高中物理选修3-3知识点整理 ppt课件
合集下载
人教版高中物理选修3-3知识点复习(共52张PPT)
2.微观意义:温度是分子平均动能的标志
分子势能:由分子和分子间相对位置所决定的能.
分子力做功跟分子势能变化的关系: 分子力做正功时,分子势能减少,分子力做
负功时(克服分子力做功),分子势能增加.
物体的内能:物体中所有分子做热运动的动能和分 子势能的总和叫做物体的内能.
决定物体内能的因素 从微观上看:物体内能的大小由组成物体的分子总数、 分子热运动的平均动能和分子间的距离三个因素决 定.
• 间 接 说 明:分子间有间隙
• 2)布朗运动:悬浮在液体中的固体微粒的 无规则运动,不是液体分子的无规则运动 因微粒很小,所以要用光学显微镜来观察.
• 布朗运动发生的原因是受到包围微粒的液 体分子无规则运动地撞击的不平衡性造成 的.因而布朗运动说明了分子在永不停息 地做无规则运动.
• (1)布朗运动不是固体微粒中分子的无规 则运动.
• 热学包括:研究宏观热现象的热力学、研 究微观理论的统计物理学
• 统计规律:单个分子的运动都是不规则的、 带有偶然性的;大量分子的集体行为受到 统计规律的支配
气体温度的微观意义
1.氧气分子的速率分布图象特点: “中间多、两头少”
温度升高时, 速率大的分子数增加 速率小的分子数减少
T aEk a为比例常数
(4)当r<r0时,分子力随距离增大而减小;当r>r0 时, 分子力随距离先增大后减小
(5)当r>10r0时,分子力等于0,分子力是短程力。
取分子间距离无限远时分子势能为零
分子间距离从无限远逐渐减少至r0的过程,分子力做 正功,分子势能不断减小。 分子间距离从r0继续减小,克服斥力做功,使分子势 能不断增大。其数值将从负值逐渐变大至零,甚至 为正值。 当r=r0 时,分子势能最小。 F
分子势能:由分子和分子间相对位置所决定的能.
分子力做功跟分子势能变化的关系: 分子力做正功时,分子势能减少,分子力做
负功时(克服分子力做功),分子势能增加.
物体的内能:物体中所有分子做热运动的动能和分 子势能的总和叫做物体的内能.
决定物体内能的因素 从微观上看:物体内能的大小由组成物体的分子总数、 分子热运动的平均动能和分子间的距离三个因素决 定.
• 间 接 说 明:分子间有间隙
• 2)布朗运动:悬浮在液体中的固体微粒的 无规则运动,不是液体分子的无规则运动 因微粒很小,所以要用光学显微镜来观察.
• 布朗运动发生的原因是受到包围微粒的液 体分子无规则运动地撞击的不平衡性造成 的.因而布朗运动说明了分子在永不停息 地做无规则运动.
• (1)布朗运动不是固体微粒中分子的无规 则运动.
• 热学包括:研究宏观热现象的热力学、研 究微观理论的统计物理学
• 统计规律:单个分子的运动都是不规则的、 带有偶然性的;大量分子的集体行为受到 统计规律的支配
气体温度的微观意义
1.氧气分子的速率分布图象特点: “中间多、两头少”
温度升高时, 速率大的分子数增加 速率小的分子数减少
T aEk a为比例常数
(4)当r<r0时,分子力随距离增大而减小;当r>r0 时, 分子力随距离先增大后减小
(5)当r>10r0时,分子力等于0,分子力是短程力。
取分子间距离无限远时分子势能为零
分子间距离从无限远逐渐减少至r0的过程,分子力做 正功,分子势能不断减小。 分子间距离从r0继续减小,克服斥力做功,使分子势 能不断增大。其数值将从负值逐渐变大至零,甚至 为正值。 当r=r0 时,分子势能最小。 F
(人教版)高中物理选修3-3课件:7 本章高效整合
物理 选修3-3
第七章 分子动理论
构建体系网络
链接高考热点
单元知能评估
阿伏加德罗常数和微观估算 若一气泡从湖底上升到湖面的过程中温度保持不 变,已知气泡内气体的密度为 1.29 kg/m3,平均摩尔质量为 0.029 kg/mol,阿伏加德罗常数 NA=6.02×1023 mol-1,取气体分子的 平均直径为 2×10-10 m.若气泡内的气体能完全变为液体,请估 算液体体积与原来气体体积的比值.(结果保留一位有效数字)
链接高考热点
单元知能评估
分子间的作用力及分子势能 (四川高考)下列现象中不能说明分子间存在分子力的 是( ) A.两铅块能被压合在一起 B.钢绳不易被拉断 C.水不容易被压缩 D.空气容易被压缩
物理 选修3-3
第七章 分子动理论
构建体系网络
链接高考热点
单元知能评估
解析: 铅块能被压合在一起、钢绳不易被拉断,说明分子 间存在相互作用的引力;水不容易被压缩,说明分子间存在相互 作用的斥力;空气容易被压缩,说明气体分子间的距离很大.
答案: D
物理 选修3-3
第七章 分子动理论
构建体系网络
链接高考热点
单元知能评估
如图所示为两分子系统的势能 Ep 与两分子间距离 r 的关系曲线.下列说法正确的是( )
A.当 r 大于 r1 时,分子间的作用力表现为引力 B.当 r 小于 r1 时,分子间的作用力表现为斥力 C.当 r 等于 r2 时,分子间的作用力为零 D.当 r 由 r1 变到 r2 的过程中,分子间的作用力做负功
答案: BC
物理 选修3-3
第七章 分子动理论
构建体系网络
链接高考热点
单元知能评估
单元知能评估
《理想气体的状态方程》人教版高三物理选修3-3PPT课件
p2V2
T1
T2
即 20 80S ( p 743) 75S
300
270
解得: p=762.2 mmHg
二、理想气体的状态方程
4、气体密度式:
P1 P2
1T1 2T2
以1mol的某种理想气体为研究对象,它在标准状态
p0 1atm,V0 22.4L/mol ,T0 273K
根据 pV C 得: T
TD=300 K
pAVA = pCVC = pDVD
TA
TC
TD
等压压缩
由p-V图可直观地看出气体在A、B、C、D各状态下
压强和体积
(2)将上述状态变化过程在图乙中画成用体积V和 温度T表示的图线(图中要标明A、B、C、D四点,
并且要画箭头表示变化的方向).且说明每段图线 各表示什么过程.
由B到C,由玻意耳定律有pBVB=pCVC,得
4、从能量上说:理想气体的微观本质是忽略了分子力,没有分子势能,理想气体的内能只有分 子动能。
一、理想气体
一定质量的理想气体的内能仅由温度决定 ,与气体的体积无关.
例1.(多选)关于理想气体的性质,下列说法中正确的是( ABC )
A.理想气体是一种假想的物理模型,实际并不存在 B.理想气体的存在是一种人为规定,它是一种严格遵守气体实验定律的气体 C.一定质量的理想气体,内能增大,其温度一定升高 D.氦是液化温度最低的气体,任何情况下均可视为理想气体
一、理想气体
【问题】如果某种气体的三个状态参量(p、V、T)都发生了变化,它们之间又 遵从什么规律呢?
p
如图所示,一定质量的某种理想气体从A到B
A
经历了一个等温过程,从B到C经历了一个等
C
高中物理选修3-3全套ppt课件
• 7.误差分析 • (1)由于我们是采用间接测量的方式测量分子的直径,实验室中配制的
酒精溶液的浓度、油酸在水面展开的程度、油酸面积的计算都直接影 响测量的准确程度。
• (2)虽然分子直径的数量级应在10-10m。但中学阶段,对于本实验只要 能测出油酸分子直径的数量级在10-10m左右即可认为是成功的。
如果算出一定体积的油酸在水面上形成的单分子油膜的面积, 即可算出油酸分子的大小。用 V 表示一滴油酸酒精溶液中所含 油酸的体积,用 S 表示单分子油膜的面积,用 d 表示分子的直 径,如下图,则:d=VS。
• 3.实验器材
• 盛水的容器,有溶液刻度并能使油滴溶液一滴一滴下落的滴管或注射 器,一个量筒,按一定的比例(一般为1 200)稀释了的油酸溶液,带 有坐标方格的透明有机玻璃盖板(面积略大于容器的上表面积),少量痱 子粉或石膏粉,彩笔。
考点题型设计
油膜法估测分子的大小
•
(烟台市2014~2015学年高二下学期期中)在做“用油
膜法估测分子的大小”的实验中,若所用油酸酒精溶液的浓度为每
104mL溶液中含有纯油酸6mL,上述溶液为75滴,把1滴该溶液滴入盛
水的浅盘里,待水面稳定后,将玻璃板放在浅盘上,用笔在玻璃板上
描绘出油酸膜的轮廓形状再把玻璃板放在坐标纸上,其形状和尺寸如
• (3)待测油酸面扩散后又收缩,要在稳定后再画轮廊,扩散后又收缩有 两个原因:第一是水面受油酸滴冲击凹陷后恢复;第二是酒精挥发后 液面收缩。
• (4)利用坐标纸求油膜面积时,以边长1cm的正方形为单位,计算轮廓 内正方形的个数时,大于半个的均算一个。
• (5)当重做实验时,水从盘的一侧边缘倒出,在这侧面会残留油酸,用 少量酒精清洗,并用脱脂棉擦去再用清水冲洗,这样可保持盘的清洁。
高中物理选修3-3:《物态和物态变化》ppt课件
向有关(这种特性叫各向异性),非晶体 的物理性质在各个方向是相同的(这种特 注性意:叫各向同性).
①晶体具有各向异性,并不是每种晶体在各种物理性质上都 表现出各向异性.云母导热性上表现出显著的各向异性,而 有些晶体在导电性上表现出显著的各向异性,如方铝矿,有 些晶体在光的折射上表现出显著的各向异性,如方解石. ②晶体有一定的熔点,非晶体没有一定的熔点.
24
像液体一样具有流动性, 而其光学性质与某些晶体相似,具有各向异性 的一些化合物取名为液晶
4、液晶
液晶分子结构
液晶的应用:电子表显示窗 笔记本彩色显示器 人造生物膜
25
1、液体的微观结构 2、液体的特殊现象
⑴液体的表面张力 ⑵浸润和不浸润 ⑶毛细现象 3、液晶
26
9.3《饱和汽和 饱和气压》
1
新课标人教版课件系列
《高中物理》
选修3-3
2
第九章 《物态和物态变化》
3
9.1《固体》
4
教学目标
❖ 知识与能力 ❖ 1.知道固体可分为晶体和非晶体两大类,了解它
们在物理性质上的差别。 ❖ 2.知道晶体分子或离子按一定的空间点阵排列。
知道晶体可分为单晶体和多晶体,通常说的晶体 及性质是指单晶体,多晶体的性质与非晶体类似。 ❖ 3.能用晶体的空间点阵说明其物理性质的各向异 性。 ❖ 重点、难点 ❖ 1.晶体与非晶体的区别;晶体与多晶体的区别 ❖ 2.晶体的微观结构
38
39
9.4《物态变化中的 能量交换》
40
教学目标
❖ 知识与能力 ❖ 1.知道熔化和熔化热、汽化和汽化热的概念。 ❖ 2.会用熔化热和汽化热处理有关问题。 ❖ 3.体会能的转化与守恒在物态变化中的应用。 ❖ 重点、难点: ❖ 知道熔化和熔化热、汽化和汽化热的概念 ❖ 会用熔化热和汽化热处理有关问题。
①晶体具有各向异性,并不是每种晶体在各种物理性质上都 表现出各向异性.云母导热性上表现出显著的各向异性,而 有些晶体在导电性上表现出显著的各向异性,如方铝矿,有 些晶体在光的折射上表现出显著的各向异性,如方解石. ②晶体有一定的熔点,非晶体没有一定的熔点.
24
像液体一样具有流动性, 而其光学性质与某些晶体相似,具有各向异性 的一些化合物取名为液晶
4、液晶
液晶分子结构
液晶的应用:电子表显示窗 笔记本彩色显示器 人造生物膜
25
1、液体的微观结构 2、液体的特殊现象
⑴液体的表面张力 ⑵浸润和不浸润 ⑶毛细现象 3、液晶
26
9.3《饱和汽和 饱和气压》
1
新课标人教版课件系列
《高中物理》
选修3-3
2
第九章 《物态和物态变化》
3
9.1《固体》
4
教学目标
❖ 知识与能力 ❖ 1.知道固体可分为晶体和非晶体两大类,了解它
们在物理性质上的差别。 ❖ 2.知道晶体分子或离子按一定的空间点阵排列。
知道晶体可分为单晶体和多晶体,通常说的晶体 及性质是指单晶体,多晶体的性质与非晶体类似。 ❖ 3.能用晶体的空间点阵说明其物理性质的各向异 性。 ❖ 重点、难点 ❖ 1.晶体与非晶体的区别;晶体与多晶体的区别 ❖ 2.晶体的微观结构
38
39
9.4《物态变化中的 能量交换》
40
教学目标
❖ 知识与能力 ❖ 1.知道熔化和熔化热、汽化和汽化热的概念。 ❖ 2.会用熔化热和汽化热处理有关问题。 ❖ 3.体会能的转化与守恒在物态变化中的应用。 ❖ 重点、难点: ❖ 知道熔化和熔化热、汽化和汽化热的概念 ❖ 会用熔化热和汽化热处理有关问题。
人教版高中物理选修3-3知识点复习
人教版高中物理选修3-3知识点复习( 共52张 PPT)
人教版高中物理选修3-3知识点复习( 共52张 PPT)
➢取分子间距离无限远时程,分子力做 正功,分子势能不断减小。 分子间距离从r0继续减小,克服斥力做功,使分子势 能不断增大。其数值将从负值逐渐变大至零,甚至 为正值。 当r=r0 时,分子势能最小。 F
人教版高中物理选修3-3知识点复习( 共52张 PPT)
人教版高中物理选修3-3知识点复习( 共52张 PPT)
扩散现象: 不同物质相互接触,能够彼此进入对方。这样的 现象叫做扩散。 布朗运动 悬浮在液体中的微粒做永不停息的无规则运动叫做 布朗运动。
人教版高中物理选修3-3知识点复习( 共52张 PPT)
人教版高中物理选修3-3知识点复习( 共52张 PPT)
F斥
0
r0
F分
r
F引
人教版高中物理选修3-3知识点复习( 共52张 PPT)
4)注意:分子间的相互作用力是由于 分子中带电粒子的相互作用引起的。 5)注意:压缩气体也需要力,不说明分子间存在 斥力作用,压缩气体需要的力是用来反抗大量气 体分子频繁撞击容器壁(活塞)时对容器壁(活 塞)产生的压力。
人教版高中物理选修3-3知识点复习( 共52张 PPT)
人教版高中物理选修3-3知识点复习( 共52张 PPT)
平衡态:对于一个系统,没有外界影响的情况下,只 要经过足够长的时间,系统内各部分的状态参量 会达到稳定的状态。
热平衡 :两个系统接触,这两个系统的状态参量将会互 相影响而分别变.最后,两个系统的状态参量不再变化, 此时我们说两个系统达到了热平衡.
ρ ,阿伏加德罗常数NA。
则 :1.分子的质量:
m0
M mol NA
人教版高中物理选修3-3知识点复习( 共52张 PPT)
➢取分子间距离无限远时程,分子力做 正功,分子势能不断减小。 分子间距离从r0继续减小,克服斥力做功,使分子势 能不断增大。其数值将从负值逐渐变大至零,甚至 为正值。 当r=r0 时,分子势能最小。 F
人教版高中物理选修3-3知识点复习( 共52张 PPT)
人教版高中物理选修3-3知识点复习( 共52张 PPT)
扩散现象: 不同物质相互接触,能够彼此进入对方。这样的 现象叫做扩散。 布朗运动 悬浮在液体中的微粒做永不停息的无规则运动叫做 布朗运动。
人教版高中物理选修3-3知识点复习( 共52张 PPT)
人教版高中物理选修3-3知识点复习( 共52张 PPT)
F斥
0
r0
F分
r
F引
人教版高中物理选修3-3知识点复习( 共52张 PPT)
4)注意:分子间的相互作用力是由于 分子中带电粒子的相互作用引起的。 5)注意:压缩气体也需要力,不说明分子间存在 斥力作用,压缩气体需要的力是用来反抗大量气 体分子频繁撞击容器壁(活塞)时对容器壁(活 塞)产生的压力。
人教版高中物理选修3-3知识点复习( 共52张 PPT)
人教版高中物理选修3-3知识点复习( 共52张 PPT)
平衡态:对于一个系统,没有外界影响的情况下,只 要经过足够长的时间,系统内各部分的状态参量 会达到稳定的状态。
热平衡 :两个系统接触,这两个系统的状态参量将会互 相影响而分别变.最后,两个系统的状态参量不再变化, 此时我们说两个系统达到了热平衡.
ρ ,阿伏加德罗常数NA。
则 :1.分子的质量:
m0
M mol NA
人教版高中物理选修3-3全册课件
1
• 1 物体是由大量分子组成的
学习目标
素养提炼
1.知道物体是由大量分子组 成的.
物理观念:物体是由大量分子 组成的.
2.知道油膜法估测分子直 径的原理、思想和方法.
分子模型:球形模型和立方体 模型.
3.知道分子球形模型和分 子直径的数量级.
科学思维:利用阿伏加德罗常 数这一桥梁估算分子的大小 和质量.
图所示,油膜的__厚___度___即为油酸分子的直径.
V
(2)计算:如果油滴的体积为V,单分子油膜的面积为S,则分子的直径d=___S_____.(忽
略分子间的空隙) 2.分子的大小:除了一些有机物质的大分子外,多数分子大小的数量级为__1_0_-_1_0__m.
[思考] 热学中所说的分子是化学意义上的分子吗? 提示:不是.热学中所说的分子是组成物质微粒的分子、原子或离子的统称.
[解析] (1)实验操作开始之前要先配制油酸酒精溶液,确定每一滴溶液中含有纯 油酸的体积,所以步骤④放在首位.实验操作时要在浅盘放水、撒痱子粉,为 油膜的形成创造条件,然后是滴入油酸、测量油膜的面积,计算油膜的厚度(即 油酸分子直径),所以接下来的步骤是①②⑤③. (2)油酸溶液的体积浓度是3100,一滴溶液的体积是510 cm3=2×10-8 m3, 所以油酸分子的直径为d=2×100-.183×3010 m≈5×10-10 m.
4.知道阿伏加德罗常数及 其意义.
科学探究:油膜法探究分子直 径的大小.
01 课前 自主梳理 02 课堂 合作探究 03课后 巩固提升 04课时 跟踪训练
一、分子的大小
1.用油膜法估测分子的大小
(1)方法:把一滴油酸酒精溶液滴在水面上,在水面上形成油酸薄
膜,薄膜是由___单___层______的油酸分子组成的,并把油酸分子简化成__球___形_____,如
• 1 物体是由大量分子组成的
学习目标
素养提炼
1.知道物体是由大量分子组 成的.
物理观念:物体是由大量分子 组成的.
2.知道油膜法估测分子直 径的原理、思想和方法.
分子模型:球形模型和立方体 模型.
3.知道分子球形模型和分 子直径的数量级.
科学思维:利用阿伏加德罗常 数这一桥梁估算分子的大小 和质量.
图所示,油膜的__厚___度___即为油酸分子的直径.
V
(2)计算:如果油滴的体积为V,单分子油膜的面积为S,则分子的直径d=___S_____.(忽
略分子间的空隙) 2.分子的大小:除了一些有机物质的大分子外,多数分子大小的数量级为__1_0_-_1_0__m.
[思考] 热学中所说的分子是化学意义上的分子吗? 提示:不是.热学中所说的分子是组成物质微粒的分子、原子或离子的统称.
[解析] (1)实验操作开始之前要先配制油酸酒精溶液,确定每一滴溶液中含有纯 油酸的体积,所以步骤④放在首位.实验操作时要在浅盘放水、撒痱子粉,为 油膜的形成创造条件,然后是滴入油酸、测量油膜的面积,计算油膜的厚度(即 油酸分子直径),所以接下来的步骤是①②⑤③. (2)油酸溶液的体积浓度是3100,一滴溶液的体积是510 cm3=2×10-8 m3, 所以油酸分子的直径为d=2×100-.183×3010 m≈5×10-10 m.
4.知道阿伏加德罗常数及 其意义.
科学探究:油膜法探究分子直 径的大小.
01 课前 自主梳理 02 课堂 合作探究 03课后 巩固提升 04课时 跟踪训练
一、分子的大小
1.用油膜法估测分子的大小
(1)方法:把一滴油酸酒精溶液滴在水面上,在水面上形成油酸薄
膜,薄膜是由___单___层______的油酸分子组成的,并把油酸分子简化成__球___形_____,如
新人教版高中物理选修3-3课件 热力学第一定律 能量守恒定律
答案:ABC
5.一定质量的气体从外界吸收了 4.2×105 J 的热量, 同时气体对外做了 6×105 J 的功,问:
(1)物体的内能是增加还是减少?变化量是多少? (2)分子势能是增加还是减少? (3)分子的平均动能是增加还是减少?
解析:(1)气体从外界吸热为 Q=4.2×105 J,气体对外做 W= -6×105 J,
2.公式 ΔU=Q+W Байду номын сангаас符号的规定
符号
W
Q
ΔU
+ 外界对系统做功 系统吸收热量 内能增加
- 系统对外界做功 系统放出热量 内能减少
3.几种特殊情况
(1)若过程是绝热的,则 Q=0,W=ΔU,外界对物体做的功等
于物体内能的增加。
(2)若过程中不做功,即 W=0,则 Q=ΔU,物体吸收的热量等
于物体内能的增加。
[解析] 由热力学第一定律可得 ΔU=W+Q= 500 J+(-100 J)=400 J,即缸内气体内能增加 400 J,气体温度升高,故选项 A 正确,B、C、D 错 误。
[答案] A
[点评] 应用热力学第一定律解题的方法 1.明确研究对象是哪个物体或者是哪个热力学系统。 2.分别找出题目中研究对象吸收或放出的热量;外界对研 究对象所做的功或研究对象对外界所做的功;研究对象内能的 变化量。 3.根据热力学第一定律 ΔU=Q+W 列出方程进行求解。 4.特别注意物理量的正负号及其意义。
解析:自由摆动的秋千摆动幅度越来越小,说明 机械能在减少,A、C 错误;减少的机械能通过摩擦 转化成了内能,B 错误,D 正确。
答案:D
[知识预览] 1.热力学第一定律的理解和应用 2.能量守恒定律的理解和应用
1.对热力学第一定律的理解 (1)热力学第一定律不仅反映了做功和热传递这两种改变内能 的过程是等效的,而且给出了内能的变化量和做功与热传递之间的 定量关系。 (2)定律的表达式 ΔU=Q+W 是标量式。 (3)应用时各量的单位应统一为国际单位焦耳。
5.一定质量的气体从外界吸收了 4.2×105 J 的热量, 同时气体对外做了 6×105 J 的功,问:
(1)物体的内能是增加还是减少?变化量是多少? (2)分子势能是增加还是减少? (3)分子的平均动能是增加还是减少?
解析:(1)气体从外界吸热为 Q=4.2×105 J,气体对外做 W= -6×105 J,
2.公式 ΔU=Q+W Байду номын сангаас符号的规定
符号
W
Q
ΔU
+ 外界对系统做功 系统吸收热量 内能增加
- 系统对外界做功 系统放出热量 内能减少
3.几种特殊情况
(1)若过程是绝热的,则 Q=0,W=ΔU,外界对物体做的功等
于物体内能的增加。
(2)若过程中不做功,即 W=0,则 Q=ΔU,物体吸收的热量等
于物体内能的增加。
[解析] 由热力学第一定律可得 ΔU=W+Q= 500 J+(-100 J)=400 J,即缸内气体内能增加 400 J,气体温度升高,故选项 A 正确,B、C、D 错 误。
[答案] A
[点评] 应用热力学第一定律解题的方法 1.明确研究对象是哪个物体或者是哪个热力学系统。 2.分别找出题目中研究对象吸收或放出的热量;外界对研 究对象所做的功或研究对象对外界所做的功;研究对象内能的 变化量。 3.根据热力学第一定律 ΔU=Q+W 列出方程进行求解。 4.特别注意物理量的正负号及其意义。
解析:自由摆动的秋千摆动幅度越来越小,说明 机械能在减少,A、C 错误;减少的机械能通过摩擦 转化成了内能,B 错误,D 正确。
答案:D
[知识预览] 1.热力学第一定律的理解和应用 2.能量守恒定律的理解和应用
1.对热力学第一定律的理解 (1)热力学第一定律不仅反映了做功和热传递这两种改变内能 的过程是等效的,而且给出了内能的变化量和做功与热传递之间的 定量关系。 (2)定律的表达式 ΔU=Q+W 是标量式。 (3)应用时各量的单位应统一为国际单位焦耳。
新人教版高中物理选修3-3章小结精品课件(共4章)
3.三个基本关系 在这一章中基本概念较多,且相互间关系也较复杂,因此在学习时必须明确以下三 个基本关系: (1)明确布朗运动与分子运动的关系 布朗运动是在显微镜下观察到的,是固体微粒(不是液体,不是固体分子)的无规则运 动,但它反映的是液体分子运动的无规则性;布朗运动是大量液体分子对固体微粒撞击 的集体行为的结果,个别分子对固体微粒的碰撞不会产生布朗运动;固体微粒越小,液 体分子对它各部分碰撞的不平衡性越明显,液体温度越高,固体微粒周围的液体分子运 动越不规则,对微粒碰撞的不平衡性越明显,所以布朗运动越剧烈.
【例 2】 用长度能放大 600 倍的显微镜观察布朗运动.估计放大后的小颗粒(碳粒) 体积为 0.1×10-9 m3,已知碳的密度是 2.25×103 kg/m3,摩尔质量是 1.2×10-2 kg/mol,阿 伏加德罗常数为 6.0×1023 mol-1,试估算小碳粒中的分子数和碳原子的直径.
【解析】 设小碳粒的边长为 a,放大 600 倍后,其体积 V=(600a)3=0.1×10-9 m3, 而实际体积 V′=a3, 所以小碳粒的质量 m=ρV′=ρ a3,
\
分子力曲线
分子势能曲线
图象
坐标轴
图象的 意义
分子距离 r=r0 时
纵坐标表示分子力,横坐标表示分 纵坐标表示分子势能,横坐标表示
子间距离
分子间距离
横轴上方的曲线表示斥力,为正 横轴上方的曲线表示分子势能,为
值ቤተ መጻሕፍቲ ባይዱ下方的曲线表示引力,为负 正值;下方的曲线表示分子势能,
值.分子力为引力与斥力的合力 为负值,且正值一定大于负值
B.分子间的相互作用力随着分子间距离的增大,一定先减小后增大 C.分子势能随着分子间距离的增大,可能先减小后增大 D.在真空、高温条件下,可以利用分子扩散向半导体材料掺入其他元素
人教版高中物理选修3-3全套PPT课件
2.知道分子的简化模型,即 球形模型或立方体模型,知
分子直径的数量级.(重
道分子直径的数量级.
难点)
3.知道阿伏加德罗常数是联 2.知道阿伏加德罗常数
系宏观世界和微观世界的桥 的意义.(重点)
梁,记住它的物理意义、数 3.阿伏加德罗常数和微
值和单位,会用这个常数进 观量的计算.(难点)
行有关的计算和估算.
●新课导入建议 假如全世界 60 亿人同时数 1 g 水的分子个数,每 人每小时可以数 5000 个,不间断地数下去,则数完这 些分子大约需要 10 万年.从以上的事例你对分子有什 么样的认识?
●教学流程设计
课标解读
重点难点
1.知道物体是由大量分子组
成的.
1.建立分子模型,知道
简化处理是在一定场合、一定条件下突出客观事物 的某种主要因素、忽略次要因素而建立的.将分子简化 成球形,并且紧密排列,有利于主要问题的解决.
在“用油膜法估测分子的大小”的实验中,所用 油酸酒精溶液的浓度为每 104 mL 溶液中有纯油酸 6 mL,用注射器测得 1 mL 上述溶液为 75 滴.把 1 滴该 溶液滴入盛水的浅盘里,待水面稳定后,将玻璃板放在 浅盘上,用彩笔在玻璃板上描出油膜的轮廊,再把玻璃 板放在坐标纸上,其形状和尺寸如图 7-1-2 所示,坐 标中正方形方格的边长为 1 cm.则
(2)用滴数 n,算出一滴油 酸酒精溶液的体积 V .
(3)将一滴油酸酒精溶液滴在浅盘的液面上. (4)待油酸薄膜形状稳定后,将玻璃板放在浅盘上, 用水彩笔(或钢笔)画出油酸薄膜的形状. (5)将玻璃板放在坐标纸上,通过数方格数,算出 油酸薄膜的面积 S.计算方格数时,不足半个的舍去, 多于半个的算一个.
②如果 1 滴油滴的体积为 V,单分子油膜的面积为 S,则分子的大小(即直径)为 d=_V_/_S___.在此忽略了分 子间的空隙.
选修3-3全本复习 课件共49张PPT
三、气体热现象的微观解释
从微观的角度看,物体的热现象是由大量分 子的热运动所决定的。
1.气体分子运动的特点
(1)气体分子间的距离比较大,分子间的作用力很弱, 通常认为,气体分子除了相互碰撞或者跟器壁的碰撞外, 不受力而做匀速直线运动。 (2)气体的数密度很大,向各个方向运动的气体分子 数目都相等。 (3)温度越高,分子的热运动越激烈。温度是分子平 均动能的标志. 气体分子运动的速率分布呈“中间大、两头小” 的正态分布规律。
不变
液面气压的 高低
影响因素
(二)饱和汽和饱和汽压
P51
(1) 饱和汽压的定义:在一定温度下,饱和汽 的分子数密度是一定的,因而饱和汽的压强也是 一定的,这个压强叫做这种液体的饱和汽压。 (2)影响饱和汽压的因素: 单位体积内分子数和分子平均速率 (分子数密度) (温度) (3)未饱和汽变成饱和汽的方法:P57 在温度不变时,增大压强压缩体积 在体积不变时,降低气体温度
解释玻意耳定律
一定质量(m)的理想气体,其分子总数(N)是一 个定值,当温度(T)保持不变时,则分子的平均速率 (v)也保持不变,当其体积(V)增大几倍时,则单 位体积内的分子数(n)变为原来的几分之一,因此气 体的压强也减为原来的几分之一;反之若体积减小为 原来的几分之一,则压强增大几倍,即压强与体积成 反比。这就是玻意耳定律。
例.对一定质量的理想气体,下列四个论述中正确 的是( ) B A.当分子热运动变剧烈时,压强必增大 B.当分子热运动变剧烈时,压强可以不变 C.当分子间的平均距离变大时,压强必变小 D.当分子间的平均距离变大时,压强必变大
第九章 物态和物 态变化(复习)
一、固体
(一)固体分子的特点:
(1)分子间的距离很小,跟分子本身的大小具 有相同的数量级,因而分子间有较强的相互作 用。这使得固体不易压缩,在微观结构上不像 气体那样无序。 (2)虽然每个固体分子也处于运动状态,但每 个分子只能在各自的平衡位置附近作微小的振 动,不能移动到距平衡位置较远的地方,所以 能保持一定的形状。
高中物理,选修3---3,全册课件汇总
3.31027 (kg)
同理:一个水分子质量 m=M/NA=1.8×10-2/ 6.02×1023=3×10-26kg.
例5.若已知铁的原子量是56,铁的密度是7.8×103kg/m3,试 求质量是1g的铁块中铁原子的数目(取1位有效数字)及 一个铁原子的体积.
解: 1g铁的物质量是1/56mol,设其中铁原子的数目是n :
n=1/56× NA=1/56×6×1023≈1×1022个. 1g铁的体积v: v =m/ρ=1×10-3/7.8×103 ≈1×10 –7m3 .
一个铁原子的体积vo: v o=v/n= (1×10 –7)/ (1×1022 ) ≈ 1×10 –29 m3.
例题6:
已知空气的摩尔质量是M A 29103kg/mol ,
二、阿伏伽德罗常数
问: 在化学课上学过的阿伏伽德罗常数是什么意义? 数值是多少?
意义: 1mol任何物质中含有的微粒数(包括原子数,分子
数,离子数……)都相同,此数叫阿伏伽德罗常数, 可用符号NA表示此常数.阿伏加德罗常数是联系微观
世界和宏观世界的桥梁.
数值: 1986年X射线法 NA=6.0221367×1023个/ mol(mol-1 ).
(2)油膜法:
将一滴体积已知的小油滴, 滴在水面上, 在重力作用下 尽可能的散开形成一层极薄的油膜, 此时油膜可看成单 分子油膜,油膜的厚度看成是油酸分子的直径, 所以只要 再测定出这层油膜的面积, 就可求出油分子直径的大小
78cm2
简化处理: (1)把分子看成一个个小球; (2)油分子一个紧挨一个整齐排列; (3)认为油膜厚度等于分子直径.
高中物理人教版选修3---3 全册课件汇总
§第七章: 分子动理论 §第八章: 气体 §第九章: 固体、液体和物态变化 §第十章: 热力学定律
高中物理选修3-3、4、5讲义
6) 为了证实等温变化曲线是双曲线,可采用画
1 P 图象来直观反映。此时在
V
反映的是过坐标原点的正比直线,且斜率大者温度高.
1 P 图象里
V
7) 应用玻意耳定律解题要跟踪一定质量的气体,先找出对应的始末状态的
P、V 参量,再列方
程求解,方程式两边的单位只要能统一即可.
t
8) 正确理解 Pt P0 1
0( K),这时气体
不能看作理想气体,盖·吕萨克定律已不适用,因此等压线向坐标原点方向的延长线也要用虚
线表示。
4、理想气体状态方程
( 1)内容:一定质量的理想气体,压强和体积的乘积与热力学温度的比值等于一个常量。
即 P1V1 T1
P2V2 T2
PnVn C 常量 Tn
( 2)理想气体状态方程的应用:用理想气体状态方程解决问题时,要注意选取一定质量的
楚气体的变化过程,选择变化过程中的某两个状态正确写出它们的状态参量
( 包括未知量 ) ,然
后根据玻意耳定律列出方程,设法从所列方程中解出要求的末知量。
2、查理定律
( 1)内容概述:一定质量的某种气体,在体积不变的情况下,压强跟热力学温度成正比。
( 2)数学表达式: P ∝ T
或 P1 T1
P2 ; P1 T2 P2
由于等压变化过程中气体的体积与热力学温度成正比,因而等压线是一条倾斜的直线.对
于一定质量的气体而言, 不同压强下等压的等压线对应着气体的不同压强,
V/T 的值越大的等压
线表示气体的压强越小.如上图所示的两条等压线分别代表的压强关系为
P2>P1 . 延长等压线可
以看到,当 V= 0时,等压线的延长线通过坐标原点,这时对应的热力学温度为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)温度是物体内分子热运动平均动 能的标志,
3.物体的内能
定义:物体中所有分子热运动的动能和分 子势能的总和,叫做物体的内能。
(1)分子势能
• 分子间存在着相互作用力,因此分子间具 有由它们的相对位置决定的势能,这就是 分子势能。分子势能的大小与分子间距离 有关.
• 当时,分子力为引力,当r增大时,分子力 做负功,分子势能增加
不太低
p
• 图象表达:
1 V
②查理定律:等容变化 • 微观解释:一定质量的气体,体积保持不
变时,分子的密集程度保持不变,在这种 情况下,温度升高时,分子的平均动能增 大,气体的压强就增大。 • 适用条件:温度不太低,压强不太大 • 图象表达:P-V
p
V
③盖吕萨克定律:等压变化 • 微观解释:一定质量的气体,温度升高时,
四、气体
1.气体压强的微观解释 (1) 大量分子频繁的撞击器壁的结果 (2) 影响气体压强的因素: ①气体的平均分子动能(温度) ②分子的密集程度即单位体积内的分子数
(体积)
2.气体实验定律
①玻意耳定律:等温变化 • 微观解释:一定质量的理想气体,温度保持不变时,
分子的平均动能是一定的,在这种情况下,体积减少 时,分子的密集程度增大,气体的压强就增大。 • 适用条件:压强不太大,温度
一、分子动理论 1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径
(2)1mol 任何物质含有的微粒数相同 N A 6.02 1023 mol 1
3 对微观量的估算 ①分子的两种模型:球形和立方体
②利用阿伏伽德罗常数联系宏观量与微观量
a.分子质量:
m
M mol NA
b.分子体积: v Vmol NA
3、分子间的相互作用力 • 分子之间的引力和斥力都随分子间距离增
大而减小。但是分子间斥力随分子间距离 加大而减小得更快些。
• 分子间同时存在引力和斥力,两种力的合 力又叫做分子力。
• 当r=r0分子间的引力与斥力平衡,分子间作 用力为零,相当于位置叫做平衡位置。
二.气体分子运动与压强
麦克斯韦速率分布规律
• 当时,分子力为斥力,当r减少时,分子力 做负功,分子是能增加
(2)分子总的动能:
(3)改变内能的方式:做功与热传递
三、物态和物态变化
晶体:外观上有规则的几何外形,有确定 的熔点,一些物理性质表现为各向异性 非晶体:外观没有规则的几何外形,无确 定的熔点,一些物理性质表现为各向同性
①判断物质是晶体还是非晶体的主要依 据是有无固定的熔点
• 气体的压强与气体温度和分子密度有关,温 度越高,单位体积内的分子数越多,气体的压 强越大
二、温度与内能
1、温度与分子平均动能
温度:宏观上的温度表示物体的 冷热程度,微观上的温度是物体大 量分子热运动平均动能的标志。热 力学温度与摄氏温度的关系:
T t 273.15K
2.分子平均动能
(1)定义:大量分子动能的平均值, 这个平均值叫做分子热运动的平均动 能.
热力学第二定律的微观解释
一切不可逆过程总是沿着大量分子热运 动无序程度增大的方向进行.
(2)第一类永动机不可制成是因为其违背了热 力学第一定律
七.热力学第二定律
1.热力学第二定律的克劳修斯表述:
不可能使热量从低温物体传向高温物体
而不引起其他变化. 2.热力学第二定律的开尔文表述 不可能从单一热源吸收热量,使之完全
变为有用功而不引起其他变化. 第二类永动机不可制成是因为其违背 了热力学第二定律
• 气体的内能只与温度有关,与体积无关
•
理想气体的方程:
pV T
C
五.热力学第一定律:
①表达式: u W Q
W
Q
u
+
外界对系统 系统从外界 系统内能增
做功
吸热
加
-
系统对外界 系统向外界
做功
放热
符号
六.能量守恒定律
(1)能量既不会凭空产生,也不会凭空消失, 它只能从一种形式转化为另一种形式,或 者从一个物体转移到另一物体,在转化和 转移的过程中其总量不变
②晶体与非晶体并不是绝对的,有些晶 体在一定的条件下可以转化为非晶体(石 英→玻璃)
单晶体 多晶体
• 如果一个物体就是一个完整的晶体,如食 盐小颗粒,这样的晶体就是单晶体(单晶 硅、单晶锗)
• 如果整个物体是由许多杂乱无章的小晶体 排列而成,这样的物体叫做多晶体,多晶 体没有规则的几何外形,但同单晶体一样, 仍有确定的熔点。
分子的平均动能增大,只有气体的体积同 时增大,使分子的密集程度减少,才能保 持压强不变 • 适用条件:压强不太大,温度不太低 • 图象表达:V T
V
T
3.理想气体 • 宏观上:严格遵守三个实验定律的气体,
在常温常压下实验
• 气体可以看成理想气体 • 微观上:分子间的作用力可以忽略不计,
故一定质量的理想
①布朗运动的三个主要特点:永不停息 地无规则运动;颗粒越小,布朗运动越 明显;温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分 子无规则运动对固体微小颗粒各个方向撞 击的不均匀性造成的。
③布朗运动间接地反映了液体分子的无规 则运动,布朗运动、扩散现象都有力地说 明物体内大量的分子都在永不停息地做无 规则运动。
c.分子数量:n
M M mol
NA
v
M mol
NA
M
Vmol
NA
v Vmol
NA
2、分子永不停息的做无规则的热运 动
(1)扩散现象:
不同物质能够彼此进入对越快
(2)布朗运动:它是悬浮在液体中的固体微粒 的无规则运动,是在显微镜下观察到的。
3.物体的内能
定义:物体中所有分子热运动的动能和分 子势能的总和,叫做物体的内能。
(1)分子势能
• 分子间存在着相互作用力,因此分子间具 有由它们的相对位置决定的势能,这就是 分子势能。分子势能的大小与分子间距离 有关.
• 当时,分子力为引力,当r增大时,分子力 做负功,分子势能增加
不太低
p
• 图象表达:
1 V
②查理定律:等容变化 • 微观解释:一定质量的气体,体积保持不
变时,分子的密集程度保持不变,在这种 情况下,温度升高时,分子的平均动能增 大,气体的压强就增大。 • 适用条件:温度不太低,压强不太大 • 图象表达:P-V
p
V
③盖吕萨克定律:等压变化 • 微观解释:一定质量的气体,温度升高时,
四、气体
1.气体压强的微观解释 (1) 大量分子频繁的撞击器壁的结果 (2) 影响气体压强的因素: ①气体的平均分子动能(温度) ②分子的密集程度即单位体积内的分子数
(体积)
2.气体实验定律
①玻意耳定律:等温变化 • 微观解释:一定质量的理想气体,温度保持不变时,
分子的平均动能是一定的,在这种情况下,体积减少 时,分子的密集程度增大,气体的压强就增大。 • 适用条件:压强不太大,温度
一、分子动理论 1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径
(2)1mol 任何物质含有的微粒数相同 N A 6.02 1023 mol 1
3 对微观量的估算 ①分子的两种模型:球形和立方体
②利用阿伏伽德罗常数联系宏观量与微观量
a.分子质量:
m
M mol NA
b.分子体积: v Vmol NA
3、分子间的相互作用力 • 分子之间的引力和斥力都随分子间距离增
大而减小。但是分子间斥力随分子间距离 加大而减小得更快些。
• 分子间同时存在引力和斥力,两种力的合 力又叫做分子力。
• 当r=r0分子间的引力与斥力平衡,分子间作 用力为零,相当于位置叫做平衡位置。
二.气体分子运动与压强
麦克斯韦速率分布规律
• 当时,分子力为斥力,当r减少时,分子力 做负功,分子是能增加
(2)分子总的动能:
(3)改变内能的方式:做功与热传递
三、物态和物态变化
晶体:外观上有规则的几何外形,有确定 的熔点,一些物理性质表现为各向异性 非晶体:外观没有规则的几何外形,无确 定的熔点,一些物理性质表现为各向同性
①判断物质是晶体还是非晶体的主要依 据是有无固定的熔点
• 气体的压强与气体温度和分子密度有关,温 度越高,单位体积内的分子数越多,气体的压 强越大
二、温度与内能
1、温度与分子平均动能
温度:宏观上的温度表示物体的 冷热程度,微观上的温度是物体大 量分子热运动平均动能的标志。热 力学温度与摄氏温度的关系:
T t 273.15K
2.分子平均动能
(1)定义:大量分子动能的平均值, 这个平均值叫做分子热运动的平均动 能.
热力学第二定律的微观解释
一切不可逆过程总是沿着大量分子热运 动无序程度增大的方向进行.
(2)第一类永动机不可制成是因为其违背了热 力学第一定律
七.热力学第二定律
1.热力学第二定律的克劳修斯表述:
不可能使热量从低温物体传向高温物体
而不引起其他变化. 2.热力学第二定律的开尔文表述 不可能从单一热源吸收热量,使之完全
变为有用功而不引起其他变化. 第二类永动机不可制成是因为其违背 了热力学第二定律
• 气体的内能只与温度有关,与体积无关
•
理想气体的方程:
pV T
C
五.热力学第一定律:
①表达式: u W Q
W
Q
u
+
外界对系统 系统从外界 系统内能增
做功
吸热
加
-
系统对外界 系统向外界
做功
放热
符号
六.能量守恒定律
(1)能量既不会凭空产生,也不会凭空消失, 它只能从一种形式转化为另一种形式,或 者从一个物体转移到另一物体,在转化和 转移的过程中其总量不变
②晶体与非晶体并不是绝对的,有些晶 体在一定的条件下可以转化为非晶体(石 英→玻璃)
单晶体 多晶体
• 如果一个物体就是一个完整的晶体,如食 盐小颗粒,这样的晶体就是单晶体(单晶 硅、单晶锗)
• 如果整个物体是由许多杂乱无章的小晶体 排列而成,这样的物体叫做多晶体,多晶 体没有规则的几何外形,但同单晶体一样, 仍有确定的熔点。
分子的平均动能增大,只有气体的体积同 时增大,使分子的密集程度减少,才能保 持压强不变 • 适用条件:压强不太大,温度不太低 • 图象表达:V T
V
T
3.理想气体 • 宏观上:严格遵守三个实验定律的气体,
在常温常压下实验
• 气体可以看成理想气体 • 微观上:分子间的作用力可以忽略不计,
故一定质量的理想
①布朗运动的三个主要特点:永不停息 地无规则运动;颗粒越小,布朗运动越 明显;温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分 子无规则运动对固体微小颗粒各个方向撞 击的不均匀性造成的。
③布朗运动间接地反映了液体分子的无规 则运动,布朗运动、扩散现象都有力地说 明物体内大量的分子都在永不停息地做无 规则运动。
c.分子数量:n
M M mol
NA
v
M mol
NA
M
Vmol
NA
v Vmol
NA
2、分子永不停息的做无规则的热运 动
(1)扩散现象:
不同物质能够彼此进入对越快
(2)布朗运动:它是悬浮在液体中的固体微粒 的无规则运动,是在显微镜下观察到的。