过观察图象与x 轴在给定区间上是否有交点来判断,或者转化为两个函数图象在给定区间上是否有交点来判断.2.D解析:D 【分析】由(2)()f x f x +=,以及()(2)f x f x -=+,进而推出()f x 为偶函数,且()f x 是周期等于2的周期函数,根据1()02f =,求出3()02f =,从而得到函数()f x 在一个周期的零点个数,且函数()f x 在每两个整数之间都有一个零点,从而得到()0f x =在区间[0,2017]内根的个数.【详解】解:函数()f x 满足(2)()f x f x +=, 故函数()f x 是周期等于2的周期函数,其图象关于直线1x =对称,可得()(2)f x f x -=+, 即有()()f x f x -=,1()02f =, 1()02f ∴-=,再由周期性得13(2)()022f f -+==, 故函数()f x 在一个周期[0,2]上有2个零点, 即函数()f x 在每两个整数之间都有一个零点, ()0f x ∴=在区间[0,2017]内根的个数为2017.故选:D . 【点睛】利用函数的奇偶性与周期性相结合,求出函数在指定区间的零点个数,求解的关键在于周期性的应用.3.C解析:C 【分析】先求得分段函数的解析式,函数()g x 零点等价于函数()y f x =的图象与直线4y mx m =+公共点,做出图像,数形结合,即可求得答案.【详解】当10x -<<时,011x <+<,满足上支范围,所以()11f x x +=+,所以,01()11,101x x f x x x ≤<⎧⎪=⎨--<<⎪+⎩,作函数()y f x =的图象,如图所示.函数()g x 零点的个数等价于函数()y f x =的图象与直线4y mx m =+公共点的个数. 当直线4y mx m =+过点(1,1)时,15m =, 所以当105m <<时, 直线4y mx m =+与函数()y f x =图象有两个公共点.当直线4y mx m =+与曲线111y x =-+(10x -<<)相交时, 联立4111y mx m y x =+⎧⎪⎨=-⎪+⎩消去y 得,24(51)0mx m x m -++=, 因此22(51)160m m ∆=+->且510m +<时,解得1m <-.综上知,实数m 的取值范围是1(,1)0,5⎛⎫-∞-⋃ ⎪⎝⎭. 故选:C 【点睛】本题的关键是根据x 的范围,先求得函数解析式,做出图像,再将零点问题转化为图像交点问题,易错点为,4y mx m =+可以与函数两支都有交点,也可以与函数111y x =-+单支产生交点,需分别检验和计算,属中档题.4.B解析:B 【分析】当0x >时,()21f x x =-有一个零点12x =,只需当0x ≤时,20x e a +=有一个根,利用“分离参数法”求解即可. 【详解】因为函数()2,021,0x e a x f x x x ⎧+≤=⎨->⎩,当0x >时,()21f x x =-有一个零点12x =, 所以只需当0x ≤时,202xxae a e +==-即有一个根即可, 因为2xy e =单调递增,当0x ≤时,(]0,1xe ∈,所以(]0,2a -∈,即[)2,0a ∈-, 故选:B. 【点睛】已知函数有零点(方程有根),求参数取值范围的三种常用的方法:(1)直接法,直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法,先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法,先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后利用数形结合求解.5.D解析:D 【分析】首先利用函数值域确定自变量范围,再初步确定m ,n 的关系,然后结合指数函数的性质整理计算即可求得最终结果. 【详解】函数2()log (4||)f x x =-的值域是[0,2],14||4x ∴-, 0||3x ∴,3m ∴=-,03n ,或30m -,3n =;又关于t 的方程||1()10()2t m t R ++=∈ 有实数解,∴||1()12t m =--有解,||11()122t <+,21m ∴-<-,则3n =, 则12m n +<, 故选:D 【点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解6.C解析:C 【分析】设123x x x <<,作出函数()f x 的图象,结合图象可得出1x 的取值范围,结合二次函数图象的对称性可得出234x x +=,进而可求得123x x x ++的取值范围. 【详解】设123x x x <<,作出函数()f x 的图象如下图所示:设()()()123f x f x f x m ===,当0x ≥时,()()2243211f x x x x =-+=--≥-,由图象可知,13m -<<,则()()11231,3f x x =+∈-,可得120x -<<, 由于二次函数243y x x =-+的图象的对称轴为直线2x =,所以,234x x +=,因此,12324x x x <++<. 故选:C. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(或取值范围),常用方法如下: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数的取值范围; (2)分离常数法:先将参数分离,转化为求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.7.B解析:B 【分析】讨论a 的范围,分别确定x a ≤、x a >上与x 轴的交点情况,即可确定实数a 的取值范围. 【详解】∵当x a ≤时,()(2)(1)f x x x =-+,∴当2a ≥时,()f x 在x a ≤与x 轴有2个交点; 当12a -≤<时,()f x 在x a ≤与x 轴有1个交点; 当1a <-时,()f x 在x a ≤与x 轴无交点;∵当x a >时,1(1)f x x=-,与x 轴有交点时交点为(1,0), ∴当1a ≥时,()f x 在x a >与x 轴无交点; 当1a <时,()f x 在x a >与x 轴有1个交点;综上要使()f x 在R 上与x 轴有且仅有一个交点,即12a ≤<或1a <-, 故选:B 【点睛】易错点睛:讨论不等式的参数时,要注意参数边界是否可以取等号.1x =时()f x 与x 轴有交点,要使()f x 在x a >与x 轴无交点则1a ≥. 1x =-时()f x 与x 轴有交点,要使()f x 在x a ≤与x 轴无交点则1a <-. 8.B解析:B 【分析】求导函数,求出函数的极值,利用函数2()xf x x e a =-恰有三个零点,即可求实数a 的取值范围. 【详解】函数2xy x e =的导数为2'2(2)x x xy xe x e xe x =+=+, 令'0y =,则0x =或2-,20x -<<上单调递减,(,2),(0,)-∞-+∞上单调递增,所以0或2-是函数y 的极值点, 函数的极值为:224(0)0,(2)4f f ee -=-==, 函数2()xf x x e a =-恰有三个零点,则实数的取值范围是:24(0,)e . 故选B. 【点睛】该题考查的是有关结合函数零点个数,来确定参数的取值范围的问题,在解题的过程中,注意应用导数研究函数图象的走向,利用数形结合思想,转化为函数图象间交点个数的问题,难度不大.9.C解析:C 【解析】①1ln 1x y x -=+;1111()ln ln ()111x x f f x x x x--==≠-++所以不符合题意;②2211x y x -=+;22221111()()111x x f f x x x x --===-++所以符合题意;③,01,{0,1,1, 1.x x y x x x<<==->当01x <<时11x >,故1()()f x f x x =-=-,当1,x =时11x =显然满足题意,当1x >时,101x <<,故11()()f f x x x==-符合题意,综合得选C 点睛:新定义倒负函数,根据题意逐一验证()1f f x x ⎛⎫=- ⎪⎝⎭是否成立,在计算中要注意对数的公式得灵活变幻,对于分段函数要注意逐段去讨论10.D解析:D 【分析】分别讨论x ≤0和x >0,方程有解时,m 的取值. 【详解】当x ≤0时,x +f (x )=m ,即x +1=m ,解得m ≤1;当x >0时,x +f (x )=m ,即1x m x+=,解得m ≥2, 即实数m 的取值范围是(,1][2,)-∞⋃+∞故选:D 【点睛】本题考查了方程有解求参数的取值问题,考查了计算求解能力和逻辑推理能力,属于一般题目.11.A解析:A 【分析】令()0g x =,将问题转化为函数()f x 与函数()2ln 0y x a a =-->的图象有两个不同的交点来求解. 【详解】令()0g x =得()2ln f x x a =--,若()g x 有两个零点,则函数()f x 与函数()2ln 0y x a a =-->的图象有两个不同的交点.画出函数()f x 与函数()2ln 0y x a a =-->的图象如下图所示,当直线过点()0,1时,两个函数图象有两个交点,此时1120ln a a e=-⨯-⇒=.由图可知,当直线向下平移时,可使两个函数图象有两个交点,所以1ln 1a a e -≤⇒≥,所以a 的最小值为1e. 故选:A【点睛】本小题主要考查函数零点问题的求解,考查数形结合的数学思想方法,属于中档题.12.B解析:B 【分析】根据题意将数据120θ=,0100θ=,60θ=,4t =代入()010kte θθθθ-=+-,可得1412k e -⎛⎫= ⎪⎝⎭,再将40θ代入即可得8t =,即可得答案.【详解】由题意知:120θ=,0100θ=,60θ=,4t =代入()010kte θθθθ-=+-得:()4602010020ke-=+-,解得1412k e -⎛⎫= ⎪⎝⎭所以当40θ时,()1440201002012t ⎛⎫ -⎪⎭=+⎝,解得:124114212t ⎛⎫== ⎛⎫ ⎝⎪⎭⎪⎭⎝, 所以8t =,所以再经过4分钟物体的温度是40C , 故选:B 【点睛】本题主要考查了指数函数的综合题,关键是弄清楚每个字母的含义,属于中档题.二、填空题13.【分析】将函数存在零点转化为与图像有交点作出图像观察图像得出实数的取值范围【详解】解:设则函数存在零点等价于与图像有交点如图:函数的图像恒过点当其和函数的图像相切时有解得由图像可知所以所以与的图像有解析:30,⎡⎤⎢⎥⎣⎦【分析】将函数244y ax a x =+--存在零点转化为()()4f x a x =+与2()4g x x =-图像有交点,作出图像,观察图像得出实数a 的取值范围. 【详解】解:设()()4f x a x =+,2()4g x x =-,则函数244y ax a x =+--存在零点等价于()()4f x a x =+与2()4g x x =-图像有交点, 如图:函数()()4f x a x =+的图像恒过点(4,0)-,当其和函数2()4g x x =-2421aa =+,解得33a =±,由图像可知,0a >,所以33a =,所以()()4f x a x =+与2()4g x x =-30a ≤≤. 故答案为:3⎡⎢⎣⎦. 【点睛】本题考查函数零点问题的研究,关键是将零点问题转化为函数图像的交点问题,考查数形结合的思想,是中档题.14.11【分析】令函数得到方程从而化函数的零点为方程的根再转化为两个函数的交点问题从而解得【详解】解:令函数得到方程当时函先增后减在时取得最大值1而在时也有;当时在处函数取得最大值而在时也有;当时在处函解析:11【分析】令函数2()30y xf x =-=,得到方程3()2f x x=,从而化函数的零点为方程的根,再转化为两个函数的交点问题,从而解得. 【详解】解:令函数2()30y xf x =-=,得到方程3()2f x x=, 当[)1,2x ∈时,函()f x 先增后减,在32x =时取得最大值1, 而32y x =在32x =时也有1y =; 当)22,2x ⎡∈⎣时,11()22f x f x ⎛⎫=⎪⎝⎭,在3x =处函数()f x 取得最大值12,而32y x =在3x =时也有12y =; 当)232,2x ⎡∈⎣时,11()22f x f x ⎛⎫= ⎪⎝⎭,在6x =处函数()f x 取得最大值14, 而32y x =在6x =时也有14y =; …,当)10112,2x ⎡∈⎣时,11()22f x f x ⎛⎫= ⎪⎝⎭,在1536x =处函数()f x 取得最大值1012,而32y x =在1536x =时也有1012y =; 综合以上分析,将区间()1,2015分成11段,每段恰有一个交点,所以共有11个交点,即有11个零点. 故答案为:11. 【点睛】本题考查函数的零点,对于较为复杂的函数的零点,可以转化为常见函数的图象的交点来考虑,本题属于中档题.15.【分析】根据题意得到函数为减函数进而求得的值利用零点的存在定理即可求解【详解】由题意函数分析可得函数为减函数又由则根据零点的存在定理可得函数的零点在区间上所以故答案为【点睛】本题主要考查了函数与方程 解析:3【分析】根据题意,得到函数()f x 为减函数,进而求得()()3,4f f 的值,利用零点的存在定理,即可求解. 【详解】由题意,函数()23xf x x --+=,分析可得函数()f x 为减函数,又由()31323308f -=+=>-,()4154243016f --=+=-<, 则()()340f f ⋅<,根据零点的存在定理,可得函数()f x 的零点在区间()3,4上, 所以3k =. 故答案为3. 【点睛】本题主要考查了函数与方程的应用,其中解答中熟记函数零点的概念,以及熟练应用零点的存在定理进行判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.16.【分析】先根据函数奇偶性作出一个周期上图象再根据周期得区间上图象最后结合图象确定与动直线恰有4个交点的情况再求出对应数值【详解】因为是以为周期的上的奇函数所以当所以当作出区间上图象如图则直线过或时恰 解析:11,2e e ⎧⎫--⎨⎬⎩⎭【分析】先根据函数奇偶性作出一个周期上图象,再根据周期得区间[],2e e -上图象,最后结合图象确定与动直线1y kx =+恰有4个交点的情况,再求出对应数值. 【详解】因为()f x 是以2e 为周期的R 上的奇函数,所以(0)0,()()()()()0f f e f e f e f e f e ==-=-∴=-=,当()0,x e ∈,()ln f x x =,所以当(),0x e ∈-,()()ln(-)f x f x x =--=-,作出区间[],2e e -上图象如图,则直线1y kx =+过(,0)A e 或(2,0)B e 时恰有4个交点,此时11,2k k e e=-=-故答案为:11,2e e ⎧⎫--⎨⎬⎩⎭【点睛】本题考查函数奇偶性、周期性以及根据图象研究函数零点,考查数形结合思想以及综合分析求解能力,属中档题.17.【分析】换元:令则原方程化为根据题意问题转化为此方程在上有零点根据二次函数零点的判定方法即可求得结论【详解】解:令则∴方程化为:根据题意此关于t 的一元二次方程在上有零点整理得:方程当时存在实数解∴当解析:[5]6,【分析】换元:令2x t =,则[12]t ∈,,原方程化为()22650k t k t k ⋅-⋅+-=,根据题意,问题转化为此方程在[1]2,上有零点,根据二次函数零点的判定方法即可求得结论. 【详解】解:令2x t =,则[12]t ∈,, ∴方程()142650xx k k k +⋅-⋅+-=,化为:()22650k t k t k ⋅-⋅+-=,根据题意,此关于t 的一元二次方程在[1]2,上有零点, 整理,得:方程22630()k t t -+=,当[12]t ∈,时存在实数解 ∴23026k t t =-+,当[12]t ∈,时存在实数解 ∵()22261556[]t t t -+=-+∈, ∴2303030,[5,6]2665k t t ⎡⎤=∈=⎢⎥-+⎣⎦故答案为:[5]6,【点睛】本题以指数型二次方程为例,考查了根的存在性及函数零点的知识点,属于中档题.请同学们注意解题过程中变量分离思路的应用,它可以化繁为简、化难为易.18.【分析】作出的图象可得和的图象有四个不同的交点不妨设交点横坐标由关于原点对称关于点对称即可得到所求的和【详解】作出的图象方程有四个不同的实数解等价为和的图象有四个不同的交点不妨设交点横坐标为且由关于 解析:4【分析】作出()f x 的图象,可得()y f x =和y b =的图象有四个不同的交点,不妨设交点横坐标1234x x x x <<<,由1x ,2x 关于原点对称,3x ,4x 关于点()2,0对称,即可得到所求的和.【详解】作出()()2121x x f x x x ⎧≤⎪=⎨->⎪⎩,,的图象,方程()f x b =有四个不同的实数解,等价为()y f x =和y b =的图象有四个不同的交点,不妨设交点横坐标为1x ,2x ,3x ,4x 且1234x x x x <<<, 由1x ,2x 关于原点对称,3x ,4x 关于点()2,0对称, 可得12=0x x +,344x x +=, 则12344x x x x +++=, 故答案为:4 【点睛】本题主要考查了函数方程的转化思想,考查数形结合的思想以及对称性的运用,属于中档题.19.【分析】由函数单调性质判断函数是增函数运用零点存在性定理得解【详解】是上增函数是上减函数在上增函数又在上存在零点函数的零点在区间上故答案为:【点睛】本题考查函数零点分布区间判断函数零点分布区间的方法 解析:1-【分析】由函数单调性质判断函数31()(2)()2xf x x =+-是增函数,(1)0f -< ,(0)0f >运用零点存在性定理得解. 【详解】3(2)y x =+是R 上增函数,1()2x y = 是R 上减函数,31()(2)()2x f x x ∴=+-在R 上增函数,又(1)0f -< ,(0)0f >,31()(2)()2x f x x ∴=+-在(1,0)-上存在零点函数31()(2)()2xf x x =+-的零点在区间(,1)n n +上1n ∴=-故答案为:1- 【点睛】本题考查函数零点分布区间. 判断函数零点分布区间的方法:(1)解方程法:当对应方程易解时,可通过解方程确定方程是否有根落在给定区间上; (2)定理法:利用零点存在性定理进行判断;(3)数形结合法:画出相应的函数图象,通过观察图象与x 轴在给定区间上是否有交点来判断,或者转化为两个函数图象在给定区间上是否有交点来判断.20.2【分析】根据恒成立可知同理得出故的最小值为2【详解】由恒成立可得即恒成立而且为周期函数故且同理可得的最小值为故答案为:2【点睛】本题主要考查函数的性质考查不等式恒成立考查分析问题和解决问题的能力考解析:2 【分析】根据23cos x x kx b ≤+-恒成立可知21b ≥,同理得出11b ≤-,故21b b -的最小值为2. 【详解】由2()f x kx b ≤+恒成立,可得23cos x x kx b ≤+-,即2cos 3)(k x x b --≤+恒成立, 而1cos 1x -≤-≤,且cos y x =-为周期函数,故30k -=,且21b ≥,同理可得11b ≤-,∴21b b -的最小值为1(1)2--=.故答案为:2. 【点睛】本题主要考查函数的性质,考查不等式恒成立,考查分析问题和解决问题的能力,考查学生的逻辑推理能力.三、解答题21.(1)()11xxe f x e-=+;(2)函数()f x 在(),0-∞上单调递减,证明见详解;(3){}1,0,1,2M =-.【分析】(1)当0x <时,0x ->,()1111x xx xe ef x e e-----==++,利用函数的奇偶性求解即可;(2)函数()f x 在(),0-∞上单调递减,利用定义证明函数的单调性即可;(3)把函数()g x 有唯一零点的问题转化为方程()()20f ax f x a --+=有唯一的解的问题,利用函数的奇偶性和单调性得到2ax x a =-+,两边平方,利用方程有唯一的解即可得出结果. 【详解】(1)当0x <时,0x ->, 又函数()f x 为偶函数,则()()1111x xx xe ef x f x e e -----===++,所以函数()f x 的解析式为()11xxe f x e -=+;(2)函数()f x 在(),0-∞上单调递减, 设任意120x x <<,则()()()()()12212112212111111x x x x x x x x e e e e f x f x e e e e ----=-=++++, 因为xy e =在R 上单调递增, 所以12x x e e <,即120x x e e -<, 所以()()21f x f x <,所以函数()f x 在(),0-∞上单调递减; (3)因为函数()f x 为偶函数, 所以函数()f x 在()0,∞+上单调递减,函数()()()2g x f ax f x a =--+的零点就是方程()()20f ax f x a --+=的解, 因为函数()g x 有唯一零点,所以方程()()20f ax f x a --+=有唯一的解, 因为函数()f x 为偶函数, 所以方程变形为:()()2fax f x a =-+,因为函数()f x 在()0,∞+上单调递减, 所以2ax x a =-+, 平方得:()()()22212220a x a x a -+-+-=,当210a -=时,即1a =±,经检验方程有唯一解; 当210a -≠时,()()()222424120a a a ∆=----=,得()22200a a a -=⇒=或2a =,综上可得:集合{}1,0,1,2M =-. 【点睛】关键点睛:把函数()g x 有唯一零点的问题转化为方程()()20f ax f x a --+=有唯一的解的问题是解决本题的关键.22.(1)y =-16(1)1m m -+++29(m ≥0);(2)该厂家2020年的促销费用投入3万元时,厂家的利润最大为21万元.. 【分析】(1)根据0,1m x ==(万件)求出2k =,求出每件产品的销售价格,则可得利润关于m 的函数;(2)利用基本不等式可求得最大值. 【详解】(1)由题意知,当m =0时,x =1(万件), 所以1=3-k ⇒k =2,所以x =3-21m + (m ≥0), 每件产品的销售价格为1.5×816xx + (元), 所以2020年的利润y =1.5x ×816xx+-8-16x -m =-16(1)1m m -+++29(m ≥0).(2)因为m ≥0时,161m ++(m +8, 所以y ≤-8+29=21,当且仅当161m +=m +1⇒m =3(万元)时,y max =21(万元). 故该厂家2020年的促销费用投入3万元时,厂家的利润最大为21万元. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方 23.(1)证明见解析;(2)0.312 5. 【分析】(1)根据定义法证明函数在所给区间的单调性,依次按取值,设定大小,作差,判断符号,可得出结果. (2)把a =3代入可得()231x x fx x -=++,根据(1)的结论可知正根在区间(0,1)内,然后利用二分法近似求解步骤计算即可. 【详解】证明:(1)设121x x -<< ∴()()()()()121212121212123221111xxx x x x x x f x f x a a a a x x x x ----=-+-=-+++++, ∵121x x -<<,∴1210,10,x x +>+>120x x -< ∴()()()1212311x x x x -++<0;∵121x x -<<,且a >1,∴12x x a a <,∴120-<x x a a , ∴()()120f x f x -<,即()()12f x f x <,∴函数()f x 在()1+-∞,上为增函数; (2)由(1)知,当a =3时,()231x x fx x -=++在()1+-∞,上为增函数, 故在()0+∞,上也单调递增,由于()()5010,102f f =-<=>,因此()0f x =的正根仅有一个,以下用二分法求这一正根,由于()()5010,102f f =-<=> , ∴取(0,1)为初始区间,用二分法逐次计算,列出下表:∴原方程的近似解可取为0.312 5. 【点睛】思路点睛:本题考查利用函数的奇偶性求参数,证明函数的单调性和利用单调性解不等式.证明函数的单调性的基本步骤为:(1)在给定的区间内任取变量12,x x ,且设12x x <.(2)作差()()12f x f x -变形,注意变形要彻底,变形的手段通常有通分、因式分解、配方、有理化等.(3)判断符号,得出()()12f x f x ,的大小. (4)得出结论.24.(1)252501500,040,100,()25002000(),40,100.x x x x N g x x x x N x ⎧-+-<<∈⎪=⎨-+≥∈⎪⎩;(2)产量为5000台时,该工厂获得利润最大,且最大利润为1900万元. 【分析】(1)依题意求出各段的函数解析式,再写成分段函数即可; (2)根据解析式求出各段函数的最大值,再取最大的即可; 【详解】解:(1)由题意可知,当0<x <40,100x ∈N 时,g (x )=300x -5x 2-50x -500-1000=-5x 2+250x -1500;当x ≥40,100x ∈N 时,25002500()300301300010002000g x x x x x x ⎛⎫=--+-=-+ ⎪⎝⎭综上,252501500,040,100,()25002000(),40,100.x x x x N g x x x x N x ⎧-+-<<∈⎪=⎨-+≥∈⎪⎩(2)当0<x <40,100x ∈N 时,g (x )=-5x 2+250x -1500=-5(x -25)2+1625,且当x =25时,g (x )取得最大值1625;当x ≥40,100x ∈N 时,2500()2000()1900g x x x=-+≤,当且仅当x =50时,g (x )取得最大值1900.综上,当x =50,即产量为5000台时,该工厂获得利润最大,且最大利润为1900万元. 【点睛】(1)很多实际问题中,变量间的关系不能用一个关系式给出,这时就需要构建分段函数模型. (2)求函数最值常利用基本不等式法、导数法、函数的单调性等方法.在求分段函数的最值时,应先求每一段上的最值,然后比较得最大值、最小值. 25.(1)2a =,值域为(1,1)-;(2)1625⎛⎤--- ⎥ ⎝⎦ 【分析】(1)根据函数()f x 是奇函数,定义域为R ,推出(0)0f =,得2a =.再检验一下当2a =时,是否满足奇函数的定义()()0f x f x ,再利用分离变量法求出函数的值域.(2)令2x t =,(0t ∈,3],则问题可以转化为方程2(1)0m t t m +++=在区间(0t ∈,3]上有两个不同的根,由0∆>,解得m ,若在区间(0t ∈,3]上有两个不同的根还得对m 分类讨论; 【详解】解:(1)因为函数()f x 是奇函数,定义域为R , 所以(0)0f =, 所以4102a-=+,解得2a =.当2a =时,142()112221x x f x +=-=-++,可得()()0f x f x ,则()f x 为奇函数,所以142()112221x x f x +=-=-++,即2121x y =-+, 变形可表示为1201xyy --=>-,解得11y -<<, 所以()f x 的值域为(1,1)-.(2)根据题意可得方程(1)2()0x m mf x +-=在区间(x ∈-∞,2log 3]上有两个不同的根,即方程2(1)2[1]021xxm m +--=+在区间(x ∈-∞,2log 3]上有两个不同的根, 令2x t =,(0t ∈,3], 则方程2(1)[1]01m t m t +--=+在区间(0t ∈,3]上有两个不同的根, 即2(1)0m t t m +++=在区间(0t ∈,3]上有两个不同的根,214(1)4410m m m m ∆=-+=--+>m <<,当102m -<<时,(1)000(1)9301032(1)m m m m m ⎧⎪+⨯++>⎪⎪+⨯++>⎨⎪⎪<-<+⎪⎩,不等式组无解,0m <<时,(1)000(1)9301032(1)m m m m m ⎧⎪+⨯++<⎪⎪+⨯++<⎨⎪⎪<-<+⎪⎩65m <-.综上所述m 的取值范围为得65⎤-⎥⎝⎦. 【点睛】函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点. (3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点. 26.(1)()0.50.5*20.065n n r n -=-⨯∈N ;(2)6.【分析】(1)根据改良工艺前所排放的废气中含有的污染物数量为32/mg m ,首次改良后排放的废气中含有污染物数量为31.94/mg m ,得到02r =,1 1.94r =,然后再令1n =求解. (2)根据所排放的废气中含有的污染物数量不能超过30.08/mg m ,得到0.50.520.0650.08n n r -=-⨯≤求解.【详解】(1)由题意得02r =,1 1.94r =, 所以当1n =时,()0.510015pr r r r +=--⋅,即()0.51.9422 1.945p +=--⋅,解得0.5p =-,所以()0.50.5*20.065n n r n -=-⨯∈N ,故改良后所排放的废气中含有的污染物数量的函数模型为()0.50.5*20.065n n r n -=-⨯∈N .(2)由题意可得,0.50.520.0650.08n n r -=-⨯≤, 整理得0505..1950..206n -≥,即0.50.5532n -≥, 两边同时取常用对数,得lg3205055.lg .n -≥, 整理得5lg 2211lg 2n ≥⨯+-, 取lg 20.3=代入,得5lg 2302115.31lg 27⨯+=+-, 又因为*n ∈N ,所以6n ≥.综上,至少进行6次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标. 【点睛】方法点睛:在实际问题中,有关人口增长、银行利率、细胞分裂等增长率问题常用指数函数模型表示.通常可以表示为y =N (1+p )x (其中N 为基础数,p 为增长率,x 为时间)的形式.解题时,往往用到对数运算,要注意与已知表格中给定的值对应求解.。
2022年初升高暑期数学精品讲义专题10 函数的三要素重难点突破(原卷版)
专题10 函数的三要素一、考情分析二、经验分享【重难点1.函数的定义域】当函数是由解析式给出时,求函数的定义域就是求使解析式有意义的自变量的取值集合,求函数定义域的一般方法有:①分式的分母不为0;②偶次根式的被开方数非负;③要求;y x =0x ≠④当一个函数由两个或两个以上代数式的和、差、积、商的形式构成时,定义域是使得各式子都有意义的公共部分的集合;⑤已知的定义域,求的定义域,其实质是由的取值范围,求出的取值范围;()f x [()]f g x ()g x x ⑥已知的定义域,求的定义域,其实质是由的取值范围,求的取值范围;[()]f g x ()f x x ()g x ⑦由实际问题建立的函数,还要符合实际问题的要求.名师提醒:(1)定义域是一个集合,要用集合或区间表示,若用区间表示数集,不能用“或”连接,而应该用并集符号“∪”连接.(2)已知函数的定义域,逆向求解函数中参数的取值或取值范围,需运用分类讨论以及转化与化归的方法,转化为方程或不等式的解集问题,根据方程或不等式的解集情况来确定参数的值或取值范围.这种思想方法即通过某种转化过程,将一个难以解决的问题转化为一个已经解决或者比较容易解决的问题,从而获解.【重难点2.求函数值或函数的值域】(1)函数求值即用数值或字母代替表达式中的x ,而计算出对应的函数值的过程.注意所代入的数值或字母应满足函数的定义域要求.求函数值应遵循的原则:①已知的表达式求时,只需用a 替换表达式中的x .()f x ()f a ②求的值应遵循由里往外的原则.()f f a ⎡⎤⎣⎦③用来替换表达式中x 的数a 必须是函数定义域内的值.(2)求函数的值域,应根据各个式子的不同结构特点,选择不同的方法:①观察法:对于一些比较简单的函数,其值域可通过观察得到;②配方法:此方法是求“二次函数类”值域的基本方法,即通过配方把函数转化为能直接看出其值域的方法.求值域时一定要注意定义域的影响.如函数的值域与函数223y x x =-+223,{|0y x x x x =-+∈≤的值域是不同的;3}x <③分离常数法:此方法主要是针对有理分式,即将有理分式转化为“反比例函数类”的形式,便于求值域.分离常数的目的是为了减少“变量”,变换后x 仅出现在分母上,这样x 对函数的影响就比较清晰了;利用有理函数求值域的方法,间接地求解原函数的值域.在利用换元法求解函数的值域时,一定要注意换元后新元的取值范围,否则会产生错解.求新元的范围,要根据已知函数的定义域.【重难点3.函数解析式的求法】(1)已知函数的模型求函数解析式,常采用待定系数法,由题设条件求待定系数.(2)已知f (g (x ))=h (x ),求f (x ),常用的有两种方法:①换元法,即令t =g (x ),解出x ,代入h (x )中,得到一个含t 的解析式,即为所求解析式;②配凑法,即从f (g (x ))的解析式中配凑出“g (x )”,即用g (x )来表示h (x ),然后将解析式中的g (x )用x 代替即可.利用这两种方法求解时一定要注意g (x )的取值范围的限定.(3)已知f (x )与f (g (x ))满足的关系式,要求f (x )时,可用g (x )代替两边所有的x ,得到关于f (x )与f (g (x ))的方程组,消去f (g (x ))解出f (x )即可.常见的有f (x )与f (−x ),f (x )与.1()f x (4)所给函数方程含有两个变量时,可对这两个变量交替使用特殊值代入,或使这两个变量相等代入,再利用已知条件,可求出未知的函数,至于取什么特殊值,根据题目特征而定.三、题型分析(一).函数的定义域考点1.具体函数的定义域例1.(1)、(2022·四川·成都七中高二阶段练习(文))设集合,,则{A x y =={}1,0,1,2B =-( )A B = A .B .C .D .{}1,0-{}0,1,2{}1,2{}1,0,1-(2)、(2022·广西·平桂高中高二阶段练习(理))函数的定义域为___________.()f x =【变式训练1-1】、(2021·广西崇左市·崇左高中高一开学考试(文))函数的定义域()11f x x =+-为( )A .[)2,-+∞B .[)()2,11,-⋃+∞C .R D .(],2-∞-【变式训练1-2】、(2022·全国·高三专题练习)函数__________.()f x =考点2.抽象函数的定义域例2、(1)、(2022·江苏·高一)已知函数的定义域为,则函数的定义域为(21)y f x =+[]1,2-(1)=-y f x _________.(2)、(2022·黑龙江·双鸭山一中高二阶段练习)已知函数的定义域为,则函数()22f x -{}|1x x <的定义域为( )()211f x x --A .B .C .D .(,1)-∞(,1)-∞-()(),11,0-∞-- ()(),11,1-∞-- 【变式训练2-1】、(2021·上海市徐汇中学高一阶段练习)若函数的定义域为,则函数()f x []22-,的定义域是___________(21)f x -【变式训练2-2】、(2021·黑龙江大庆市·大庆中学高一开学考试)若函数的定义域为,则()y f x =[0,2]函数的定义域是__________.(2)()1f x g x x =-(二).求函数值或函数的值域考点3.一次函数、二次函数的值域的问题例3、(2022·浙江·金华市曙光学校高二阶段练习)已知函数f (x ),,则函数的值域2263x x =-+[]12x ∈-,是( )A .B .C .D .3[112-3[ 112,)[]111-,3112⎡⎤-⎢⎥⎣⎦【变式训练3-1】、(2021·浙江湖州市·湖州中学高一开学考试)若函数的定义域和值213()22f x x x =-+域都是,则( )[1,]b b =A .1B .3C .D .1或33-例4、(2022·江西省定南中学高二阶段练习(文))函数的值域为2y x = ( )A .B .C .D .15,8⎛⎤-∞- ⎥⎝⎦15,8⎛⎫-∞- ⎪⎝⎭15,8⎛⎫+∞ ⎪⎝⎭15,8⎡⎫+∞⎪⎢⎣⎭【变式训练4-1】、(2020·舒城育才学校高一月考)函数的值域是( )()f x x =+A .B .C .D .9,4⎡⎫+∞⎪⎢⎣⎭9,4⎛⎤-∞⎥⎝⎦[)2,+∞(],2-∞考点4.类“反比例”函数的值域的问题例5.(1)、(2021·新疆维吾尔自治区喀什第二中学高三阶段练习(理))函数值域是( )()211f x x =+A .B .C .D .(],1-∞[)1,+∞[)0,∞+(]0,1(2)、(2021·四川自贡·高一期中)函数的值域是( )2()1xf x x =+A .B .(),1-∞- ()1,+∞(),2-∞C .D .(),2-∞ ()2,+∞[)1,-+∞【变式训练5-1】、(2021·河南南阳·高一阶段练习)函数的值域为___________.21(),(2,1)(1,2)1x f x x x -=∈-- 【变式训练5-2】、(2021·浙江高二期末)已知函数,则函数的值域为( )2(),[2,6]1x f x x x +=∈-A .B .C .D .8,45⎡⎤⎢⎥⎣⎦8,[4,)5⎛⎤-∞⋃+∞ ⎥⎝⎦8,[4,)5⎛⎫-∞⋃+∞ ⎪⎝⎭8,45⎛⎫⎪⎝⎭考点5.“双勾”函数的值域问题例6、(2022·湖南娄底·高二学业考试)下列函数中,最小值为2的函数是( )A .B .()10y x x x=+<222y x x -=+C .D .()301y x x =+<<y =【变式训练6-1】.(2021·上海虹口区·高一期末)函数,的值域为__________.4()f x x x =+1,42x ⎡⎤∈⎢⎥⎣⎦(三).函数解析式的求法考点6.用换元法求函数的解析式例7.(1)、(2022·河南·临颍县第一高级中学高二阶段练习(文))已知,则()22143f x x +=+( ).()f x =A .B .C .D .224x x -+22x x+221x x --223x x ++(2)、(2022·山西运城·高二阶段练习)已知函数满足,则( )()f x 2(1)71f x x x -=--(2)f =A .1B .9C .D .1-13-【变式训练7-1】.(2020·广西南宁市东盟中学高一期中)已知是一次函数,满足()f x ,则( ).()3164f x x +=+()f x =A .B .C .D .64x +24x +223x -263x -【变式训练7-2】、(2022·江苏·高一)已知,则( )()14f x x +=-()0f f ⎡⎤=⎣⎦A .B .C .D .9-10-11-12-考点7.求一次、二次函数的的解析式例8、(1)、(2021·山东威海·高一期中)已知函数是一次函数,满足,则()f x (())1630f f x x =-__________.()f x =(2)、(2021·广东·珠海市华中师范大学(珠海)附属中学高一阶段练习)已知是一次函数,且()f x ,则解析式为___________.(1)32f x x +=+()f x ()f x =【变式训练8-1】、(2020·黑龙江·哈尔滨市第一二二中学校高一期中)若二次函数满足()f x ,.()()12f x f x x +-=()01f =(1)求的解析式;()f x (2)求在上的值域;()f x []0,2(3)若在上恒成立,求m 的取值范围.()2f x x m>+[]1,1-考点8.用消去法求函数的解析式(方程思想)例9.(2021·湖北·黄冈中学新兴分校高一期中)已知函数满足,则()f x ()2()23f x f x x +-=+___________.()f x =【变式训练9-1】、(2021·全国·高一课时练习)若,则______.()1324f x f xx ⎛⎫+= ⎪⎝⎭()f x =(四).函数的综合应用例10、(2020·四川·广安二中高一期中)已知函数满足:()f x )13f x =+(1)求的解析式;()f x (2)判断函数在区间上的单调性,并证明.()()2f x x g x x +=[)2,+∞【变式训练10-1】、(2022·江苏·高一)已知函数.()f x =(1)若函数定义域为,求的取值范围;R a (2)若函数值域为,求的取值范围.[0,)+∞a。
高中数学:求函数值域的方法十三种(一)
2
2
26
又 ∵ 在 [m, n] 上 当
x
增大时
f (x)
也
增
大
所
以
f (x)max f (n) f (x)min f (m)
3n 3m
m 4, n 0
解得
评注:解法 2 利用闭区间上的最值不超过整个定义域上的最值,缩小了 m ,n 的取值范围,
避开了繁难的分类讨论,解题过程简洁、明了。
(2) 求函数 y x(x a) 在 x [1 , 1] 上的最大值。
【解析】(1)二次函数的对称轴方程为 x a ,
当 a
1 2
即a
1 时, 2
f ( x )max
f ( 2 ) 4a 5 ;
当 a 1 2
即 a1 2
时,
f ( x )max f ( 1 ) 2a 2
。
f ( x )max 42aa52,,aa2121 。
y
x2 x2 x
x 1
x2 x x2
11 x 1
1
(x
1 1)2
3
不妨令:
24
f (x) (x 1)2 3 , g(x) 24
1 ( f (x) 0) 从而 f (x)
f
(
x)
3,
4
注意:在本题中应排
除
f
(x)
0 ,因为
f
(x)
作为分母。所以
g(x) 0,
3 4
故
y
1,1
3
f (x)max f (x)min
f (1) f (n)
3n 3m
,无解
④若
,则
f f
( x) max ( x) min
25.分离常数法和分离参数法
分离常数法与分离参数法一:分离常数法:是研究分式函数的一种代数变形的常用方法:主要的分式函数有22sin ;;;sin x x ax b ax bx c ma n m x n y y y y pa q cx d p x q mx nx p+++++====+++++等。
解题的关键是通过恒等变形从分式函数中分离出常数.1)用分离常数法求分式函数的值域例1:求函数31()2x f x x +=-(1)x ≤的值域 解:由已知有()()32213277()3.222x x f x x x x ⎡⎤⎣⎦-++-+===+---。
由1x ≤,得 21x -≤-。
所以1102x -≤<-。
故函数f(x)的值域为{}:43y x -≤<. 2)用分离常数法判断分式函数的单调性例2:已知函数f(x)=(),x a a b x b+≠+,判断函数f(x)的单调性。
解:由已知有f(x) =()1,x b a b a b x b x b x b++--=+≠++.所以,当0a b ->时,函数f(x)在(,)b -∞-和(,)b -+∞上是减函数;当a -b<0时,函数f(x)在(,)b -∞-和(,)b -+∞上是增函数。
3)用分离常数法求分式函数的最值例3:设x>-1,求函数f(x)= 27101x x x +++的最小值。
解:因为x>-1,所以x+1>0.f(x)= ()()211711101x x x +-++-+⎡⎤⎡⎤⎣⎦⎣⎦+()()215141x x x ++++=+4(1)51x x =++++4(1)51x x =++++当且仅当, 411x x +=+,即x=1时,等号成立。
所以当x=1时,f(x)取得最小值9.二:分离参数法分离参数法是求参数的最值范围的一种方法。
通过分离参数,用函数的观点讨论主变元的变化情况,由此我们可以确定参数的变化范围。
这种方法可以避免分类讨论的麻烦,从而使问题得以顺利解决。
函数的定义域与值域求法典型例题(解析版)
专题13:函数的定义域与值域求法典型例题(解析版)函数定义域的常见其一、已知函数解析式型即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。
例1、求函数yx 2 2x 15的定义域。
x 3 82 x 5或x3 x 2x 15 0解:要使函数有意义,则必须满足即 x 5且x 11 x 3 8 0解得x 5或x 3且x 11即函数的定义域为x x 5或x 3且x 11 。
二、抽象函数型抽象函数是指没有给出解析式的函数,不能用常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的定义域,一般有两种情况。
(一)已知f (x )的定义域,求f g (x ) 的定义域。
其解法是:已知f (x )的定义域是[a ,b ]求f g (x ) 的定义域是解a g (x ) b ,即为所求的定义域。
例2、已知f (x )的定义域为[ 2,2],求f (x 1)的定义域。
2解: 2 x 2, 2 x 1 2,解得 3 x 23即函数f (x 1)的定义域为x 3 x 3(二)已知fg (x ) 的定义域,求f (x )的定义域。
2其解法是:已知f g (x ) 的定义域是[a ,b ]求f (x )的定义域的方法是:a x b ,求g (x )的值域,即所求f (x )的定义域。
例3、已知f (2x 1)的定义域为[1,2],求f (x )的定义域。
解: 1 x 2, 2 2x 4, 3 2x 1 5。
即函数f (x )的定义域是x |3 x 5 。
三、逆向思维型即已知所给函数的定义域求解析式中参数的取值范围。
特别是对于已知定义域为R ,求参数的范围问题通常是转化为恒成立问题来解决。
例4、已知函数ymx 2 6mx m 8的定义域为R 求实数m 的取值范围。
22分析:函数的定义域为R ,表明mx 6mx m 8 0,使一切x R 都成立,由x 项的系数是m ,所以应分m 0或m 0进行讨论。
函数专题:函数值域的6种常用求法-【题型分类归纳】
函数专题:函数值域的6种常用求法一、函数的最大(小)值1、最大值:对于函数y=f(x),其定义域为D,如果存在x0∈D,f(x)=M,使得对于任意的x∈D,都有f(x)≤M,那么,我们称M是函数y=f(x)的最大值,即当x=x0时,f(x0)是函数y=f(x)的最大值,记作y max=f(x0).2、最小值:对于函数y=f(x),其定义域为D,如果存在x0∈D,f(x)=M,使得对于任意的x∈D,都有f(x)≥M,那么,我们称M是函数y=f(x)的最小值,即当x=x0时,f(x0)是函数y=f(x)的最小值,记作y min=f(x0).3、几何意义:函数最大值对应图象中的最高点,最小值对应图象中的最低点,它们不一定只有一个.二、求函数值域的6种常用求法1、单调性法:如果一个函数为单调函数,则由定义域结合单调性可快速求出函数的最值(值域).(1)若函数y=f(x)在区间[a,b]上单调递增,则y max=f(b),y min=f(a).(2)若函数y=f(x)在区间[a,b]上单调递减,则y max=f(a),y min=f(b).(3)若函数y=f(x)有多个单调区间,那就先求出各区间上的最值,再从各区间的最值中决定出最大(小)值.函数的最大(小)值是整个值域范围内的最大(小)值.2、图象法:作出函数的图象,通过观察曲线所覆盖函数值的区域确定值域,以下函数常会考虑进行数形结合.(1)分段函数:尽管分段函数可以通过求出每段解析式的范围再取并集的方式解得值域,但对于一些便于作图的分段函数,数形结合也可很方便的计算值域.(2)()f x的函数值为多个函数中函数值的最大值或最小值,此时需将多个函数作于同一坐标系中,然后确定靠下(或靠上)的部分为该()f x函数的图象,从而利用图象求得函数的值域.3、配方法:主要用于二次函数或可化为二次函数的函数,要特别注意自变量的取值范围.4、换元法:换元法是将函数解析式中关于x 的部分表达式视为一个整体,并用新元t 代替,将解析式化归为熟悉的函数,进而解出最值(值域).(1)在换元的过程中,因为最后是要用新元解决值域,所以一旦换元,后面紧跟新元的取值范围. (2)换元的作用有两个:①通过换元可将函数解析式简化,例如当解析式中含有根式时,通过将根式视为一个整体,换元后即可“消灭”根式,达到简化解析式的目的.②可将不熟悉的函数转化为会求值域的函数进行处理 5、分离常数法:主要用于含有一次的分式函数,形如+=+ax b y cx d或2++=+ax bx e y cx d (a ,c 至少有一个不为零)的函数,求其值域可用此法以+=+ax by cx d为例,解题步骤如下: 第一步,用分子配凑出分母的形式,将函数变形成=++a ey c cx d的形式, 第二步,求出函数=+e y cx d 在定义域范围内的值域,进而求出+=+ax by cx d的值域。
巧用分离常(参)数法进行等价转化——高中数学解题基本方法系列讲座(8)
前 n 项和为 Sn, 且 S1+a1, S3+a3, S2+a2 成等差数列.
20 广东教育·高中 2018 年第 2 期
(1) 求{an}的通项公式;
(2)
若数列{bn}满足an+1=(
1 2
)anbn,
Tn 为数列{bn}前 n 项和,
若 Tn >m 恒成立, 求 m 的最大值.
【解析】 (1) 由题意可知: 2(S3+a3)=(S1+a1)+(S2+a2),∴S3-
2
3
上是增函数, 则实数 a 的取值范围 ______.
【解析】 ∵f′(x)=x+2a- 1 ≥0 在[ 1 ,2]恒成立, 即 2a≥-x+
x
3
1 x
在[
1 3
,2]恒成立,
∵(-x+
1 x
)max=
8 3
,
∴2a≥
8 3
,
即 a≥
4 3
.
二、 分离参数法
分离参数法是求参数的取值范围的一种常用方法, 通过
,
y=
ax2+bx+c mx2+nx+p
,
y=
m·ax+n p·ax+q
,
y=
m·sinx+n p·sinx+q
等,
解题的关键是通过恒等变形从分式函数中分离
出常数.
例 2. 函数 y= x2+2 (x>1) 的最小值是 ( ) x-1
A. 2 姨 3 +2 B. 2 姨 3 -2 C. 2 姨 3 D. 2
(
)((2x-2, x≥3
取值范围的四种常用方法-讲义(教师版)
取值范围的四种常用方法在圆锥曲线的取值范围类问题中,我们得到了讨论对象的最终表达式后,不可避免地要进行函数值域的研究. 在这些最终表达式里面,分式型的函数是最令人感到头疼的.求解分式型函数的值域,关键是利用换元等手段将其转成我们常见的函数形式.一、分离常数经典例题1.求函数的值域.【答案】【解析】,由于,故有,【标注】【知识点】求函数的值域题目分析方法一:用【分离常数】求的值域------------------------------【观察特征+解题动作】------------------------------------------------------------【一气呵成】------------------------------观察特征解题动作①分子和分母次数 相同尝试分离常数得②分离常数后,分式部分的分子为 常数只需研究分母值域即可巩固练习(1)(2)2.已知椭圆,若、是椭圆上关于轴对称的任意两点,设,连接交椭圆于另一点.求证:直线过定点,并求出点的坐标.过点的直线交椭圆于,两点,求的取值范围.【答案】(1)(2)直线过轴上的定点.的取值范围是.【解析】(1)(2)根据对称性易得:若直线过定点,则该定点一定在轴上.由题意可知直线的斜率存在,设直线的方程为,由消去得,设点,,所以,,又因为,所以直线的方程为,又因为,所以直线的方程为,令,得,将,代入上式并整理,得,整理得,所以,直线过轴上的定点.当过点的直线的斜率不存在时,直线的方程为,,,此时,当过点的直线的斜率存在时,设直线的方程为,且,在椭圆上,由,得,则,故有,,从而,所以,由,得,综上,的取值范围是.【标注】【知识点】椭圆的标准方程;直线和椭圆的位置关系;定点问题;向量问题(1)(2)3.的圆心为,直线过点且与轴不重合,交圆于,两点,过作的平行线交于点.证明为定值,并写出点的轨迹方程;设点的轨迹为曲线,直线交于,两点,过且与垂直的直线与圆交于,两点,求四边形面积的取值范围.【答案】(1)(2)证明见解析;点的轨迹为一个椭圆,方程为,()【解析】(1)圆的方程整理为,点的坐标为,如图,–6–5–4–3–2–112345y–5–4–3–2–112345O x,∴,∵,∴,,∴,(2),又,所以点的轨迹为一个椭圆,方程为,();–5–4–3–2–112345y–4–3–2–11234O x;设,因为,所以,联立,得;则;圆心到的距离,所以,.【标注】【知识点】面积问题;最值问题四边形二、换元法-双勾型经典例题4.求函数的值域.【答案】【解析】令,则有,,由于在上单调递增,故有,【标注】【知识点】求函数的值域题目分析方法二:用【换元法】,结合【双勾函数】求的值域------------------------------【观察特征+解题动作】------------------------------------------------------------【一气呵成】------------------------------在上单调递增.观察特征解题动作①分母比分子次数更高换元令,则②新元形式为确定新元范围③分子只有一项且不为0同除分子,出现双勾形式巩固练习(1)(2)5.已知椭圆,过点作倾斜角互补的两条不同直线,,设与椭圆交于、两点,与椭圆交于,两点.若为线段的中点,求直线的方程.记,求的取值范围.【答案】(1).(2).【解析】(1)(2)设直线的方程为,即,设,,由,消可得,∴,,∵为线段的中点,∴,解得,∴直线的方程为,即为.由()可知,,设直线的方程为,即,同理可得,∴,当时,,当且仅当时取等号,当时,当且仅当时取等号,∴,∴,∵由于与是不同的直线,斜率,∴,∴的取值范围.【标注】【知识点】直线和椭圆的位置关系(1)(2)6.在平面直角坐标系中,已知定点,点在轴的非正半轴上运动,点在轴上运动,满足,点关于点的对称点为,设点的轨迹为曲线.求曲线的方程.已知点,动直线与相交于,两点,求过,,三点的圆在直线上截得的弦长的最小值.【答案】(1)(2)..【解析】方法一:方法二:(1)方法一:(2)设,,,因为,所以,所以,又点为的中点,所以,①,所以②,将①,②式代入,得,所以曲线的方程为.如图,过点作轴的垂线,垂足为,交的延长线于点,连接,因为为的中点,所以也为的中点,易证≌,所以,,易证≌,所以,由得点在直线上,即为点到直线的距离,由抛物线的定义可知,点的轨迹是以为焦点,为准线的抛物线,所以曲线的方程为.由()可知,抛物线的方程为,令,得,设,,方法二:由于点,关于轴对称,所以过,,三点的圆的圆心在轴上,设,由得,,化简并整理得,圆的方程为,令,解得,,所以圆在直线上截得的弦长为,又因为,且,所以,所以,当且仅当,即或(舍去)时取等号,所以当时,圆在直线上截得的弦长的最小值为.由()可知,抛物线的方程为,令,得,设,,由于点,关于轴对称,所以过,,三点的圆的圆心在轴上,设,由得,,化简并整理得,设圆在直线上截得的弦为,由垂径定理得,所以,又因为,且,所以,所以,当且仅当,即或(舍去)时取等号,所以当时,圆在直线上截得的弦长的最小值为.【标注】【知识点】最值问题;向量问题;抛物线与圆结合(1)(2)7.已知椭圆,直线与椭圆交于不同的两点、.若,求的值.试求(其中为坐标原点)的最大值.【答案】(1)(2)..【解析】(1)(2)由,消去并整理得,∵直线与椭圆交于不同的两点、,∴,即,设,,则,,,即,解得.∵,,∴,∵,∴,即的最大值为.(当且仅当时,取得最大值)【标注】【知识点】直线和椭圆的位置关系;弦长求解问题;最值问题(1)(2)8.已知抛物线的焦点为,直线与轴的交点为,与曲线的交点为,且.求抛物线的方程.过点任意作互相垂直的两条直线,,分别交曲线于点,和,.设线段,的中点分别为,.求面积的最小值.【答案】(1)(2)..【解析】(1)延长交直线于点,(2)则,∵,∴,即点为线段中点,∵点坐标为,∴点坐标为,∵点在抛物线上,∴,∴,∴抛物线的方程为.不妨设直线和的方程分别为和,设,,,,联立,得,由韦达定理知,,∴,∴点的坐标为,∴,联立得,由韦达定理知,,∴,∴点的坐标为,∴,∵,∴,∵,∴,当且仅当时取等号,∴的最小值为.【标注】【知识点】面积问题;最值问题三、换元法-二次型经典例题9.求函数的值域.【答案】【解析】令,则有,.故有,函数值域为.【标注】【知识点】求函数的值域题目分析方法三:用【换元法】,结合【二次函数】求的值域------------------------------【观察特征+解题动作】------------------------------------------------------------【一气呵成】------------------------------在处取最大值 .观察特征解题动作①分母是某个整体的完全平方换元令,则②分母只有一项分子依次除以分母,③这是复合的二次函数形式配方,巩固练习(1)(2)10.已知椭圆:的左右两个焦点分别为,,以坐标原点为圆心,过,的圆的内接正三角形的面积为,以为焦点的抛物线:的准线与椭圆的一个公共点为,且.求椭圆和抛物线的方程.过作相互垂直的两条直线,其中一条交椭圆于,两点,另一条交抛物线于,两点,求四边形面积的最小值.【答案】(1)(2)抛物线,椭圆..【解析】(1)由题意得,圆半径为,故内接正三角形的面积为,∴,即抛物线,又,,故,(2)∴,∴,∴椭圆.由已知得直线的斜率存在,记为.①当时,,,故,②当时,设,代入,得:,则,,∴,此时,,代入得:,则,,∴,∴,令,,综上,.【标注】【知识点】最值问题;面积问题;椭圆的标准方程四边形四边形四边形登堂入室(1)(2)11.已知圆的圆心为,点是圆上的动点,点,点在线段上,且满足.求点的轨迹的方程.过点作斜率不为的直线与()中的轨迹交于,两点,点关于轴的对称点为,连接交轴于点,求面积的最大值.【答案】(1)(2)..【解析】(1)方法一:(2),.∵,∴,即.又在线段上,∴.又,∴点轨迹是以,为焦点的椭圆,设的轨迹方程为,则,即,,∴,∴点的轨迹方程为.:设斜率为,设,,则,则,,∴,,,∴,,,.所在直线:,当时,,∴,方法二:点到直线的距离为,.令,则,令,,令,则,最大值在此处取得.∴,,.由题意可知直线斜率存在且不为,设直线的方程为,,,则,联立方程组,消元得:,由可得,解得.由根与系数的关系可得:,,∴,直线的方程为,令可得,即,∴到直线的距离,∴,令,则,∴.∴当时,取得最大值,∴的最大值为.【标注】【知识点】最值问题四、判别式法经典例题12.求函数的值域.【答案】【解析】视为参数,由于对有,即恒有,则的值域即为使方程关于有解的值.整理得关于有解,讨论:当时,方程有解.当时,由解得且.综上,的值域为.【标注】【知识点】求函数的值域题目分析方法四:用【判别式法】求的值域【核心思路】值域的意义:函数所有可能取到的值的集合. 值域里的所有值都有对应的值,也即把这条式子看作一个关于的方程,使这个方程有解的值的集合即为的值域.------------------------------【观察特征+解题动作】------------------------------这个形式虽然可以使用换元,但已经可以想见后续过程会比较丑陋,因此考虑使用判别式法.------------------------------【一气呵成】------------------------------当时,方程化为 ,有解.当时:由,解得且.综上,.观察特征解题动作①分子和分母次数 相同尝试分离常数得观察特征解题动作①分母判别式为 负 ,分母恒 正设为参数,移项得:②这可能是一个一次或者二次方程根据是否等于 进行分类讨论巩固练习(1)(2)13.已知椭圆:()的离心率为,直线与椭圆仅有一个公共点.求椭圆的方程.直线被圆:所截得的弦长为,且与椭圆交于、两点,求面积的最大值.【答案】(1)(2)..【解析】(1)(2)由,得,即,∴,则椭圆方程为,联立,消去得,,由,解得:.∴椭圆方程为:.∵直线被圆:所截得的弦长为,∴原点到直线的距离为.①当直线的斜率不存在时,直线的方程为,代入椭圆,得,不妨设,,则;②当直线的斜率存在时,设直线的方程为,即,由,得.联立,消去得,.,,∴.设,令,则,当时,可得,符合题意;当时,由,得且.综上,.∴当斜率存在时,.综①②可知,面积的最大值为.【标注】【知识点】直线和椭圆的位置关系;面积问题(1)(2)14.已知椭圆经过点,且右焦点.求椭圆的标准方程.过的直线交椭圆于,两点,记,若的最大值和最小值分别为,,求的值.【答案】(1)(2)..【解析】(1)(2)由椭圆的右焦点为,知,即,则:,,又椭圆过点,则,又,求得.∴椭圆方程:.当直线斜率存在时,设的方程为,,,由得,即,∵在椭圆内部,,∴,则,,③,将①②代人③得∴,∴,,①②则,∴,即,又,是的两根,∴,当直线斜率不存在时,联立得,不妨设,,,,.可知.综上.【标注】【知识点】直线和椭圆的位置关系;最值问题;向量问题方法总结研究分式型函数的值域有许多方法,在具体解题过程当中,我们常进行如下的判断与动作:1、判次数:分子次数大于或等于分母时需进行分离常数;2、选基准:换元时常以次数较低或已成整体(主要是完全平方)的部分为基准进行换元;3、凑常见:换元后常将函数整理成一次、二次、双勾函数以及它们的倒数与复合形式;4、定主元:在上述过程中,若系数不方便计算,考虑使用判别式法(主元法)计算值域.注意事项1、换新元要确定新元的取值范围,解值域要判断自变量的取值范围,常见限制包括:①圆锥曲线中和的有界性,如椭圆中、;②交点相关问题中,参数(如直线中的)应使联立所得二次方程的;③圆锥曲线焦半径的取值范围,如椭圆中焦半径的取值范围是.2、基本不等式难解取值范围,在最值问题中存在无法取等的可能性,使用时要谨慎!3、判别式法在自变量限制不多时比较好用,复杂情况下升级为根的分布问题,得不偿失.【备注】形式判断只能确定大方向,若函数在形式上同时适用几种不同的方法,不需要纠结孰优孰劣.登堂入室(1)(2)15.已知抛物线的焦点为,是抛物线上的一点,.求抛物线的方程.过点的直线与抛物线交于、两点,且为线段的中点,若线段的中垂线交轴于,求面积的最大值.【答案】(1)(2)..【解析】(1)(2)设点的坐标为,依题意得,,即,∴,,∴代入抛物线方程,即,∴(舍去)或,所以抛物线的方程为.由题意可得,直线的斜率存在,所以设直线的方程为,,,联立得,∴,由根与系数的关系得,因为是线段的中点,所以有,即,①,即,∴,②中垂线的方程为:,令得,【备注】【提示】有的式子换元后也许不太能直接判断单调性,这时可以考虑强行求导求得最值.所以点,设点到直线的距离为,则,弦长,所以,.,由②式可得:,令,则,又,由②式得到即,∴,换元,,,∴,,单调递增;,,单调递减,故函数,此时,,所以得:,,直线的方程,所以,面积的最大值为.【标注】【知识点】面积问题;最值问题;直线和抛物线的位置关系;抛物线的标准方程登峰造极(1)(2)16.已知椭圆的焦点与抛物线的焦点重合,且椭圆的右顶点到的距离为.求椭圆的方程.设直线与椭圆交于,两点,且满足,求面积的最大值.【答案】(1)(2)..【解析】(1)(2)设椭圆的半焦距为,依题意,可得,且,,,.∴椭圆的方程为.依题意,可设直线,的斜率存在且不为零,不妨设直线,则直线,联立:得,则.同理可得:,∴的面积为:,当且仅当,即是面积取得最大值.【标注】【知识点】椭圆与抛物线结合;面积问题;最值问题【备注】【提示】分式换元时,我们无法用3次项来表示4次项(3次项能表示的是6次、9次等……). 那么能否同时改变分子和分母的次数,使其变成可以用分子来表示分母的形式呢?五、补充练习:求参数取值范围经典例题(1)(2)17.已知双曲线的焦点在轴上,焦距为,且的渐近线方程为.求双曲线的方程.若直线与椭圆及双曲线都有两个不同的交点,且与的两个交点和满足(其中为原点),求的取值范围.【答案】(1).(2).【解析】(1)(2)依题意设双曲线的方程为,则,,又,于是由,故的方程为.将代入得,由直线与椭圆有两个不同的交点得,即①,将代入得,由直线与双曲线有两个不同的交点,得,即且②,设,,则,,得,而,于是,解此不等式得,或③,由①,②,③得,或,故的取值范围为.【标注】【知识点】数量积的坐标表达式;双曲线的标准方程;向量问题。
分离常数法
分离常数法
李雨
【期刊名称】《数理天地:初中版》
【年(卷),期】2022()11
【摘要】在求解一些较为复杂的分式或“反比例型函数”等数学问题时,常运用下面的变形技巧:ax+b/cx+b=a/c(cx+d)-ad/c+b/cx+d=a/c+b-
ad/c/cx+d(c≠0,d≠0),这一变形技巧我们称为“分离常数法”.利用“分离常数法”可以将分式问题或“反比例型函数”问题转化,从而较容易地解决问题.
【总页数】2页(P17-18)
【作者】李雨
【作者单位】山东省青岛西海岸新区辛安初级中学
【正文语种】中文
【中图分类】G634.6
【相关文献】
1.分离常数法与分离参数法的应用
2.分离常数法与分离参数法的应用
3.分离常数法解决高考导数恒成立问题
4.待定常数化解分离参数法之困惑
5.恒成立之分离常数
法
因版权原因,仅展示原文概要,查看原文内容请购买。
专题01 分离变换法(解析版)
备战2022高考数学冲刺秘籍之恒成立与有解问题解法大全第一篇 专题一 分离变换法一、分离变换法:分离变换是解决方程、不等式有解,不等式恒成立最常用的方法,根据分离对象的不同可分为分离常数法、分离整式法、分离参数法及分离函数法。
二、方法详解 (一)分离常数法分离常数法是研究分式形式函数的一种代数变形的常用方法,主要的分式函数有ax b y cx d+=+,22ax bx cy mx nx p ++=++,x x m a ny p a q⋅+=⋅+,sin sin m x n y p x q ⋅+=⋅+ 等.解题的关键是通过恒等变形从分式函数中分离出常数. 【例】已知a >0,设函数f (x )=2 018x +1+2 0162 018x +1(x ∈[-a ,a ])的最大值为M ,最小值为N ,那么M +N =( ) A .2 016B .2 018C .4 032D .4 034【解析】由题意得f (x )=2 018x +1+2 0162 018x +1=201820182018220181x x⨯+-+=2 018-22 018x +1。
因为y =2 018x +1在[-a ,a ]上是单调递增的,所以f (x )=2 018-22 018x +1在[-a ,a ]上是单调递增的,所以M =f (a ),N =f (-a ),所以M +N =f (a )+f (-a )=4 036-22 018a +1-22 018-a +1=4 034。
故选D 。
【例】若对任意实数x 恒有222231x a a x +<<+,求实数a 的取值范围.【分析】从22231x x ++中分离出2,使分子为常数,便于求范围。
【解析】因为222231211x x x +=+++,由2221100122311x x x ≥⇒<≤⇒<+≤++,所以223a a ≤⎧⎨>⎩,2a a <<≤。
分离常数法和分离参数法的应用
分离常数法和分离参数法的应用一、分离常数法(Method of Separation of Constants):分离常数法是一种用于求解可分离变量的微分方程的方法,通过将方程中包含未知函数的部分与不包含未知函数的部分分离开来进行求解。
而在求解积分问题时,我们可以将分离常数法应用到具有形式为f(x)dx形式的积分中。
具体的步骤如下:1.结合使用分部积分法和分离变量法;2.对被积函数进行化简,找到可以通过分离常数的方式进行拆分的部分;3.将被积函数拆分为可分离的部分,每个部分中只包含未知函数一次;4.对各个拆分得到的部分进行积分,加上一个常数项,得到每个部分的原函数;5.再将各个部分相加,得到原方程的解。
例如,对于形如∫f(x)dx的积分问题,我们可以通过拆分f(x)为可分离的部分来进行计算。
比如,对于∫(2x+3)dx,我们可以将其拆分为∫2xdx+∫3dx,然后分别进行积分得到x^2+3x+C1+C2,其中C1和C2为常数。
二、分离参数法(Method of Separation of Parameters):分离参数法是一种将参数从被积函数中分离出来的方法,通过将被积函数表示成两个乘积之和的形式,其中一个乘积只依赖于未知函数,而另一个乘积只依赖于参数,进而将积分问题化简。
具体的步骤如下:1.将被积函数表示为两个乘积之和的形式,其中一个乘积只依赖于未知函数,而另一个乘积只依赖于参数;2.将积分问题化简为两个可分离变量的积分问题;3.分别对两个可分离变量的积分问题进行求解;4.将两个积分问题的解相乘,得到原积分问题的解。
例如,对于形如∫f(x,a)dx的积分问题,我们可以通过将被积函数表示为f(x,a) = g(x)h(a)的形式进行计算。
比如,对于∫(x+a)dx,我们可以将其分解为∫xdx+∫adx,然后分别进行积分得到0.5x^2+ax+C1+C2,其中C1和C2为常数。
无论是分离常数法还是分离参数法,它们都是常用的求解定积分的方法。
函数问题中分离参数求参数范围的策略
函数问题中分离参数求参数范围的策略摘要:在近年的高考试题中,导数的应用一直是常考、常热、常难的内容。
特别在这类函数问题的解决中,经常会遇到诸如指数函数、对数函数等比较复杂的函数与较为简单的函数(如一次函数、二次函数等)的和或商等,在某个不等式恒成立的情况下,求参数范围的问题。
对这类问题的解决,也有不同的方法和技巧,在解决的过程中好的方法和技巧会使解题变得简单易行。
本文就探讨函数问题中分离参数求参数范围的策略。
关键词:函数问题参数范围策略对于函数问题中求参数范围问题的解决,大体有以下三种方法:分离常数法或分离参数法、分离函数法、利用函数的单调性、极值及其最值的方法。
下边仅对分离常数(参数)法进行说明。
一、在给定区间上,含参数的不等式恒成立或有解的条件依据例1:(2010年,福建师大附中20)已知函数f(x)=xlnx。
(1)求函数f(x)的最小值。
(2)若对所有的x≥1都有f(x)≥ax-1,求实数a的取值范围。
解:该题的解决采用的是直接分离常数(1)略。
(2)依题意,得f(x)≥ax-1在x∈[1,+∞)上恒成立。
即a≤lnx+对于x∈[1,+∞)恒成立,令g(x)=lnx+,则g′(x) =-=(1-)。
当x≥1时,因为g′(x) =(1-)≥0,所以g(x)在x∈[1,+∞)内是增函数。
所以g(x)min=g(1)=1,所以a∈(-∞,1]。
例2:已知二次函数f(x)=ax2+bx+c,满足f(0)=f(1)=0,且f(x)的最小值是-。
(1)求f(x)的解析式。
(2)对任意正数x,恒有f(x)+f()≥(x+)lnm,求实数m 的取值范围。
解:本例的第二问是对含参数的式子lnm进行分离。
(1)略, f(x)=x2+x。
(2)由(1)知,f(x)+f()=x2-x+-=(x+)2-2-(x+),不等式f(x)+f()≥(x+)lnm①,可化为(x+)2-2-(x+)≥(x+)lnm。
因为x>0所以x+≥2(当且仅当x=1时取“=”),设x+=t(t≥2),不等式①可化为t2-2-t≥t·lnm,lnm≤t--1②对于t≥2恒成立。
分离常数参数法-高考理科数学解题方法讲义
(2)设,求使对任意恒成立的实数的取值范
围.
【答案】(1);(2).
【解析】
(1)因为,所以
所以当时,,
又,满足上式,
所以数列的通项公式
(2)
由对任意恒成立,即使对恒成立
设,则当或时,取得最小值为,所以.
2.2 求定点的坐标
例7.已知直线:,,求证:直线恒过定点.
【答案】.
【反思提升】综合上面的例题,我们可以看到,分离参(常)数是通过将两个变量构成的不等式(方程)变形到不等号(等号)两端,使两端变量各自相同,解决有关不等式恒成立、不等式存在(有)解和方程有解中参数取值范围的一种方法.两个变量,其中一个范围已知,另一个范围未知,解决问题的关键是分离变量之后将问题转化为求函数的最值或值域的问题.分离变量后,对于不同问题我们有不同的理论依据需遵循.
(Ⅱ)由(Ⅰ)可得 ,
∴函数 在 上单调递增,
又 ,
∴ ,
∴ .
∴函数 的值域为 .
(Ⅲ)当 时, .
由题意得 在 时恒成立,
∴ 在 时恒成立.
令 ,
则有 ,
∵范围为 .
例2.一种作图工具如图1所示. 是滑槽 的中点,短杆 可绕 转动,长杆 通过 处铰链与 连接, 上的栓子 可沿滑槽AB滑动,且 , .当栓子 在滑槽AB内作往复运动时,带动 绕 转动一周( 不动时, 也不动), 处的笔尖画出的曲线记为 .以 为原点, 所在的直线为 轴建立如图2所示的平面直角坐标系.
例1.已知函数 ( 且 )是定义在 上的奇函数.
(Ⅰ)求 的值;
(Ⅱ)求函数 的值域;
(Ⅲ)当 时, 恒成立,求实数 的取值范围.
【答案】(Ⅰ) ;(Ⅱ) ;(Ⅲ) .
分离常数法和分离参数法的应用
分离常数法和分离参数法的应用分离常数法是一种用于求解一阶常微分方程的方法。
它适用于形如dy/dx = f(x)g(y)的一阶常微分方程,其中f(x)和g(y)是关于x和y的函数。
分离常数法的基本思路是将方程中的dy和dx分开,然后将变量分离,使得方程两边只包含x或y中的一个变量。
具体步骤如下:1. 将方程表示为f(y)dy = g(x)dx的形式。
2. 对方程两边积分,得到∫f(y)dy = ∫g(x)dx。
3. 分别求解∫f(y)dy和∫g(x)dx,得到F(y)和G(x)。
4.利用等式F(y)=G(x)表示关系式,进一步求解y的表达式。
5.将得到的y的表达式代入原方程,求解出x的表达式。
分离参数法是一种用于求解二阶常微分方程的方法。
它适用于形如d²y/dx² = f(x)g(y)的二阶常微分方程,其中f(x)和g(y)是关于x和y 的函数。
分离参数法的基本思路是将二阶常微分方程化为两个一阶常微分方程,然后利用分离常数法求解得到两个方程的通解,最后再根据边界条件确定常数。
具体步骤如下:1. 将二阶常微分方程表示为dy/dx = f(x)g(y)的形式。
2. 令dy/dx = p,则d²y/dx² = dp/dx。
3. 将dp/dx = f(x)g(y)代入d²y/dx² = dp/dx,得到dp =f(x)g(y)dx。
4. 将dp/f(y) = g(y)dx两边积分,得到∫dp/f(y) = ∫g(y)dx。
5. 分别求解∫dp/f(y)和∫g(y)dx,得到P(p, y)和X(x)。
6.利用等式P(p,y)=X(x)表示关系式,进一步求解y的表达式。
7.将得到的y的表达式代入原方程,求解出x的表达式。
分离常数法和分离参数法的应用广泛。
它们可以用于求解各种形式的常微分方程,例如指数函数、三角函数、对数函数等。
在物理学、工程学、经济学以及其他领域中,常微分方程是描述自然、社会和经济现象的基本工具。
解题少弯路 分离来相助
解题少弯路分离来相助作者:***来源:《中学数学杂志(高中版)》2020年第01期[摘要]在不等式與零点问题中,经常会遇到求参数或字母的范围,如何减少计算、避免字母讨论是个值得探讨的问题,在问题的求解中,如果能够适当用上分离常数、分离参数、分离函数等分离的方法,常可少走弯路收到以简驭繁的效果。
[关键词]分离常数;分离参数;分离函数;变式练习不等式恒成立、能成立、最值、零点问题,求参数范围,是高考的热点问题,在客观题、主观题中均有考查,由于大多数求参数取值范围问题,常常要用到分类讨论,而含字母分类讨论又恰好是个难点,不易把握如果能够用分离的方法,往往可避免讨论少走弯路思路自然,从而收到化繁为简事半功倍的效果下面介绍几种常用的分离方法,供有兴趣的师生参考。
1 分离常数分离常数法主要用于解决分式函数的值域、最值、单调性等问题。
评注试题结合函数的单调性、图象的渐近线、数列是离散的函数等特征,利用分离常数,确定函数的渐近线,从而准确定位函数的图象,分离常数精准定位、准确计算、少走弯路。
同时本题也是一道典型的数列与离散型反比例函数交汇的试题。
是很值得平时训练的一道好题。
2 分离参数分离参数法包括参变量完全分离、参变量部分分离、参变量讨论分离等,分离参数法主要用于解决函数的零点,不等式的恒成立、有解等问题。
2.1 参变量完全分离评注参变量部分分离是对参变量完全分离的变通处理,可以灵活分配左右两边的函数结构,达到以简驭繁的效果。
分配的原则是容易画出左右两边函数的图象(一般是一边一次函数另一边是有渐近线的函数为佳),观察两边的函数图象并求出参数范围。
2.3 参变量讨论分离评注对于原函数中含有lnx.e x等函数的恒成立问题,如果原函数求导后比较复杂难以求解,此时往往可以考虑分离函数lnx,e x(或lnx,e x与x的乘除搭配)到另一边,然后两边分别求最值进行比较大小。
附:lnx,e x与x的乘除搭配常用图象。
吉林省长春外国语学校新高考数学中“多选题”的类型分析及解析
一、函数的概念与基本初等函数多选题1.已知函数()3log,092sin,917 44x xf xx xππ⎧<<⎪=⎨⎛⎫+≤≤⎪⎪⎝⎭⎩,若()()()()f a f b f c f d===,且a b c d<<<,则()A.1ab=B.26c dπ+=C.abcd的取值范围是()153,165D.+++a b c d的取值范围是31628,9⎛⎫⎪⎝⎭【答案】ACD【分析】作出函数()f x的图象,利用对数的运算性质可判断A选项的正误,利用正弦型函数的对称性可判断B选项的正误;利用二次函数的基本性质可判断C选项的正误;利用双勾函数的单调性可判断D选项的正误.【详解】由3log2x≤可得32log2x-≤≤,解得199x≤≤.作出函数()f x的图象如下图所示:由图象可得1191115179a b c d<<<<<<<<<,由33log loga b=,可得33log loga b-=,即()333log log log0a b ab+==,得1ab=,A选项正确;令()442xk k Zππππ+=+∈,解得()41x k k Z=+∈,当()9,17x∈时,令94117k<+<,解得24k<<,由于k Z∈,3k∴=,所以,函数[]()2sin 9,1744x y x ππ⎛⎫=+∈ ⎪⎝⎭的图象关于直线13x =对称, 则点()(),c f c 、()(),d f d 关于直线13x =对称,可得26c d +=,B 选项错误; ()()()22613169153,165abcd c c c =-=--+∈,C 选项正确;126a b c d a a +++=++,下面证明函数1y x x =+在()0,1上为减函数, 任取1x 、()20,1x ∈且12x x <,则()12121212121111y y x x x x x x x x ⎛⎫⎛⎫⎛⎫-=+-+=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()1212211212121x x x x x x x x x x x x ---=-+=, 1201x x <<<,则120x x -<,1201x x <<,所以,12y y >, 所以,函数1y x x=+在()0,1上为减函数, 119a <<,则13162628,9a b c d a a ⎛⎫+++=++∈ ⎪⎝⎭,D 选项正确. 故选:ACD.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.2.已知函数()22,1,1x x f x x x -≥⎧=⎨<⎩,若存在实数a ,使得()()f a f f a ⎡⎤=⎣⎦,则a 的个数不是( )A .2B .3C .4D .5【答案】ABD【分析】令()f a t =,即满足()f t t =,对t 进行分类讨论,结合已知函数解析式代入即可求得满足题意的t ,进而求得a.【详解】令()f a t =,即满足()f t t =,转化为函数()1y f t =与2y t =有交点,结合图像由图可知,()f t t =有两个根0t =或1t =(1)当1t =,即()1f a =,由()22,1,1a a f a a a -≥⎧=⎨<⎩,得1a =±时,经检验均满足题意; (2)当0t =,即()0f a =,当1a ≥时,()20f a a =-=,解得:2a =;当1a <时,()20f a a ==,解得:0a =; 综上所述:共有4个a .故选:ABD .【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图像,利用数形结合的方法求解3.下列函数求值域正确的是( )A .2()1(2)f x x x =+-的值域为[2)+∞,B .222()1x x g x x ++=+的值域为[2)+∞, C .()11h x x x =+-(02],D .()13w x x x =-+的值域为[222], 【答案】CD【分析】()12f x x x =++-去绝对值结合单调性和图象即可判断选项A ;2(1)11()(1)11x g x x x x ++==++++讨论10x +>和10x +<,利用基本不等式求值域可判断选项B ;()1111h x x x x x =+-=++-利用单调性即可判断选项C ;()w x 定义域为[31]-,,将()13w x x x =-++两边平方可得()222(1)44w x x =-+++, 由于()0w x >,可得()22(1)44w x x =-+++,求出2(1)t x =-+的范围即可求()w x 值域,可判断选项D.【详解】 对于选项A :原函数化为211()12312212x x f x x x x x x -+≤-⎧⎪=++-=-<≤⎨⎪->⎩,,,, 其图象如图,原函数值域为[3)+∞,,故选项A 不正确,对于选项B :2(1)11()(1)11x g x x x x ++==++++,定义域为{}|1x x ≠-, 当1x <-时,10x +<,此时[][]11(1)2(1)211x x x x ⎛⎫⎛⎫-++-≥-+⨯-= ⎪ ⎪++⎝⎭⎝⎭, 所以1(1)21x x ++≤-+,当且仅当1(1)1x x -+=-+即2x =-时等号成立, 当1x >-时,10x +>,此时11(1)(1)211x x x x ++≥+⨯=++,当且仅当111x x +=+即0x =时等号成立, 所以函数()g x 值域为(2][2)-∞-⋃+∞,,,故选项B 不正确; 对于选项C :()h x 的定义域为[1)+∞,, (11)(11)()111111x x x x h x x x x x x x +-+-=+-==++-++-, 因为1y x =+1y x =-[1)+∞,上是增函数,所以11y x x =+-[1)+∞,上是增函数,又11y x x =+-[1)+∞,上恒不等于0,则y =在[1)+∞,上是减函数,则()h x 的最大值为()1h =又因为()0h x >,所以()h x 的值域为(0,故选项C 正确;对于选项D :()w x 的定义域为[31]-,,()w x ======设2(1)t x =-+,则[40]t ∈-,,[]0,4,[]44,8∈,则()2,w x ⎡=⎣,()w x 的值域为[2,故选项D 正确, 故选:CD【点睛】 方法点睛:求函数值域常用的方法(1)观察法:一些简单的函数,值域可以通过观察法得到;(2)利用常见函数的值域:一次函数值域为R ;二次函数利用配方法,结合定义域求出值域;反比例函数的值域为{}|0y y ≠;指数函数的值域为{}|0y y >;对数函数值域为R ;正、余弦函数的值域为[]1,1-;正切函数值域为R ;(3)单调性法:先判断函数的单调性,再由函数的单调性求函数的值域;(4)分离常数法:将有理分式转化为反比例函数类的形式,便于求值域;(5)换元法:对于一些无理函数如y ax b =±±数,通过求有理函数的值域间接求原函数的值域;(6)不等式法:利用几个重要的不等式及其推论来求最值,进而求得值域,如222a b ab +≥,a b +≥,以及绝对值三角不等式等;(7)判别式法:把函数解析式化为关于x 的一元二次方程,利用判别式求值域,形如y Ax =+22ax bx c y dx ex f ++=++的函数适用; (8)有界性法:充分利用三角函数或一些代数表达式的有界性,求出值域;(9)配方法:求二次函数型函数值域的基本方法,形如()()()()20F x a f x bf x c a =++≠⎡⎤⎣⎦的函数求值域,均可使用配方法;(10)数形结合法:若函数的解析式的几何意义较明显,如距离、斜率等可使用数形结合法;(11)导数法:利用导数求函数值域时,一种是利用导数判断函数的单调性,进而根据单调性求函数的值域;一种是利用导数与极值、最值的关系求函数的值域.4.已知函数()()()22224x x f x x x m m e e --+=-+-+(e 为自然对数的底数)有唯一零点,则m 的值可以为( )A .1B .1-C .2D .2- 【答案】BC【分析】由已知,换元令2t x =-,可得()()f t f t -=,从而f t 为偶函数,()f x 图象关于2x =对称,结合函数图象的对称性分析可得结论.【详解】∵22222222()4()()(2)4()()x x x x f x x x m m e e x m m e e --+--+=-+-+=--+-+, 令2t x =-,则22()4()()t tf t t m m e e -=-+-+,定义域为R , 22()()4()()()t t f t t m m e e f t --=--+-+=,故函数()f t 为偶函数,所以函数()f x 的图象关于2x =对称,要使得函数()f x 有唯一零点,则(2)0f =,即2482()0m m -+-=,解得1m =-或2①当1m =-时,2()42()t t f t t e e -=-++由基本不等式有2t t e e -+≥,当且仅当0t =时取得 2()4t t e e -∴+≥故2()42()0t tf t t e e -=-++≥,当且仅当0t =取等号故此时()f x 有唯一零点2x =②当2m =时,2()42()t t f t t e e -=-++,同理满足题意.故选:BC .【点睛】方法点睛:①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴.②()y f x =的图象关于直线x a =对称 ()()f a x f a x ⇔-=+()()2f x f a x ⇔-=+5.对于定义在R 上的函数()f x ,若存在正实数a ,b ,使得()()f x a f x b +≤+对一切x ∈R 均成立,则称()f x 是“控制增长函数”.在以下四个函数中是“控制增长函数”的有( )A .()x f x e =B .()f x =C .()()2sin f x x =D .()sin f x x x =⋅【答案】BCD【分析】假设各函数是“控制增长函数”,根据定义推断()()f x a f x b +≤+对一切x ∈R 恒成立的条件,并判断,a b 的存在性,即可得出结论.【详解】对于A. ()()f x a f x b +≤+可化为22()()11x a x a x x b ++++≤+++,22ax a a b ≤--+0a >,不等式在x ∈R 上不恒成立,所以2()1f x x x =++不是“控制增长函数”;对于B. ()()f x a f x b +≤+可化为,b ≤,即2||||2x a x b +≤++恒成立.又||||x a x a +≤+,故只需保证2||||2x a x b +≤++.20,2a b b b->≥ ,当220a b -≤时,b ≤恒成立,()f x ∴=“控制增长函数”;对于C. ()21()sin 1,()()2f x x f x a f x -≤=≤∴+-≤,2b ∴≥时,a 为任意正数,()()f x a f x b +≤+恒成立,()2()sin f x x ∴=是“控制增长函数”;对于D. ()()f x a f x b +≤+化为,()sin()sin x a x a x x b ++≤+,令2a π= ,则(2)sin sin ,2sin x x x x b x b ππ+≤+≤,当2b π≥时,不等式()sin()sin x a x a x x b ++≤+恒成立,()sin f x x x ∴=⋅是“控制增长函数”.故选:BCD【点睛】本题考查了新定义的理解,函数存在成立和恒成立问题的研究.我们可先假设结论成立,再不断寻求结论成立的充分条件,找得到就是“控制增长函数”.如果找出了反例,就不是“控制增长函数”.6.已知函数()1y f x =-的图象关于1x =对称,且对(),y f x x R =∈,当12,(,0]x x ∈-∞时,()()21210f x f x x x -<-成立,若()()2221f ax f x <+对任意的x ∈R 恒成立,则a 的可能取值为( )A .B .1-C .1 D【答案】BC【分析】由已知得函数()f x 是偶函数,在[0,)+∞上是单调增函数,将问题转化为2|2||21|ax x <+对任意的x ∈R 恒成立,由基本不等式可求得范围得选项.【详解】因为函数()1y f x =-的图象关于直线1x =对称,所以函数()y f x =的图象关于直线0x =(即y 轴)对称,所以函数()f x 是偶函数.又12,(,0]x x ∈-∞时,()()21210f x f x x x -<-成立,所以函数()f x 在[0,)+∞上是单调增函数.且()()2221f ax f x <+对任意的x ∈R 恒成立,所以2|2||21|ax x <+对任意的x ∈R 恒成立,当0x =时,01<恒成立,当0x ≠时,2|21|11|||||||||2|22x a x x x x x+<=+=+,又因为1||||2x x +=≥||x =时,等号成立,所以||a <,因此a <<,故选:BC.【点睛】 方法点睛:不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立.7.设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,也叫取整函数.令()[]f x x x =-,以下结论正确的有( )A .()1.10.9f -=B .函数()f x 为奇函数C .()()11f x f x +=+D .函数()f x 的值域为[)0,1【答案】AD【分析】根据高斯函数的定义逐项检验可得正确的选项.【详解】 对于A ,()[]1.11 1.120..9.111f --=-+=-=-,故A 正确.对于B ,取 1.1x =-,则()1.10.9f -=,而()[]1.1-1.1 1.110.11.1f =-==, 故()()1.1 1.1f f -≠-,所以函数()f x 不为奇函数,故B 错误.对于C ,则()[][]()11111f x x x x x f x +=+-+=+--=,故C 错误. 对于D ,由C 的判断可知,()f x 为周期函数,且周期为1,当01x ≤≤时,则当0x =时,则()[]0000f =-=, 当01x <<时,()[]0f x x x x x =-=-=,当1x =时,()[]11110f x =-=-=,故当01x ≤≤时,则有()01f x ≤<,故函数()f x 的值域为[)0,1,故D 正确. 故选:AD .【点睛】思路点睛:对于函数的新定义问题,注意根据定义展开讨论性质的讨论,并且注意性质讨论的次序,比如讨论函数值域,可以先讨论函数的奇偶性、周期性.8.函数1()()0()x f x x ⎧=⎨⎩为有理数为无理数, 则下列结论正确的是( ) A .()f x 是偶函数 B .()f x 的值域是{0,1}C .方程(())f f x x =的解为1x =D .方程(())()f f x f x =的解为1x = 【答案】ABC【分析】逐项分析判断即可.【详解】当x -为有理数时,x 也为有理数∴()1f x -=当x -为无理数时,x 也为无理数∴()0f x -=∴1()()0()x f x x ⎧-=⎨⎩为有理数为无理数 ∴()()f x f x -=()f x ∴是偶函数,A 对;易知B 对;1x =时,()((1))11f f f ==∴C 对(())()f f x f x =的解为全体有理数∴D 错故选:ABC.【点睛】本题综合考查分段函数的奇偶性判断、值域、解方程等,要求学生能灵活应用知识解题,难度较大.9.已知定义在R 上的函数()f x 满足:()()0f x f x +-=,且当0x ≥时,()x f x e x b =+-.若((2sin ))(sin )0f k b x f x ++-≤.在x ∈R 上恒成立,则k 的可能取值为( )A .1B .0C .1-D .2-【答案】CD【分析】先判断函数的奇偶性和单调性,得到sinx ≥k (2+sinx ), 再根据题意,利用检验法判断即可.【详解】因为定义在R 上的函数()f x 满足:()()0f x f x +-=,所以()f x 为奇函数, 0x ≥时,()x f x e x b =+-,显然()f x 在[0,)+∞上单调递增,所以()f x 在R 上单调递增,由((2sin ))(sin )0f k b x f x ++-≤恒成立,可得(sin )((2sin ))f x f k x +在R 上恒成立,即sin (2sin )x k x +,整理得:(1)sin 2k x k -当1k =时,02≥,不恒成立,故A 错误;当0k =时,sin 0x ≥,不恒成立,故B 错误;当1k =-时,sin 1x ≥-,恒成立,故C 正确;当2k =-时,4sin 3x ≥-,恒成立,故D 正确. 故选:CD【点睛】本题主要考查了函数的奇偶性和单调性,不等式恒成立问题,属于中档题.10.已知正数,,x y z ,满足3412x y z ==,则( )A .634z x y <<B .121x y z +=C .4x y z +>D .24xy z <【答案】AC【分析】令34121x y z m ===>,根据指对互化和换底公式得:111log 3log 4log 12m m m x y z===,,,再依次讨论各选项即可. 【详解】由题意,可令34121x y z m ===>,由指对互化得:111,,log 3log 4log 12m m m x y z ===, 由换底公式得:111log 3,log 4,log 12m m m x y z ===,则有111x y z+=,故选项B 错误; 对于选项A ,124log 12log 9log 03m m m z x -=-=>,所以2x z >,又4381log 81log 64log 064m m m x y -=-=>,所以43y x >,所以436y x z >>,故选项A 正确;对于选项C 、D ,因为111x y z +=,所以xyz x y =+,所以()()()()2222222440x y xy x y xy x y z xy x y x y -+--==-<++,所以24xy z >,则()24z x y z +>,则4x y z +>,所以选项C 正确,选项D 错误;故选:AC. 【点睛】本题考查指对数的运算,换底公式,作差法比较大小等,考查运算求解能力,是中档题.本题解题的关键在于令34121xyzm ===>,进而得111,,log 3log 4log 12m m m x y z ===,再根据题意求解.二、导数及其应用多选题11.已知0a >,0b >,下列说法错误的是( ) A .若1a b a b ⋅=,则2a b +≥ B .若23a b e a e b +=+,则a b > C .()ln ln a a b a b -≥-恒成立 D .2ln a a b b e e-<恒成立 【答案】AD 【分析】对A 式化简,通过构造函数的方法,结合函数图象,说明A 错误;对B 不等式放缩22a b e a e b +>+,通过构造函数的方法,由函数的单调性,即可证明B 正确;对C 不等式等价变型()ln ln ln1-≥-⇔≥-a b a a b a b b a ,通过10,ln 1∀>>-x x x恒成立,可得C 正确;D 求出ln-a a b b e 的最大值,当且仅当11a b e =⎧⎪⎨=⎪⎩时取等号,故D 错误.【详解】A. 1ln ln 0⋅=⇔+=a b a b a a b b 设()ln f x x x =,()()0∴+=f a f b由图可知,当1+→b 时,存在0+→a ,使()()0f a f b += 此时1+→a b ,故A 错误. B. 232+=+>+a b b e a e b e b设()2xf x e x =+单调递增,a b ∴>,B 正确C. ()ln ln ln 1-≥-⇔≥-a ba ab a b b a又10,ln 1∀>>-x x x ,ln 1∴≥-a bb a,C 正确D. max 1=⇒=x x y y e e当且仅当1x =; min 1ln =⇒=-y x x y e 当且仅当1=x e;所以2ln -≤a a b b e e ,当且仅当11a b e =⎧⎪⎨=⎪⎩时取等号,D 错误.故选:AD 【点睛】本题考查了导数的综合应用,考查了运算求解能力和逻辑推理能力,转化的数学思想和数形结合的数学思想,属于难题.12.已知函数()xf x e =,()1ln22x g x =+的图象与直线y m =分别交于A 、B 两点,则( )A .AB 的最小值为2ln2+B .m ∃使得曲线()f x 在A 处的切线平行于曲线()g x 在B 处的切线C .函数()()f x g x m -+至少存在一个零点D .m ∃使得曲线()f x 在点A 处的切线也是曲线()g x 的切线 【答案】ABD 【分析】求出A 、B 两点的坐标,得出AB 关于m 的函数表达式,利用导数求出AB 的最小值,即可判断出A 选项的正误;解方程()12ln 2m f m g e -⎛⎫''= ⎪⎝⎭,可判断出B 选项的正误;利用导数判断函数()()y f x g x m =-+的单调性,结合极值的符号可判断出C 选项的正误;设切线与曲线()y g x =相切于点()(),C n g n ,求出两切线的方程,得出方程组,判断方程组是否有公共解,即可判断出D 选项的正误.进而得出结论. 【详解】令()xf x e m ==,得ln x m =,令()1ln22x g x m =+=,得122m x e -=, 则点()ln ,A m m 、122,m B e m -⎛⎫ ⎪⎝⎭,如下图所示:由图象可知,122ln m AB e m -=-,其中0m >,令()122ln m h m em -=-,则()1212m h m em-'=-,则函数()y h m '=单调递增,且102h ⎛⎫'= ⎪⎝⎭,当102m <<时,0h m,当12m >时,0h m.所以,函数()122ln m h m e m-=-在10,2⎛⎫ ⎪⎝⎭上单调递减,在1,2⎛⎫+∞ ⎪⎝⎭上单调递增, 所以,min 112ln 2ln 222AB h ⎛⎫==-=+⎪⎝⎭,A 选项正确;()x f x e =,()1ln 22x g x =+,则()x f x e '=,()1g x x'=,曲线()y f x =在点A 处的切线斜率为()ln f m m '=,曲线()y g x =在点B 处的切线斜率为1212122m m g e e --⎛⎫'= ⎪⎝⎭, 令()12ln 2m f m g e -⎛⎫''= ⎪⎝⎭,即1212m m e -=,即1221m me -=, 则12m =满足方程1221m me -=,所以,m ∃使得曲线()y f x =在A 处的切线平行于曲线()y g x =在B 处的切线,B 选项正确;构造函数()()()1ln22xx F x f x g x m e m =-+=-+-,可得()1x F x e x'=-, 函数()1xF x e x '=-在()0,∞+上为增函数,由于120F e ⎛⎫'=< ⎪⎝⎭,()110F e -'=>,则存在1,12t ⎛⎫∈⎪⎝⎭,使得()10t F t e t '=-=,可得ln t t =-,当0x t <<时,()0F x '<;当x t >时,()0F x '>.()()min 1111ln ln ln 2ln 22222t t t F x F t e m e t m t m t ∴==-+-=-++-=+++-13ln 2ln 2022m m >+-=++>,所以,函数()()()F x f x g x m =-+没有零点,C 选项错误;设曲线()y f x =在点A 处的切线与曲线()y g x =相切于点()(),C n g n , 则曲线()y f x =在点A 处的切线方程为()ln ln my m ex m -=-,即()1ln y mx m m =+-,同理可得曲线()y g x =在点C 处的切线方程为11ln 22n y x n =+-, 所以,()111ln ln 22m nn m m ⎧=⎪⎪⎨⎪-=-⎪⎩,消去n 得()11ln ln 202m m m --++=,令()()11ln ln 22G x x x x =--++,则()111ln ln x G x x x x x-'=--=-,函数()y G x '=在()0,∞+上为减函数,()110G '=>,()12ln 202G '=-<,则存在()1,2s ∈,使得()1ln 0G s s s'=-=,且1s s e =. 当0x s <<时,()0G x '>,当x s >时,()0G x '<.所以,函数()y G x =在()2,+∞上为减函数,()5202G =>,()17820ln 202G =-<, 由零点存在定理知,函数()y G x =在()2,+∞上有零点, 即方程()11ln ln 202m m m --++=有解. 所以,m ∃使得曲线()y f x =在点A 处的切线也是曲线()y g x =的切线. 故选:ABD. 【点睛】本题考查导数的综合应用,涉及函数的最值、零点以及切线问题,计算量较大,属于难题.13.已知偶函数()y f x =对于任意的0,2x π⎡⎫∈⎪⎢⎣⎭满足()()cos sin 0f x x f x x '+>(其中()f x '是函数()f x 的导函数),则下列不等式中不成立的是( )A 34f ππ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭B 34f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭C .()04f π⎛⎫>- ⎪⎝⎭ D .63f ππ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭【答案】ABC 【分析】 构造函数()()cos f x g x x =,结合导数和对称性可知()g x 为偶函数且在0,2x π⎡⎫∈⎪⎢⎣⎭上单调递2643f f πππ⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,从而可判断ABD 选项,由()04g g π⎛⎫< ⎪⎝⎭可判断C 选项.【详解】因为偶函数()y f x =对于任意的0,2x π⎡⎫∈⎪⎢⎣⎭满足()()cos sin 0f x x f x x '+>, 所以构造函数()()cos f x g x x =,则()()2cos sin ()0cos f x x f x x g x x'+'=>,∴()g x 为偶函数且在0,2x π⎡⎫∈⎪⎢⎣⎭上单调递增,32333cos 3f g g f πππππ⎛⎫ ⎪⎛⎫⎛⎫⎛⎫⎝⎭∴-=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,4444cos 4f g g πππππ⎛⎫ ⎪⎛⎫⎛⎫⎛⎫⎝⎭-=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,6636cos 6f g f ππππ⎛⎫ ⎪⎛⎫⎛⎫⎝⎭== ⎪ ⎪⎝⎭⎝⎭,由函数单调性可知643g g g πππ⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即23643f f πππ⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 对于AB,4343f f ππππ⎛⎫⎛⎫⎛⎫<=- ⎪ ⎪⎛⎫-= ⎪⎝⎭⎝⎭⎝ ⎪⎭⎭⎝,故AB 错误; 对于C ,()04g g π⎛⎫< ⎪⎝⎭,()044f ππ⎛⎫⎛⎫<=- ⎪ ⎪⎝⎭⎝⎭,故C 错误; 对于D,2363f f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,即63f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故D 正确; 故选:ABC. 【点睛】关键点点睛:本题考查了利用导数研究函数的单调性,解题的关键是利用已知条件构造对应的新函数()()cos f x g x x=,利用导数研究函数的单调性,从而比较大小,考查学生的逻辑推理能力与转化思想,属于较难题.14.函数ln ()xf x x=,则下列说法正确的是( ) A .(2)(3)f f >B.ln π>C .若()f x m =有两个不相等的实根12x x 、,则212x x e <D .若25,x y x y =、均为正数,则25x y < 【答案】BD 【分析】求出导函数,由导数确定函数日单调性,极值,函数的变化趋势,然后根据函数的性质判断各选项.由对数函数的单调性及指数函数单调性判断A ,由函数()f x 性质判断BC ,设25x y k ==,且,x y 均为正数,求得252ln ,5ln ln 2ln 5x k y k ==,再由函数()f x 性质判断D . 【详解】由ln (),0x f x x x=>得:21ln ()xf x x -'=令()0f x '=得,x e =当x 变化时,(),()f x f x '变化如下表:故,()f x x=在(0,)e 上递增,在(,)e +∞上递减,()f e e =是极大值也是最大值,x e >时,x →+∞时,()0f x →,且x e >时()0f x >,01x <<时,()0f x <,(1)0f =,A .1132ln 2(2)ln 2,(3)ln 32f f ===66111133223232(3)(2)f f ⎛⎫⎛⎫>∴>∴> ⎪ ⎪⎝⎭⎝⎭,故A 错B .e e π<,且()f x 在(0,)e 单调递增ln f f e ππ∴<<<∴>,故:B 正确 C .()f x m =有两个不相等的零点()()1212,x x f x f x m ∴==不妨设120x e x <<<要证:212x x e <,即要证:221222,()e e x x e ef x x x<>∴<在(0,)e 单调递增,∴只需证:()212e f x f x ⎛⎫< ⎪⎝⎭即:()222e f x f x ⎛⎫<⎪⎝⎭只需证:()2220e f x f x ⎛⎫-< ⎪⎝⎭……① 令2()(),()e g x f x f x e x ⎛⎫=-> ⎪⎝⎭,则2211()(ln 1)g x x e x '⎛⎫=-- ⎪⎝⎭当x e >时,2211ln 1,()0()x g x g x e x'>>∴>∴在(,)e +∞单调递增 ()22()0x e g x g e >∴>=,即:()2220e f x f x ⎛⎫-> ⎪⎝⎭这与①矛盾,故C 错D .设25x y k ==,且,x y 均为正数,则25ln ln log ,log ln 2ln 5k kx k y k ====252ln ,5ln ln 2ln 5x k y k ∴== 1152ln 2ln 5ln 2,ln 525==且1010111153222525⎛⎫⎛⎫⎛⎫ ⎪>> ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ln 2ln 52502525ln 2ln 5x y ∴>>∴<∴<,故D 正确. 故选:BD . 【点睛】关键点点睛:本题考查用导数研究函数的单调性、极值,函数零点等性质,解题关键是由导数确定函数()f x 的性质.其中函数值的大小比较需利用单调性,函数的零点问题中有两个变量12,x x ,关键是进行转化,利用零点的关系转化为一个变量,然后引入新函数进行证明.15.对于函数()2ln 1f x x ax x a =+--+,其中a R ∈,下列4个命题中正确命题有( )A .该函数定有2个极值B .该函数的极小值一定不大于2C .该函数一定存在零点D .存在实数a ,使得该函数有2个零点【答案】BD 【分析】求出导函数,利用导数确定极值,结合零点存在定理确定零点个数. 【详解】函数定义域是(0,)+∞,由已知2121()2x ax f x x a x x+-'=+-=,280a ∆=+>,2210x ax +-=有两个不等实根12,x x ,但12102x x =-<,12,x x 一正一负.由于定义域是(0,)+∞,因此()0f x '=只有一个实根,()f x 只有一个极值,A 错; 不妨设120x x <<,则20x x <<时,()0f x '<,()f x 递减,2x x >时,()0f x '>,()f x 递增.所以2()f x 是函数的极小值.222210x ax +-=,22212x a x -=,22222()ln 1f x x ax x a =+--+=222222222222212112ln 12ln 2x x x x x x x x x -+---+=-+--+,设21()2ln 2g x x x x x =-+--+,则22111()22(1)(2)g x x x x x x'=-+-+=-+, 01x <<时,()0g x '>,()g x 递增,1x >时,()0g x '<,()g x 递减,所以()g x 极大值=(1)2g =,即()2g x ≤,所以2()2f x ≤,B 正确;由上可知当()f x 的极小值为正时,()f x 无零点.C 错;()f x 的极小值也是最小值为2222221()2ln 2f x x x x x =-+--+, 例如当23x =时,173a =-,2()0f x <,0x →时,()f x →+∞,又2422217171714()21()03333f e e e e e =--++=-+>(217()3e >, 所以()f x 在(0,3)和(3,)+∞上各有一个零点,D 正确. 故选:BD . 【点睛】思路点睛:本题考查用导数研究函数的极值,零点,解题方法是利用导数确定函数的单调性,极值,但要注意在函数定义域内求解,对零点个数问题,注意结合零点存在定理,否则不能确定零点的存在性.16.设函数()ln f x x x =,()212g x x =,给定下列命题,其中正确的是( ) A .若方程()f x k =有两个不同的实数根,则1,0k e⎛⎫∈- ⎪⎝⎭; B .若方程()2kf x x =恰好只有一个实数根,则0k <;C .若120x x >>,总有()()()()1212m g x g x f x f x ->-⎡⎤⎣⎦恒成立,则m 1≥;D .若函数()()()2F x f x ag x =-有两个极值点,则实数10,2a ⎛⎫∈ ⎪⎝⎭. 【答案】ACD 【分析】利用导数研究函数的单调性和极值,且将题意转化为()y f x =与y k =有两个不同的交点,即可判断A 选项;易知1x =不是该方程的根,当1x ≠时,将条件等价于y k =和ln xy x=只有一个交点,利用导数研究函数的单调性和极值,从而可推出结果,即可判断B 选项;当120x x >>时,将条件等价于1122()()()()mg x f x mg x f x ->-恒成立,即函数()()y mg x f x =-在(0,)+∞上为增函数,通过构造新函数以及利用导数求出单调区间,即可求出m 的范围,即可判断C 选项;2()ln (0)F x x x ax x =->有两个不同极值点,根据导数的符号列出不等式并求解,即可判断D 选项. 【详解】解:对于A ,()f x 的定义域(0,)+∞,()ln 1f x x '=+, 令()0f x '>,有ln 1x >-,即1x e>,可知()f x 在1(0,)e 单调递减,在1+e∞(,)单调递增,所以极小值等于最小值, min 11()()f x f e e∴==-,且当0x →时()0f x →,又(1)0f =,从而要使得方程()f x k =有两个不同的实根,即()y f x =与y k =有两个不同的交点,所以1(,0)k e∈-,故A 正确; 对于B ,易知1x =不是该方程的根,当1x ≠时,()0f x ≠,方程2()kf x x =有且只有一个实数根,等价于y k =和ln xy x=只有一个交点, 2ln 1(ln )-'=x y x ,又0x >且1x ≠, 令0y '>,即ln 1x >,有x e >, 知ln xy x=在0,1()和1e (,)单减,在+e ∞(,)上单增, 1x =是一条渐近线,极小值为e ,由ln xy x=大致图像可知0k <或=k e ,故B 错误;对于C ,当120x x >>时,[]1212()()()()m g x g x f x f x ->-恒成立, 等价于1122()()()()mg x f x mg x f x ->-恒成立, 即函数()()y mg x f x =-在(0,)+∞上为增函数, 即()()ln 10y mg x f x mx x =-''--'=≥恒成立,即ln 1+≥x m x在(0,)+∞上恒成立, 令ln 1()x r x x +=,则2ln ()xr x x -'=,令()0r x '>得ln 0x <,有01x <<,从而()r x 在(0,1)上单调递增,在(1,)+∞上单调递减, 则max ()(1)1r x r ==,于是m 1≥,故C 正确;对于D ,2()ln (0)F x x x ax x =->有两个不同极值点, 等价于()ln 120F x x ax +-'==有两个不同的正根, 即方程ln 12x a x+=有两个不同的正根, 由C 可知,021a <<,即102a <<,则D 正确. 故选:ACD.【点睛】关键点点睛:本题考查导数的应用,利用导数研究函数的单调性和极值,以及利用导数解决函数的零点问题和恒成立问题从而求参数范围,解题的关键在于将零点问题转化成两个函数的交点问题,解题时注意利用数形结合,考查转化思想和运算能力.17.已知函数()21ln 2f x ax ax x =-+的图象在点()()11,x f x 处与点()()22,x f x 处的切线均平行于x 轴,则( )A .()f x 在1,上单调递增B .122x x +=C .()()121212x x x x f x f x ++++的取值范围是7,2ln 24⎛⎫-∞-- ⎪⎝⎭D .若163a =,则()f x 只有一个零点 【答案】ACD 【分析】求导,根据题意进行等价转化,得到a 的取值范围;对于A ,利用导数即可得到()f x 在()1,+∞上的单调性;对于B ,利用根与系数的关系可得121x x =+;对于C ,化简()()121212x x x x f x f x ++++,构造函数,利用函数的单调性可得解;对于D ,将163a =代入()f x ',令()0f x '=,可得()f x 的单调性,进而求得()f x 的极大值小于0,再利用零点存在定理可得解. 【详解】 由题意可知,函数()f x 的定义域为()0,∞+,且()211ax ax ax a x x xf -+=-+=',则1x ,2x 是方程210ax ax -+=的两个不等正根,则212401a a x x a ⎧∆=->⎪⎨=>⎪⎩,解得4a >, 当()1,x ∈+∞时,函数210y ax ax =-+>,此时()0f x '>,所以()f x 在()1,+∞上单调递增,故A 正确;因为1x ,2x 是方程210ax ax -+=的两个不等正根,所以121x x =+,故B 错误; 因为()()221212121112221111ln ln 22x x x x f x f x x ax ax x ax ax a ++++=+++-++- 1112111ln 1ln 22a a a a a a a a⎛⎫=+++--=--+ ⎪⎝⎭, 易知函数()11ln 2h a a a a=--+在()4,+∞上是减函数, 则当4a >时,()()742ln 24h a h <=--, 所以()()121212x x x x f x f x ++++的取值范围是7,2ln 24⎛⎫-∞-- ⎪⎝⎭,故C 正确;当163a =时,()1616133f x x x '=-+,令()0f x '=,得14x =或34, 则()f x 在10,4⎛⎫ ⎪⎝⎭上单调递增,在13,44⎛⎫⎪⎝⎭上单调递减,在3,4⎛⎫+∞ ⎪⎝⎭上单调递增, 所以()f x 在14x =取得极大值,且104f ⎛⎫< ⎪⎝⎭,()2ln 20f =>, 所以()f x 只有一个零点,故D 正确. 故选:ACD. 【点睛】关键点点睛:导数几何意义的应用主要抓住切点的三个特点: ①切点坐标满足原曲线方程; ②切点坐标满足切线方程;③切点的横坐标代入导函数可得切线的斜率.18.定义在R 上的函数()f x ,若存在函数()g x ax b =+(a ,b 为常数),使得()()f x g x ≥对一切实数x 都成立,则称()g x 为函数()f x 的一个承托函数,下列命题中正确的是( )A .函数()2g x =-是函数ln ,0()1,0x x f x x >⎧=⎨⎩的一个承托函数 B .函数()1g x x =-是函数()sin f x x x =+的一个承托函数C .若函数()g x ax = 是函数()x f x e =的一个承托函数,则a 的取值范围是[0,]eD .值域是R 的函数()f x 不存在承托函数 【答案】BC 【分析】由承托函数的定义依次判断即可. 【详解】解:对A ,∵当0x >时,()ln (,)f x x =∈-∞+∞, ∴()()2f x g x ≥=-对一切实数x 不一定都成立,故A 错误;对B ,令()()()t x f x g x =-,则()sin (1)sin 10t x x x x x =+--=+≥恒成立, ∴函数()1g x x =-是函数()sin f x x x =+的一个承托函数,故B 正确; 对C ,令()xh x e ax =-,则()xh x e a '=-, 若0a =,由题意知,结论成立, 若0a >,令()0h x '=,得ln x a =,∴函数()h x 在(,ln )a -∞上为减函数,在(ln ,)a +∞上为增函数, ∴当ln x a =时,函数()h x 取得极小值,也是最小值,为ln a a a -, ∵()g x ax =是函数()x f x e =的一个承托函数, ∴ln 0a a a -≥, 即ln 1a ≤, ∴0a e <≤,若0a <,当x →-∞时,()h x →-∞,故不成立,综上,当0a e 时,函数()g x ax =是函数()xf x e =的一个承托函数,故C 正确;对D ,不妨令()2,()21f x x g x x ==-,则()()10f x g x -=≥恒成立, 故()21g x x =-是()2f x x =的一个承托函数,故D 错误. 故选:BC . 【点睛】方法点睛:以函数为载体的新定义问题,是高考命题创新型试题的一个热点,常见的命题形式有新概念、新法则、新运算等,这类试题中函数只是基本的依托,考查的是考生创造性解决问题的能力.19.当1x >时,()41ln ln 3k x x x x --<-+恒成立,则整数k 的取值可以是( ). A .2- B .1-C .0D .1【答案】ABC 【分析】将()41ln ln 3k x x x x --<-+,当1x >时,恒成立,转化为13ln ln 4x k x x x ⎛⎫<++ ⎪⎝⎭,.当1x >时,恒成立,令()()3ln ln 1xF x x x x x=++>,利用导数法研究其最小值即可. 【详解】因为当1x >时,()41ln ln 3k x x x x --<-+恒成立,所以13ln ln 4x k x x x ⎛⎫<++ ⎪⎝⎭,当1x >时,恒成立, 令()()3ln ln 1xF x x x x x=++>, 则()222131ln 2ln x x x F x x x x x---'=-+=. 令()ln 2x x x ϕ=--, 因为()10x x xϕ-'=>,所以()x ϕ在()1,+∞上单调递增. 因为()10ϕ<,所以()0F x '=在()1,+∞上有且仅有一个实数根0x , 于是()F x 在()01,x 上单调递减,在()0,x +∞上单调递增, 所以()()000min 00ln 3ln x F x F x x x x ==++.(*) 因为()1ln 3309F -'=<,()()21ln 22ln 4401616F --'==>,所以()03,4x ∈,且002ln 0x x --=, 将00ln 2x x =-代入(*)式, 得()()0000min 00023121x F x F x x x x x x -==-++=+-,()03,4x ∈. 因为0011t x x =+-在()3,4上为增函数, 所以713,34t ⎛⎫∈⎪⎝⎭,即()min 1713,41216F x ⎛⎫∈ ⎪⎝⎭.因为k 为整数,所以0k ≤. 故选:ABC 【点睛】本题主要考查函数与不等式恒成立问题,还考查了转化化归的思想和运算求解的能力,属于较难题.20.(多选题)已知函数31()1x x xe x f x e x x⎧<⎪=⎨≥⎪⎩,,,函数()()g x xf x =,下列选项正确的是( )A .点(0,0)是函数()f x 的零点B .12(0,1),(1,3)x x ∃∈∈,使12()()f x f x >C .函数()f x 的值域为)1e ,-⎡-+∞⎣D .若关于x 的方程[]2()2()0-=g x ag x 有两个不相等的实数根,则实数a 的取值范围是222e e,(,)e 82⎛⎤+∞ ⎥⎝⎦ 【答案】BC 【分析】根据零点的定义可判断A ;利用导数判断出函数在()0,1、()1,3上的单调性性,求出各段上的值域即可判断B ;利用导数求出函数的最值即可判断C ;利用导数求出函数的最值即可判断D. 【详解】对于选项A ,0是函数()f x 的零点,零点不是一个点,所以A 错误. 对于选项B ,当1x <时,()(1)xf x x e '=+,可得, 当1x <-时,()f x 单调递减; 当11x -<<时,()f x 单调递增; 所以,当01x <<时, 0()<<f x e ,当1x >时,4(3)()x e x f x x -'=,当13x <<时,()f x 单调递减; 当3x >时,()f x 单调递增;()y f x =图像所以,当13x <<时, 3()27e f x e << ,综上可得,选项B 正确;对于选项C ,min 1()(1)f x f e=-=-,选项C 正确. 对于选项D ,关于x 的方程[]2()2()0-=g x ag x 有两个不相等的实数根⇔关于x 的方程()[()2]0-=g x g x a 有两个不相等的实数根 ⇔关于x 的方程()20-=g x a 有一个非零的实数根⇔函数()y g x =与2y a =有一个交点,且0x ≠,22,1(),1x xx e x g x e x x⎧<⎪=⎨≥⎪⎩当1x <时,/2()(2)=+xg x e x x ,当x 变化时,'()g x ,()g x 的变化情况如下:x2x <-2-20x -<<0 01x << /()g x +-+()g x极大值 极小值极大值2(2)g e -=,极小值(0)0g =,当1≥x 时,3(2)'()e x g x x-= 当x 变化时,'()g x ,()g x 的变化情况如下: x 112x <<2 2x >/()g x-+()g xe极小值极小值(2)4e g =,()y g x =图像综上可得,22424<<e a e 或2a e >,a 的取值范围是222e e,(,)e 82⎛⎫+∞ ⎪⎝⎭,D 不正确.故选:BC 【点睛】本题考查了利用导数求函数的最值,利用导数研究方程的根,考查了转化与化归的思想,属于难题.三、三角函数与解三角形多选题21.如图,已知函数()sin()f x A x ωϕ=+(其中0A >,0>ω,||2πϕ≤)的图象与x轴交于点,A B ,与y 轴交于点C ,2BC BD =,,||23OCB OA π∠==,221||3AD =.则下列说法正确的有( )A .()f x 的最小正周期为12B .6πϕ=-C .()f x 的最大值为163D .()f x 在区间(14,17)上单调递增【答案】ACD 【分析】3sin |2A πϕω=+,sin(2)0ωϕ+=,可得A ,B ,C ,D 的坐标,根据221||AD =,可得方程22228(1)243A sin πϕω-+=,进而解出ω,ϕ,A .判断出结论. 【详解】由题意可得:||3|OB OC =,3sin 2πϕω=+,sin(2)0ωϕ+=, (2,0)A ,(2B πω+,0),(0,sin )C A ϕ,sin 1,22A D πϕω⎛⎫∴+ ⎪⎝⎭, 213AD =,222sin 281243A πϕω⎛⎫∴-+= ⎪⎝⎭,把|sin |)3A πϕω=+代入上式可得:2()2240ππωω-⨯-=,0>ω.解得6πω=,6πω∴=,可得周期212T ωπ==,sin()03πϕ∴+=,||2πϕ≤,解得3πϕ=-.可知:B 不对,3sin 263A π⎛⎫∴-=+ ⎪⎝⎭,0A >,解得163A =,函数16()sin()363f x x ππ=-,可知C 正确. ()14,17x ∈ 时,52,632x ππππ⎛⎫⎛⎫-∈⎪ ⎪⎝⎭⎝⎭,可得:函数()f x 在()14,17x ∈单调递增. 综上可得:ACD 正确.故选:ACD 【点睛】关键点点睛:本题的关键是表示点,,B C D 的坐标,并利用两点间距离表示等量关系后,求解各点的坐标,问题迎刃而解.22.(多选题)如图,设ABC 的内角、、A B C 所对的边分别为a b c 、、,若a b c 、、成等比数列,、、A B C 成等差数列,D 是ABC 外一点,1,3DC DA ==,下列说法中,正确的是( )A .3B π=B .ABC 是等边三角形C .若A B CD 、、、四点共圆,则13AC =D .四边形ABCD 面积无最大值 【答案】ABC 【分析】根据等差数列的性质和三角形内角和可得3B π=,根据等比中项和余弦定理可得a c =,即ABC 是等边三角形,若A B C D 、、、四点共圆,根据圆内接四边形的性质可得23D π=,再利用余弦定理可求13AC =211sin sin 223ACD ABC S S S AD CD D AC π∆∆=+=⋅+和2222cos AC AD CD AD CD D 可得3335353sin 3sin()23S D D D π=-+=-+.【详解】由、、A B C 成等差数列可得,2A+C =B ,又A B C π++=, 则3B π=,故A 正确;由a b c 、、成等比数列可得,2b ac =,根据余弦定理,2222cos b a c ac B =+-,两式相减整理得,2()0a c -=,即a c =,又3B π=,所以,ABC 是等边三角形,故B 正确;若A B C D 、、、四点共圆,则B D π+=,所以,23D π=, ADC 中,根据余弦定理,2222cos AC AD CD AD CD D ,解得13AC =,故C 正确; 四边形ABCD 面积为:211sin sin 223ACD ABC S S S AD CD D AC π∆∆=+=⋅+233sin 2D AC =+ 又2222cos 106cos AC AD CD AD CD D D =+-⋅=-, 所以,3335353sin cos 3sin()23S D D D π=-+=-+, 因为(0,)D π∈,当四边形面积最大时,sin()13D π-=,此时max 5332S =+,故D 错误. 故选:ABC 【点睛】本题考查解三角形和平面几何的一些性质,同时考查了等差等比数列的基本知识,综合性强,尤其是求面积的最大值需要一定的运算,属难题.23.已知函数()()cos 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图像如图所示,则下列关于函数()f x 的说法中正确的是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分离常数法与分离参数法分离常数法是研究分式函数的一种代数变形的常用方法,主要的分式函数有ax by cx d +=+,22ax bx c y mx nx p++=++,x x m a n y p a q⋅+=⋅+,sin sin m x n y p x q ⋅+=⋅+ 等.解题的关键是通过恒等变形从分式函数中分离出常数. 1.用分离常数法求分式函数的值域 例1 求函数31()(1)2x f x x x +=≤-的值域.解 由已知有3[(2)2]1()2x f x x -++=-3(2)77322x x x -+==+--. 由1x ≤,得21x -≤-.∴1102x -≤<-.∴函数()f x 的值域为{|43}y R y ∈-≤<. 2.用分离常数法判断分式函数的单调性 例2 已知函数()()x af x a b x b+=≠+,判断函数()f x 的单调性.解 由已知有()1x b a b a b y x bx b++--==+++,x b ≠-.所以,当0a b ->时,函数()f x 在(,)b -∞-和(,)b -+∞上是减函数;当0a b -<时,函数()f x 在(,)b -∞-和(,)b -+∞上是增函数.3.用分离常数法求分式函数的最值 例3 设1x >-,求函数2710()1x x f x x ++=+的最小值.解 ∵1x >-,∴10x +>.由已知有2[(1)1]7[(1)1]10()1x x f x x +-++-+=+2(1)5(1)41x x x ++++=+4[(1)]51x x =++++59≥=.当且仅当411x x +=+,即1x =时,等号成立.∴当1x =时,()f x 取得最小值9. 分离参数法分离参数法是求参数的取值范围的一种常用方法,通过分离参数,用函数观点讨论主变量的变化情况,由此我们可以确定参数的变化范围.这种方法可以避免分类讨论的麻烦,从而使问题得以顺利解决.分离参数法在解决有关不等式恒成立、不等式有解、函数有零点、函数单调性中参数的取值范围问题时经常用到. 解题的关键是分离出参数之后将原问题转化为求函数的最值或值域问题. 1.用分离参数法解决函数有零点问题例4 已知函数2()4g x x ax =-+在[2,4]上有零点,求a 的取值范围.解 ∵函数2()4g x x ax =-+在[2,4]上有零点,∴方程240x ax -+=在[2,4]上有实根,即方程4a x x=+在[2,4]上有实根. 令4()f x x x=+,则a 的取值范围等于函数()f x 在[2,4]上的值域. 又224(2)(2)()10x x f x x x+-'=-=≥在[2,4]x ∈上恒成立,∴()f x 在[2,4]上是增函数. ∴(2)()(4)f f x f ≤≤,即4()5f x ≤≤.∴45a ≤≤.2.用分离参数法解决函数单调性问题例5 已知x a ax x x f 222)(2-+=在[1,)+∞上是单调递增函数,求a 的取值范围.解 ∵()2a af x x x =-+,∴2()1a f x x '=+.又)(x f 在[1,)+∞上是单调递增函数,∴0)(≥'x f .于是可得不等式2x a -≥对于1x ≥恒成立.∴2max ()a x ≥-.由1x ≥,得21x -≤-.∴1-≥a . 3.用分离参数法解决不等式恒成立问题例6 已知不等式2210mx x m --+<对满足22m -≤≤的所有m 都成立,求x 的取值范围. 解 原不等式可化为2(1)210x m x --+<,此不等式对22m -≤≤恒成立. 构造函数2()(1)21f m x m x =--+,22m -≤≤,其图像是一条线段.根据题意有22(2)2(1)210(2)2(1)210f x x f x x ⎧-=---+<⎪⎨=--+<⎪⎩,即2222302210x x x x ⎧+->⎪⎨--<⎪⎩.x <4.用分离参数法解决不等式有解问题例7 如果关于x 的不等式34210x x a -+--+<的解集不是空集,求参数a 的取值范围. 解 原不等式可化为3421x x a -+-<-.∵原不等式的解集不是空集,∴min (34)21x x a -+-<-.又34(3)(4)1x x x x -+-≥---=,当且仅当(3)(4)0x x --≤时,等号成立,∴211a -≥,即1a ≥. 5.用分离参数法求定点的坐标例8 已知直线l :(21)(1)740m x m y m +++--=,m R ∈,求证:直线l 恒过定点. 解 直线l 的方程可化为4(27)0x y m x y +-++-=.设直线l 恒过定点(,)M x y .由m R ∈,得40270x y x y +-=⎧⎨+-=⎩(3,1)M ⇒. ∴直线l 恒过定点(3,1).巩固练习:1、 设函数()2()log 21x f x =+的反函数为=y 1()-f x ,若关于x 的方程1()()f x m f x -=+在[1,2]上有解,则实数m 的取值范围是 2213log ,log 35⎡⎤⎢⎥⎣⎦.2、 设关于x 的方程0)5(6391=-+-+k k k x x在]2,0[内有解,求k 的取值范围.1,82⎡⎤⎢⎥⎣⎦3、 奇函数f(x)在R 上为减函数,若对任意的],1,0(∈x 不等式0)2()(2>-+-+x x f kx f 恒成立,则实数k的取值范围是 221min =+-<)(xx k4、 函数2()223f x ax x a 在[-1,1]上有零点,求a 的取值范围.显然本题看成03222=--+a x ax 在[-1,1]上有解问题,从而分离变量:]1,1[,23)12(2-∈-=-x x x a 显然0122≠-x ,从而]1,1[,12232-∈--=x x x a 有解,故而a 的范围就是函数]1,1[,12232-∈--=x x xy 的值域,从而利用换元法求出),1[]273,(+∞⋃+--∞∈a .5.若函数2()4f x x x a =--的零点个数为3,则a =_4_____。
6. 直线y =1与曲线2y x x a =-+有四个交点,则a 的取值范围是 51,4⎡⎤⎢⎥⎣⎦7、 若方程22210x x a a +⋅++=有实根,求a 的范围。
2a ≤-8、已知关于x 的方程14(2)240xx a +++⋅+=有实数解,求a 的取值范围。
4a ≤-9、已知关于x 的方程224log (3)log 0x x a +--=的实数解在区间(3,4),求a 的取值范围。
27log ,14⎡⎤⎢⎥⎣⎦10、方程cos2sin 0x x a -+=在[0,]x π∈上有解,则实数a 的取值范围是 解:sin cos2a x x =-.令sin cos 2,[0,]y x x x π=-∈.整理得 22sin +sin 1,[0,]y x x x π=-∈,令sin [0,1]t x =∈,则 221[1,2]y t t =+-∈-. 故 a [1,2]∈-.11、 已知函数b ax ax x g ++-=12)(2(0>a )在区间]3,2[上有最大值4和最小值1.设xx g x f )()(=. (1)求a 、b 的值;(2)若不等式02)2(≥⋅-xx k f 在]1,1[-∈x 上有解,求实数k 的取值范围; 解:(1)2()(1)1g x a x b a =-++-,因为0a >,所以()g x 在区间[2,3]上是增函数,故(2)1(3)4g g =⎧⎨=⎩,解得10a b =⎧⎨=⎩.(2)由已知可得1()2f x x x=+-, 所以(2)20xx f k -⋅≥可化为12222x x x k +-≥⋅, 化为2111222x x k ⎛⎫+-⋅≥ ⎪⎝⎭,令12x t =,则221k t t ≤-+,因[1,1]x ∈-,故1,22t ⎡⎤∈⎢⎥⎣⎦,记2()21h t t t =-+,因为1,12t ⎡⎤∈⎢⎥⎣⎦,故max ()1h t =, 所以k 的取值范围是(,1]-∞.12、已知函数221()log 31x a f x x a ++=-+(Ⅰ)若函数()f x 的定义域关于坐标原点对称,试讨论它的奇偶性和单调性;(Ⅱ)在(Ⅰ)的条件下,记1()f x -为()f x 的反函数,若关于x 的方程1()525x f x k k -=⋅-有解,求k 的取值范围。
解:(Ⅱ)函数()f x 的定义域关于坐标原点对称,当且仅当21(31)2a a a --=--⇔=,此时,25()log 5x f x x +=-。
对于定义域D =(,5)(5,)-∞-+∞内任意x ,-x ∈D ,555()lglg lg ()555x x x f x f x x x x -+-+-===-=--+-,所以()f x 为奇函数; 当(5,)x ∈+∞,对任意125x x <<,有1212212(5)(5)()()log (5)(5)x x f x f x x x +--=-+,而121221(5)(5)(5)(5)10()0x x x x x x +---+=->,所以12()()0f x f x ->, ∴()f x 在(5,)+∞内单调递减;由于()f x 为奇函数,所以在(,5)-∞-内单调递减;(Ⅲ)15(21)()21x x f x -+=-(0x ≠)。
方程1()525xf x k k -=⋅-即21(21)21x x x k +=--,令20x t =>,且1t ≠,得21(1)t k t +=-, 又21(0,)(1)t t +∈+∞-,所以当0k >时方程1()525x f x k k -=⋅-有解。
13、已知:函数()22121++-=+x x x f 的定义域为R 。
(1)求证:()x f 是奇函数;(2)判断函数()x f 的单调性,并用定义证明;(3)若不等式()()02222<-+-k t f kt t f 对任意的[]1,0∈t 都成立,求满足条件的实数k 的取值范围.解:(1)(2)略 (3)0k <14、已知定义在R 上函数f(x)为奇函数,且在[)+∞,0上是增函数,对于任意x ∈R ,求实数m 范围,使()()0cos 2432cos >-+-θθm m f f 恒成立。
∵ f(x)在R 上为奇函数,且在[)+∞,0上是增函数, ∴ f(x)在()+∞∞-,上为增函数 又 ∵ ()()0cos 2432cos >-+-θθm m f f∴ ()32cos -θf >-()θcos 24m m f -=()m m f 4cos 2-θ ∴ m m 4cos 232cos ->-θθ 即()θθ2cos 3cos 22->-m∵ 2-cos θ[]3,1∈, ∴ 2θθθθcos 2cos 24cos 22cos 32--=-->m∴ m>θθθθcos 22cos 2cos 2cos 22--+=--]cos 22cos 2[4θθ-+--=令2-[]3,1,cos ∈=t t θ, ∴ m>4-⎪⎭⎫ ⎝⎛+t t 2 即4-m<t t 2+在[]3,1∈t 上恒成立,即求()tt t g 2+=在[]3,1∈t 上的最小值∵ ()tt t g 2+=≥22等号成立条件t=t 2,即[]3,12∈=t 成立, ∴ ()22min =t g∴ 4-m<22即m>4-22,∴ m 的取值范围为(4-22,+∞)15. 已知0c >,设P :函数xy c =在R 上单调递减;Q :不等式|2|1x x c +->的解集为R 。