理想流动均相反应器讲义设计罗
第三章 理想流动均相反应器设计
W
(4)计算反应体积
VR v0 (t t) 0.2673 (7.649 0.5) 2.178(m3 )
第3章 理想流动均相反应器设计
● 设计计算步骤
(5) 根据物料特性确定装料系数 ,计算反应器体积
Vt
VR f 2.178 0.75 2.904(m3 )
对于沸腾或鼓泡的物料:
※ 相关问题讨论
3. 何谓物料粒子或流体微团? 假定反应器内的物料是以粒子或微团构成的,这种粒子或微团是 大量分子的集合体,具有宏观线度,与宏观粒子相比,其大小可以说 是微不足道,但与单个原子或分子相比,又是一个很大的分子集团, 能反映出物料特性参量的统计规律。如: 单个分子 转化率
0 100%
;物料粒子
● 间歇釜操作优化——最佳反应时间
(1)问题分析
操作时间 t t0
不变; 单 位 时 间 产 量
t0
t
延长;
cAห้องสมุดไป่ตู้
减小;
rA
降低
最优操作时间
topt
tc
第3章 理想流动均相反应器设计
● 间歇釜操作优化——最佳反应时间
(2)建立目标函数 单时产量
最终总产量 总操作时间
PR VRCR t t0
第3章 理想流动均相反应器设计
● 设计计算步骤
(2) 查阅辅助时间计算每批次的操作时间,即
操作时间 (t t ) 7.649 0.5
(3)根据物料处理量计算单位时间内处理物料的体积量,即
272.684 v0 (m / h) 267.3( L / h) 0.2673 ( m 3 / h) 1.02
0
dxA rAV R
第二章 理想流动反应器01
ECRE
第 二 章 理 想 流 动 反 应 器
2013-8-3 Chemical Reaction Engineering of Hao 25
ECRE
热量衡算
第 二 • 对微元体积的反应体系做热量衡算,以单 章 位时间、单位体积为衡算基准,有 理 • 物料带入热量(I) — 物料带出热量(II) 想 + 反应放出热量(III)—给环境热量(V) 流 =积累的热量(IV) 动 反 应 器
第 二 • ———完成化学反应的特殊容器或设备。 章 • 实验室反应器与工业反应器之间的最大区别——
反应体系的均匀性问题。 理 想 • 工业反应器中不可避免会出现流速、温度和浓度 流 的不均匀空间分布,工程因素对化学反应结果的 动 影响是反应器产生放大效应的根本原因。 反 • 反应器内流体流动状况对反应速率和反应选择性 应 有很大影响,因此反应器中流体流动模型的研究 器 是反应器选型、设计和优化的基础。
ECRE
第 二 章 理 想 流 动 反 应 器
第二章 理想流动反应器
———2009年3月
化学反应工程
太原理工大学化工学院
郝晓刚
Prof. Ph.D
Taiyuan University of Technology
2013-8-3 Chemical Reaction Engineering of Hao 1
2013-8-3 Chemical Reaction Engineering of Hao 19
ECRE
1.5 反应器设计的基本方程
第 二 • 工业反应器设计,首先要确定生产能力及 章 产品质量要求,确定反应器进出口物料量 理 和状态;然后再根据反应过程特性及化学 想 动力学特征,选择合适的反应器形式和操 流 作方式;最后求出满足工艺要求的反应器 动 体积。 反 应 器
第3章 均相反应过程(理想反应器)
单位时间反应消失的A的量 单位时间反应器A的累积量
单位时间反应消失的A的量=(-rA)V
13
一、间歇反应器
物料平衡:流入=流出+反应+累积
0 =0+(-rA)V+d(VcA)/dt
dVc A dnA (rA ) V dt dt (rA ) V
dnA t n 0 dt (rA ) V
4
一、流动模型
流动模型分类如下: 理想流动模型 流动模型
非理想流动模型
流动模型是专指流动反应器而言的。 对于流动反应器,必须考虑物料在反应器内的流反应器 简称间歇式反应器
理想反应器
理想平推流反应器 简称平推流反应器
理想全混流反应器 简称全混流反应器
平推流和全混流都是理想的连续流动反应器。实际反应器中 的流动状况,介于这两种理想流动之间。之所以研究理想反 应器是为把问题简化,把接近于理想流动的过程当作该种理 想流动来处理。
10
第三章 均相反应过程
3.1 概述 3.2 简单反应器的性能方程 一、间歇反应器 二、平推流反应器 三、全混流反应器
11
一、间歇反应器
间歇式反应器中的物料平衡: 反应单元 流入
反应消耗
累积
流出
12
一、间歇反应器
间歇反应器的性能方程首先进行物料平衡: 单位时间流出反应器A的量 单位时间 进入反应 器A的量 =
图3-3
从而得出反应时间和转化率关系的间歇式反应器性能方程。
15
一、间歇反应器
例题:计算间歇反应器中的反应时间 一级不可逆反应在一间歇式反应器中进行,求在50℃ 反 应转化率达70%所需的时间。 已知: A R
rA kcA , kmol /(m3 h)
8 第3章 理想流动均相反应器
3.2 稳态全混流反应器
解:
VR 20 40min v0 0.5
cA0 xA xA k1cA0 1 xA 0.11 xA xA 0.8 cA cA0 1 xA 0.02kmol/m3
3.2 稳态全混流反应器
对中间产物R: cR 40 2 k1cA 2k 2 cR
第3章 理想流动均相反应器设计
河北科技大学 化学与制药工程学院 张向京
例 3-3 :液相一级不可逆分解反应 A → B+C 于常温下在一个 2m3全混流反应器中等温进行。进口反应物浓度为1 kmol· m-3 ,体积流量为 1m3h-1,出口转化率为 80% 。因后续工段设备 故障,出口物流中断。操作人员为此紧急停止反应器进料。 半小时后故障排除,生产恢复。试计算生产恢复时反应器内 物料的转化率为多少?
rA k1cA
rR k1cA k2cR
对反应物A:
cA0 cAf cA0 cAf k1cAf k1 1
3.2 稳态全混流反应器
0
对主产物R: 流入量 = 流出量 + 反应量 + 累积量
FR0 FRf -rRf VR
0 v0cRf -rRf VR
v0 cRf VR rAf
ቤተ መጻሕፍቲ ባይዱ
3.2 稳态全混流反应器 多级全混流反应器的串联的计算
cA0
v0
cA1 cA1
VR1
v0
cA2
v0
cAi-1 cAi-1
VRi-1
v0
cAi cAi
VRi
v0
cAm
v0
cA2
VR2
cAm
VRm
3.2 稳态全混流反应器 解析计算 假设:稳定状态,等温,等容。 对第i级作A的物料衡算,则有:
第三章_理想流动反应器 ppt课件
• 返混:若处于不同进料时间的两股物料之间发生混 合,两者的组成不同,混合后形成的新物料其组成 与原物料的组成不同,化学反应的速率亦随之变化 ,这种混合称为返混。
理想化条件 反应物料在反应器内搅拌均匀; 反应物料各参量只随时间改变。
如果是非理想工业规模反应器,则
cA f (x, y, z,t);T f (x, y, z,t)
经理想化后的浓度、温度函数则为
cA f (t); T f (t)
ppt课件
1
间歇反应器的数学描述
对整个反应器进行物料衡算:
0
0
CA CA0ekt
xA 1 ekt
kt 1 1
CA
CA0
CA 1
CA0 CA0
kt
kt 1 xA
CA0
1
xA
xA
CA0kt 1 CA0kt
rA
kC
n A
kt
n 1pp1t课(C件1An
C1n A0
)
(1-x
)1-n
A
1 (n 1)CAn01k1t
间歇反应器中的单反应
1. k的影响 k增大(温度升高)→t减少→反应体积减小
2 具有足够强的传热条件,温度始终相等,无需考虑器 内的热量传递问题;
3 物料同时加入并同时停止反应,所有物料具有相同的 反应时间。
优点: 操作灵活,适用于小批量、多品种、反应时间较长的
产品生产
精细化工产品的生产
缺点:装料、卸料等辅助操作时间长,产品质量不稳定
ppt课件
第三章 理想均相反应器设计041019155835
第三章理想均相反应器设计本章核心内容:从间歇釜反应器、稳态全混流反应器和平推流管式反应器这三种理想反应器的结构和流动特性出发,给出了它们数学模型的建立方法、不同反应过程中的反应体积设计公式和热量计算式以及具体的应用实例。
对这三种理想反应器性能进行了比较,特别是对稳态全混流反应器和平推流管式反应器及其组合内容进行了详细叙述。
针对不同反应过程讲述了优化设计方法。
化学反应工程学的主要目的是设计不同型式和大小的反应器,实现最佳的操作与控制,取得最佳的经济效益。
在用数学模型法来设计放大反应器的过程中,首先要了解进行化学反应的动力学特征、反应物的性质、产物的性质与分布,才能进行反应器的选型、操作方式的选择,进而进行反应器设计和计算。
由于生产中的化学反应器都很大,都或大或小存在着温度的差异和浓度的差异,都存在着动力消耗和反应器的各种结构的差异,对于实际生产中的化学反应过程一般很难做到反应物的温度、压力和流速完全均一,即非理想化。
这些差异给实际反应器的设计和放大带来了很大的困难。
实际反应过程的理想化是研究生产实践中千变万化的各种反应器的基础和前提,也是均相反应过程接近实际的反应器模型。
间歇釜式反应器(BSTR)、稳态全混流反应器(CSTR)和活塞流(平推流)管式反应器(PFR),这三种理想反应器的设计原理具有普遍意义和广泛的应用性。
3-1 间歇釜式反应器3-2间歇釜示意图图3-1间歇釜式反应器如图3-1所示,间歇釜式反应器简称间歇釜,它的最大特点是分批装料和卸料。
因此,其操作条件较为灵活,可适用于不同品种和不同规格的液态产品生产,尤其适合于多品种而小批量的化学品生产,它在医药、助剂、添加剂、涂料、应用化学品等精细化工生产部门中经常得到应用,很少用于气相过程。
间歇釜的结构主要有釜体、搅拌装置、加热和冷却装置、进出料口和管件、温度和压力测量装置以及视孔、排污口和液位计等。
釜体上部釜盖用法兰与釜体连接,釜体上一般不开孔,都在釜盖上开孔用以安装管阀件,釜体上有四个吊耳用于固定反应釜,釜体外部是换热夹套。
化学反应工程第四章均相理想流动反应器
第四章 均相理想 流动反应器
第四章 均相理想流动反应器
4.1 间歇反应器 4.2 连续操作釜式反应器 4.3 理想置换反应器 4.4 理想置换反应器
4.1 间歇反应器
1 生产数据法 2 动力学数据法 3 设备之间的平衡 4 间歇反应器的热量恒算
4.1 间歇反应器
间歇式反应器是间歇操作液相搅拌釜式反应器的简称。 在间歇操作液相搅拌釜式反应器中,反应物料按配比一 次加入釜内,并开动搅拌,使物料的温度、浓度保持均 匀。这种反应器通常配有夹套或蛇管,以保持反应在指 定温度范围内进行。经过一定反应时间并达到所需要的 转化率后进行出料,完成一个反应周期。
该搅拌反应釜的高径比,通常采用经验值:一般搅拌罐 液固或液液物料为1~1.3、气液为1~2;发酵釜为 1.7~2.5 。图4-4中假设为H/D=1.2左右,采用椭圆形釜 底。封头高度H1=0.25D,体积V=0.131D3(不含直边高度 的体积),在V已知后,根据下面两式计算出直径D:
(4-25) (4-26)
0.7
③根据式(4-23)计算平均停留时间
VR 1.04 1.06(h) V0 0.979
4.2.1 单个连续操作釜式反应器
对于间歇和连续釜式反应器,通过前面的方法,在计算 出反应器的体积V后,即可用下述方法进一步确定其具体 尺寸。如图4-4所示的反应釜:
图4-4 反应釜的主要尺寸
4.2.1 单个连续操作釜式反应器
2 预热到反应温度 1.0~2.0
3 进行反应
5~60
时间 0.5~1.0
4.1.3 设备之间的平衡
总操作批数相等的条件是:
(4-10)
(4-11)
(4-12)
即各工序的设备个数与其操作周期之比要相等。
理想流动反应器04组合比较ppt课件
根据设计方程,如果以转化率xA为横坐标,反应速率 的倒数1/rA为纵坐标作图,如图所示三种反应器的填 充区域面积均乘以V0cA0便是这三种反应器的体积。
1
1
1
rAf
rAf
rAf
xAf dxA
0 rA
xA
xAf
PFR
xA
xAf
MMFR
xAf (rA ) f
xA
xAf
MFR
15
1) VRp~V小值,在反应初始阶段未达
到极值点前,返混大的全混流反应器所需体积最小,而在反
应后期,使用无返混的平推流反应器更为有利。因此应根据
反应动力学特性,弄清楚返混的影响规律,合理设计、配置
反应器。
1
1
1
rAf
rAf
rAf
xA0 xAm xAf
xA0
xAf
• MFR+PFR PFR
0 rA
xA MFR
xAf
xA
xAf
MMFR
xA PFR
xAf
26
(3)1/rA对xA的曲线上存在着极小值
• 即有些反应的反应速率随反应进行存在极 大值的现象。
• 如自催化反应中,随产物量增多反应速率 加快,当反应达到一定程度后,由于反应 物浓度下降影响更显著,反应速率达到极 大后又下降,反应动力学曲线存在极值, 很多生化反应以及绝热操作的可逆放热反 应具有这一特征。
浓度推动力反而对反应有利,因此返混最大 的全混流模型所需要的体积最小,而没有返 混的平推流模型所需要的体积最大,多釜串 联模型所需体积介于两者之间,且随釜数增 多所需反应体积迅速增大。
25
如图所示填充区域面积可比较各种流型的反应器体 积。
第三章-均相理想反应器(1)PPT课件
5
•4.空间时间(空时)τ--反应器有效体积
VR和反应流体入口条件下体积流率V0之比。
VR
V0
•5.空间速度(空速)Sv[时间-1]--单位时 间内投入到反应器中的物料的体积流量与反
应器有效容积之比。
Sv
VO VR
标准空速
Sv
V ON VR
6
•6 空时与反应时间和平均停留时间的区别 •(1)空时与反应时间: •空时用于连续流动反应器,反映生产强 度的大小; •反应时间用于间歇反应器,反映化学反 应进行快慢的量度,并不反映反应器的生 产强度。
14
• 按物料在反应器内返混情况作为反应器 分类的依据将能更好的反映出其本质上 的差异。
• 按返混情况不同反应器被分为以下四种 类型
15
间歇反应器
• 间歇操作的充分搅拌槽式反应器(简称 间歇反应器)。在反应器中物料被充分 混合,但由于所有物料均为同一时间进 入的,物料之间的混合过程属于简单混 合,不存在返混。
16
平推流反应器
• 理想置换反应器(又称平推流反应器或 活塞流反应器)。在连续流动的反应器 内物料允许作径向混合(属于简单混合 )但不存在轴向混合(即无返混)。典 型例子是物料在管内流速较快的管式反 应器。
17
全混流反应器
• 连续操作的充分搅拌槽型反应器(简称 全混流反应器)。在这类反应器中物料 返混达最大值。
• 例1 某厂生产醇酸树脂是使己二酸与己 二 醇 以 等 摩 尔 比 在 70℃ 用 间 歇 釜 并 以 H2SO4作催化剂进行缩聚反应而生产的, 实验测得反应动力学方程为:
(rA )
kc
2 A
k 1.97 103
kmol m 3min1
化学反应工程第三章理想流动反应器1
rA kCA
t
CA dCA CA0 kCA
CA CA0ekt
kt ln CA0 CA
kt ln(1 xA )
xA 1 ekt
实际操作时间=反应时间(t) + 辅助时间 (t’) 反应体积VR是指反应物料在反应器中所占的体积
VR=V(t+t’) 据此关系式,可以进行反应器体积的设计计算
Tubular reactor and stirred tank
purge
1500-3000bar
LP-compressor HP-compressor
Wax separation
150-300at
HP-stripper LP-stripper
compression
polymerisation
deposition
3-1反应器中流体的流动模型 一、理想流动模型
Outlet = f(inlet, kinetics, contacting pattern)
Stirred tank cascade
流动模型:简化,抽象 平推流模型(Plug-Flow Reactor ,PFR) 全混流模型 (Continuous stirred tank reactor, CSTR)
反应动力学特性+反应器的流动特征+传递特性 确定最佳的工艺条件
最大反应效果+反应器的操作稳定性 进口物料的配比、流量、反应温度、压力和最终转化率 计算所需反应器体积 规定任务+反应器结构和尺寸的优化
3-2 反应器设计的基本方程
the kinetic equation the mass balance equation the energy balance equation
第三章理想流动反应器
2. 反应器内各处温度相等,不需考虑反应器内热量传递。 3. 反应物料同时加入又同时取出,物料的反应时间相同。
二、间歇反应器性能的数学描述
1.反应时间~xA的关系 在反应器中,物料浓度和温度是均匀的,只随反应时间 变化,可以通过物料衡算求出反应时间t和xA的关系式。 衡算对象:关键组分A 衡算基准:整个反应器(V) 在dt时间内对A作物料衡算: [A流入量] = [A流出量] +[ A反应量] + [A累积量]
(2)返混的原因 a.机械搅拌引起物料质点的运动方向和主体流动方向相 反,不同年龄的质点混合在一起;
b.反应器结构造成物料流速不均匀,例如死角、分布器 等。
造成返混的各种因素统称为工程因素。在流动反应器中,
不可避免的存在工程因素,而且带有随机性,所以在流 动反应器中都存在着返混,只是返混程度有所不同而已。
三、非理想流动模型
1. 实际反应器存在着程度不一的工程因素,流动状况不 同程度的偏离理想流动,称为非理想流动。
2. 非理想流动模型 在理想流动模型的基础上考虑非理想因素的流动模型, 称为理想流动模型。常用的非理想流动模型有:
1)轴向混合模型 2)多级串联全混流模型
目前大部分非理想流动模型都是以平推流模型为基础 发展而成的。
(4)质点的奉命相同,任一截面上的质点的年龄相同;
(5)返混=0,不同年龄的质点不相混合(参见(3))。
2)适用范围 管式反应器:L/D较大,流速比较大。
2.全混流模型(理想混合模型、连续搅拌槽式反应器模 型)
全混流模型认为物料进入反应器后,在一瞬间,进入反 应器的新鲜物料和反应器内的物料达到完全混合。 1)模型特点: (1)反应器内物料质点完全混合,物料参数处处相同, 且等于出口处的参数; (2)同一时刻进入反应器的新鲜物料在瞬间分散混合, (3)反应器内物料质点的年龄不同。同一时刻离开反应 器的物料中,质点的寿命也不相同。 (4)返混=∞ 2)适用范围: 搅拌反应器,强烈搅拌。
化学反应工程第三章均相理想反应器
化学反应⼯程第三章均相理想反应器第三章均相理想反应器反应器的开发主要有两个任务:1.优化设计—反应器选型、定尺⼨、确定操作条件。
2.优化操作—根据实际操作情况,修正反应器的数学模型参数,优化操作条件。
最根本任务—最⾼的经济和社会效益。
3.1 反应器设计基础3.1.1反应器中流体的流动与混合理想反应器的分类对理想反应器(ideal reactor),主要讨论三种类型:1.间歇反应器(Batch Reactor—BR);2.平推流反应器(Plug /Piston Flow Reactor—PFR);3.全混流反应器(Continuously Stirred Tank Reactor—CSTR)。
返混(back mixing)—不同停留时间的粒⼦之间的混合;混合(mixing)—不同空间位置的粒⼦之间的混合。
注意:返混≠混合!平推流—物料以均⼀流速向前推进。
特点是粒⼦在反应器中的停留时间相同,不存在返混。
T、P、C i随轴向位置变(齐头并进⽆返混,变化随轴不随径)。
全混流(理想混合)—物料进⼊反应器后能够达到瞬间的完全混合。
特点是反应器内各处的T、P、C i相同,物性不随反应器的位置变,返混达到最⼤。
3.1.2 反应器设计的基础⽅程反应器的⼯艺设计包括两⽅⾯的内容:1.由给定⽣产任务和原料条件设计反应器;2.对已有的反应器进⾏较核,看达到质量要求时,产量是否能保证,或达到产量时,质量能否保证。
反应器设计的基础⽅程主要是:1.动⼒学⽅程;2.物料衡算⽅程;3.热量衡算⽅程;4.动量衡算⽅程。
⼀、物料衡算⽅程对反应器内选取的⼀个微元,在单位时间内,对物质A有:进⼊量=排出量+反应消耗量+积累量(3.1-1)⽤符号表⽰:F in F out F r F b即:F in=F out+F r+F b(3.1-2) 1.对间操作,反应过程⽆进料和出料,即:F in=F out=0则:-F r=F b(3.1-4) 反应量等于负积累量。
均相反应器设计优秀课件
CA
CA0 C
3.4 组合反应器
•平推流反应器组合 •全混釜反应器串联 •不同形式反应器的组合
1.平推流反应器的串、并联操作
特点:若忽略物料在管线中的停留,则 •并联反应器,每个支线应保证空时相等; •串联反应器,与总体积为V的单个反应器反应 结果相同。
2.多釜串联组合的全混流反应器
多级全混流反应器串联的特点
CAi 1
CAi1 1kii
C A ,mC A ,1C A ,2..C .A ,mm( 1 )
C A 0 C A 0C A ,1 C A ,m 1 i 1 1ki
当各釜容积相同且在相同的温度下操作时
CAN CA0
1
(1ki
)N
单釜空时,V=NVi=Nv0i
• 图解法
iC A 1 rA i C iA i rA i1 i(C A iC A 1) i
单A的位流时入间量
单位时间 A的流出量
单位时间 A的反应量
的反积应累器速中度A
0
0
rAVR
dnA dt
即: rAVR dnA
dt
积分得(1):t nA0
xA 0
dx A rAVR
恒容时:
t CA0
xAf xA0
dxA rA
※间歇反应器的 设计方程※(1)
对于间歇系统达到一定转化率所需时间取决于 反应速率,而与反应器体积大小无关;反应器 的大小由处理量决定。
CA0 FA0 v0 T0
Tm,out G
VR T=Tout
CA FA v Tout
Ci=Ci,out
Tm,in G
全混流反应器浓度-时间图
CA0
CA t0
tt
理想流动反应器
第二章理想流动反应器研究反应器中的流体流动模型是反应器选型、设计和优化的基础。
根据流体流动质点的返混情况{理想流动模型非理想流动模型本章主要介绍理想流动模型的反应器,包括平推流反应器和全混流反应器。
§2.1反应器流动模型反应器中流体流动模型是相对连续过程而言的。
间歇反应器:反映温度、浓度仅随时间而变,无空间梯度所有物料质点在反应器内经历相同的反应时间连续反应器:停留时间相同:平推流反应器(图示)停留时间不同:全混反应器(图示)一、理想流动模型1、平推流模型活塞流或理想置换模型特点:沿物流方向,反应混合物T、C不断变化,而垂直于物流方向的任一截面(称径向平面)上物料的所有参数,如:C、T、P、U等均相同。
总而言之,在定态情况下,沿流动方向上物料质点不存在返混,垂直于流动方向上的物料质点参数相同。
实例:长径比很大,流速较高的管式反应器。
2、全混流模型理想混合或连续搅拌槽式反应器模型特点:在反应器中所有空间位置的物料参数(C、T、P)都是均匀的,而且等于物料在反应器出口处的性质。
实例:搅拌很好的连续搅拌槽式反应器。
关于物料质点停留时间的描述:①年龄:指反应物料质点从进入反应器时算起已经停留的时间。
②寿命:指反应物料质点从进入反应器到离开反应器的时间,即质点在反应器中总共停留的时间。
寿命可看作时反应器出口物料质点的年龄。
关于返混:返混:又称逆向混合,是指不同年龄质点之间的混合,即“逆向”为时间上得逆向,而非一般的搅拌混合。
如间歇反应器,虽然物料被搅拌均匀,但并不存在返混,而只是统一时间进入反应器的物料之间的混合。
平推流反应器不产生返混,而全混流反应器中为完全返混,返混程度最大。
关于实际反应器的返混。
介于平推流和全混流反应器之间。
关于各种反应器的推动力:△C A等温下:C A、C Af、C A *(a)间歇反应器△C A随时间变化↘(b)平推流反应器△C A随时间变化↘(c)全混流反应器△C A随时间变化↘非理想流动反应器,其反应推动力介于平推流和全混流之间。
化学反应工程-6-第二章-均相理想流动反应器
求:
C A、 CB 、 CP、 CR ?
CB
nB nB 0 1 x B C B 0 1 x B 0.2(mol/ l ) v0 v0 2
A B P R
t 0 t t
n A0 n B 0 n A nB
0
0
nP nR
nA0 nA nB0 nB nB0 xB
rA kCA 设反应为一级不可逆反应:
首先讨论 QG :
QG
rA VR rA kCA VR H rA
0Cp v0Cp
CA 0 CA k 1
CA 0 Η rA k QG Cp 1 k
VR v0
空时
1、停留时间分布的形成:
取两个微团,设同时进入反应器,由于搅拌作用,一个 微团(如上图)可能很快流出反应器,而另一个微团可 能经过更长的时间才流出来。 结论:CSTR出口处,物料是由不同停留时间的微团组 合而成,即形成停留时间分布。
平均停留时间 t : t VR
v
v—流体在反应器中的体积流率,即出口流率。 问题: t和 之间有什么不同?
代入(1’) v0B 2 2v0B 0.2 8 0.7 0.2 1.7 0.82 100
v0 B 2(l / min)
二、CSTR的操作方程——热量衡算
热量衡算式中各项为:
第一项Qin:
Qin GCPT0
G——质量流量,kg/s; CP——定压热容,J/(kg.k); T0——物料入口处温度。 第二项Qr:单位时间内整个反应器的反应放热量:
设开始时移热速率线是A,此时反应器定常态1,反应速 率极慢,没有实际意义;
化学反应工程-9-第二章-均相理想流动反应器
图
13 14 14 14
线
B B C D
a
1.0 1.7 0.0 2.3
b
40.0 18.0 18.0 18.0
⑶在Red>10000时,此时: N P KT L S1、S2 Sn
P KT n 3 d 5
对几种搅拌桨叶,KL、KT值见下表:
选取最佳的操作方式。
a1 2 a2 1 解:考察A: A R S
应选用高
考察B:
CB
C A0 ,故采取PFR反应器。
与R无关。
尽管B可以任意方式加入,为维持高A,B 考虑分段加入为佳。
E1 E2 ,应选低温。 对于温度:
操作方式如下图所示:
2.8 搅拌釜中的流动与传热 2.8.1搅拌釜的结构和桨叶特性 搅拌系统的主件是桨叶,减速器、夹套、挡板等为 辅助部件
2.8.3搅拌功率的计算 搅拌釜的功率计算目前只能通过实验获得经验关联式。 影响搅拌功率的因素可分为几何因素和物理因素两类: 1、几何因素(见图10): ①搅拌桨叶的直径d; ②叶片数、形状以及叶片长度l和宽度W; ③容器直径D; ④容器中所装液体的高度h; ⑤搅拌器距离器底部的距离E; ⑥挡板的数目及宽度J。 通常以d为特征尺寸,其它几何尺寸以无因次的对比变量来表示,即以:
三、平行反应过程的评选
1、对于单一组分的平行反应
反应: P为目标产物,SP和CA之间具有如下三 种关系:
①SP随CA的增大而增大
CP CPN CPf 由图可知:
结论:PFR最优,多釜串联次之,CSTR最差。
②SP随CA的增大而减小
CP CPN CPf 由图可知: