误差修正模型.

合集下载

误差修正模型

误差修正模型


脉冲响应函数

假定扰动项
恩格尔和格兰杰所提出的协整理论,协整理论的宗旨在 于对于那些建模较为困难的非平稳序列 ,通过引入协整
的差分变量,达到是模型成立并提高模型精度的目的。

并将经济变量之间存在的长期稳定关系称为协整关系, 可以说经济变量的协整性是对非平稳经济变量长期均衡 关系的统计描述,

当且仅当若干个平稳变量具有协整性时 ,由这些变量建 立的回归模型才有意义。所以协整性检验也是区别真实 回归和虚假回归的有效方法。
此被称为“误差修正模型”。误差修正模型的自动调整 机制类似于适应性预期模型。若误差修正项的系数α 在统计上是显著的,它将告诉我们 Y 在一个时期里的 失衡有多大一个比例部分可在下一期得到纠正,或者更 应该说“失衡”对下一期Y 水平变化的影响的大小。
脉冲响应函数

VAR模型中某一个内生变量的冲击或扰动会对其他变量 产生影响,其他变量又会反过来影响该变量本身,用来描 述这样一个传导及影响机制的方法 ,我们称之为脉冲响 应函数法。 脉冲响应函数的基本思想可以解释为:

若把该模型变形成Yt 的一阶差分的如下形式,即

若令

则模型变为 式中:∆Yt 代表被解释变量的短期波动,∆Xt 为解释变

量的短期波动,ecmt−1 代表的则是两个变量之间关系 对长期均衡的偏离,即上一期变量偏离均衡水平的误差, 称为误差修正项。α 称为修正系数,反映 Y 对均衡偏 离的修正速度。

因此被解释变量的短期波动可以分解成两个部分: 一部 分为解释变量的短期波动影响,另一部分为长期均衡的 调节效应。模型中β2 通常小于 1 ,所以 ecmt−1 的系数 α 通常小于 0。

这意味着前一期 X 对 Y 解释不足,有正的误差时,会 减少 Y 的正向波动或增加其负向波动,反之则反是。

eviews第三讲:误差修正模型

eviews第三讲:误差修正模型

SC信息准则


SC值最小 SC信息准则,又称施瓦兹准则,即 Schwarz Criterion 其检验思想也是通过比较不同分布滞后模 型的拟合优度来确定合适的滞后期长度。 检验过程是:在模型中逐期添加滞后变量 ,直到SC值不再降低时为止,即选择使SC 值达到最小的滞后期k。


AIC最小原则是判定模型好坏标准之一, 犹如R2(R平方)一样。 AIC和SC(舒瓦茨 信息)常常一并作为判断模型拟合程度的 标准之一,特别是在滞后阶数的选择上。 比如,一个VAR(向量自回归模型),经 济理论往往无法确定滞后阶数,这时往往 采用AIC或者SC最小原则,即观察不同的 阶数的VAR模型,哪个模型的AIC或者SC 值最小就选用哪个模型进行分析。 AIC、 SC都会在模型参数中给出。


步骤2: 对方程进行回归 Yt 0 1 X t t 得出残差项 步骤3:对残差项进行单位根检验,
t t 1 i t 1 et
i 1 m

若原假设 0 成立,说明残差不平稳,即为 I(1);若残差项平稳(即为0阶单整),则两变 量之间存在协整关系(即长期稳定的某种关 系)。
确定序列具有单位根的阶数
ADF检验形式的选择
操作:数据(gini2,lnpergdp)

第一步:输入变量(略) 打开序列,点击Quick---Estimate Equation 对变量 gini gini(-1) c t进行自回归
目的:查看常数项和时间趋势项是否显著

第二步:上图结果显示常数项显著,因 此对原始数据单位根检验中同时加入常 数项


同理,相同的过程处理序列GDP 原始数据ADF检验

stata误差修正模型命令

stata误差修正模型命令

stata误差修正模型命令(原创版)目录1.引言2.Stata 误差修正模型的基本概念3.Stata 误差修正模型的命令格式4.示例:使用 Stata 误差修正模型命令进行分析5.总结正文1.引言在实证研究中,由于数据的局限性,我们常常需要对数据进行误差修正。

Stata 作为一种广泛应用于社会科学、经济学、统计学等领域的数据分析软件,提供了丰富的误差修正模型命令,以帮助研究者更准确地分析数据。

本文将介绍 Stata 误差修正模型的基本概念以及命令格式,并通过示例演示如何使用 Stata 误差修正模型命令进行分析。

2.Stata 误差修正模型的基本概念Stata 误差修正模型主要包括两种类型:内生性误差和选择性误差。

(1)内生性误差:当一个或多个解释变量与误差项相关时,就存在内生性误差。

内生性误差可能导致估计系数的偏误,从而影响研究结论的有效性。

(2)选择性误差:当样本的选择不是随机的,而是基于某些观测到的或未观测到的变量时,就存在选择性误差。

选择性误差可能导致估计系数的偏误,从而影响研究结论的有效性。

3.Stata 误差修正模型的命令格式Stata 误差修正模型的命令格式主要包括以下两个部分:(1)模型设定部分:这部分主要包括被解释变量、解释变量和误差项的定义。

(2)修正部分:这部分主要包括使用哪种误差修正方法,如两阶段最小二乘法(2SLS)、三阶段最小二乘法(3SLS)等。

4.示例:使用 Stata 误差修正模型命令进行分析假设我们有一个数据集,其中包括个体的收入、教育水平和是否失业等变量。

我们希望研究教育水平对收入的影响,但由于教育水平可能是内生变量(例如,家庭背景可能同时影响教育水平和收入),因此需要使用误差修正模型进行分析。

以下是使用 Stata 进行两阶段最小二乘法分析的命令示例:```* 导入数据* insheet using "data.csv", clear* 定义变量local income "收入"local education "教育水平"local unemployed "是否失业"* 模型设定部分reg income education unemployed* 修正部分estimates store olstwostage, none```在这个示例中,我们首先导入数据并定义变量,然后使用回归模型(reg)进行基本分析。

误差修正模型

误差修正模型

第二节 误差修正模型(Error Correction Model ,ECM )一、误差修正模型的构造对于y t 的(1,1)阶自回归分布滞后模型:t t t t t y x x y εβββα++++=--12110在模型两端同时减y t-1,在模型右端10-±t x β,得:tt t t tt t t t t t t t x y x x y x y x x y εααγβεββββαββεββββα+--+∆=+---+--+∆=+-+++∆+=∆------)(])1()1()[1()1()(1101012120120121100其中,12-=βγ,)1/()(2ββαα-+=,)1/(211ββα-=。

记 11011-----=t t t x y ecm αα(5-5) 则t t t t ecmx y εγβ++∆=∆-1(5-6)称模型(5-6)为“误差修正模型”,简称ECM 。

二、误差修正模型的含义如果y t ~ I(1),x t ~ I(1),则模型(5-6)左端)0(~I y t∆,右端)0(~I x t∆,所以只有当y t 和x t 协整、即y t 和x t 之间存在长期均衡关系时,式(5-5)中的ecm~I(0),模型(5-6)两端的平稳性才会相同。

当y t 和x t 协整时,设协整回归方程为:t t t x y εαα++=10它反映了y t 与x t 的长期均衡关系,所以称式(5-5)中的ecm t -1是前一期的“非均衡误差”,称误差修正模型(5-6)中的1-t ecmγ是误差修正项,12-=βγ是修正系数,由于通常1||2<β,这样0<γ;当ecm t -1 >0时(即出现正误差),误差修正项1-t ecm γ< 0,而ecm t -1 < 0时(即出现负误差),1-t ecm γ> 0,两者的方向恰好相反,所以,误差修正是一个反向调整过程(负反馈机制)。

实验报告二——误差修正模型的建立与分析

实验报告二——误差修正模型的建立与分析

实验报告(二)——误差修正模型(ECM)的建立与分析一、单位根检验:1、绘制cons与GDP的时间序列图:从时间序列图中可以看出,cons与GDP随时间增加都呈上升趋势,表现出非平稳性。

2、对cons进行单位根检验:先选择对原序列(level)进行单位根检验,根据cons与GDP的时间序列图的走势,选择trend and intercept的检验方法,在maximum lags中填写ADF 检验方法的滞后期为0,从上表中可以看出,P值为0.9888,大于0.05的显著性水平,说明原序列是非平稳的。

选择cons的一阶差分(1st)和trend and intercept,从上表中可以看出,经过一阶差分后,P值(=0.5099)仍然没有通过0.05的置信水平检验,说明是不平稳的,需要继续改进。

再试用ADF检验,在滞后期(maximum lags)中填入8,选择一阶差分和trend and intercept,得出上表,可以看出P值=0.0801,大于0.05,没有通过0.05的置信水平检验,说明是不平稳的,需要继续改进。

再试用ADF检验,在滞后期(maximum lags)中填入6,选择二阶差分和trend and intercept,得出上表,可以看出P值=0.0137,小于0.05,通过0.05的置信水平检验,说明是平稳的。

3、对GDP进行单位根检验:先选择对原序列(level)进行单位根检验,根据cons与GDP的时间序列图的走势,选择trend and intercept的检验方法,在maximum lags中填写ADF 检验方法的滞后期为0,从上表中可以看出,P值为1.0000,大于0.05的显著性水平,说明原序列是非平稳的。

选择GDP的一阶差分(1st)和trend and intercept,从上表中可以看出,经过一阶差分后,P值(=0.5574)仍然没有通过0.05的置信水平检验,说明是不平稳的,需要继续改进。

误差修正模型课件

误差修正模型课件
总结词
单方程误差修正模型是针对单个经济变量进行建模的方法,主要目的是检验和估计长期均衡关系及其短期调整机 制。
详细描述
单方程误差修正模型基于经济理论,通过一个经济变量对它的长期均衡关系及其短期调整机制进行建模。它通常 采用一阶差分法或协整法来处理非平稳时间序列数据,以识别和估计变量的长期均衡关系及其短期调整机制。
通常用长期均衡方程来描述。
在长期均衡方程中,变量的系数 映了其在长期均衡关系中的贡
献程度。
长期均衡关系通常是在市场机制 的作用下,通过供求关系自发调
节而形成的。
短期调整机制
短期调整机制是指当经济变量受到外 部冲击或其他因素的影响,导致其偏 离长期均衡状态时,系统会自动调整 以重新回到均衡状态的过程。

06
误差修正模型在经济学中的地位与作用
经济学的核心工具
误差修正模型(ECM)是现代经 济学中用于研究长期均衡关系和 短期调整机制的重要工具,尤其 在宏观和微观经济学中占据核心 地位。
揭示经济规律
通过ECM,研究者可以深入探究 经济变量之间的内在关系,揭示 其背后的经济规律和动态机制, 为政策制定提供科学依据。
外汇市场汇率调整的误差修正模型
总结词
该模型用于研究外汇市场汇率的调整机制, 通过分析汇率的短期波动和长期均衡趋势来 预测汇率变化。
详细描述
外汇市场汇率调整的误差修正模型关注汇率 的动态变化,并考虑国内外经济基本面的差 异对汇率的影响。它利用误差项来衡量短期 非均衡程度,并通过调整机制预测长期均衡 汇率的回归,有助于分析汇率的稳定性和波 动性。
短期调整机制通常是通过误差修正机 制来实现的,即系统会根据误差的大 小和方向,自动调整变量的取值,以 使其重新回到长期均衡状态。

误差修正模型的stata应用

误差修正模型的stata应用

误差修正模型的stata应用误差修正模型:如果用两个变量,人均消费y和人均收入x(从格林的数据获得)来研究误差修正模型。

令z=(y x)’,则模型为:k,z,A,,z,p,z,, ,t0t,1it,1ti,1,,,,'其中,如果令,即滞后项为1,则模型为 k,1,z,A,,z,p,z,,t0t,11t,1t实际上为两个方程的估计:,y,a,by,bx,p,y,p,x,,ty11t,112t,111t,112t,11t,x,a,by,bx,p,y,p,x,,tx21t,122t,121t,122t,12t用ols命令做出的结果:gen t=_ntsset ttime variable: t, 1 to 204gen ly=L.y(1 missing value generated)gen lx=L.x(1 missing value generated)reg D.y ly lx D.ly D.lxSource | SS df MS Number of obs = 202 -------------+------------------------------ F( 4, 197) = 21.07Model | 37251.2525 4 9312.81313 Prob > F = 0.0000Residual | 87073.3154 197 441.996525 R-squared = 0.2996 -------------+------------------------------ Adj R-squared = 0.2854 Total | 124324.568 201 618.530189 Root MSE = 21.024------------------------------------------------------------------------------D.y | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- ly | .0417242 .0187553 2.22 0.027 .0047371 .0787112lx | -.0318574 .0171217 -1.86 0.064 -.0656228 .001908ly |D1. | .1093189 .082368 1.33 0.186 -.0531173 .2717552lx |D1. | .0792758 .0566966 1.40 0.164 -.0325344 .1910861_cons | 2.533504 3.757158 0.67 0.501 -4.875909 9.942916,y,a,by,bx,p,y,p,x,,a这是的回归结果,其中=2.5335,ty11t,112t,111t,112t,11tyb=0.04172,b= -0.03186,p=0.10932,p=0.07928 11121112同理可得的回归结果,见下 ,x,a,by,bx,p,y,p,x,,tx21t,122t,121t,122t,12treg D.x ly lx D.ly D.lxSource | SS df MS Number of obs = 202 -------------+------------------------------ F( 4, 197) = 11.18Model | 36530.2795 4 9132.56988 Prob > F = 0.0000Residual | 160879.676 197 816.648101 R-squared = 0.1850 -------------+------------------------------ Adj R-squared = 0.1685 Total | 197409.955 201 982.139082 Root MSE = 28.577------------------------------------------------------------------------------D.x | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- ly | .037608 .0254937 1.48 0.142 -.0126676 .0878836lx | -.0307729 .0232732 -1.32 0.188 -.0766694 .0151237ly |D1. | .4149475 .111961 3.71 0.000 .1941517 .6357434lx |D1. | -.1812014 .0770664 -2.35 0.020 -.3331825 -.0292203_cons | 11.20186 5.10702 2.19 0.029 1.130419 21.27331如果用vec 命令vec y x, piVector error-correction modelSample: 3 - 204 No. of obs = 202AIC = 18.29975 Log likelihood = -1839.275 HQIC = 18.35939Det(Sigma_ml) = 277863.4 SBIC = 18.44715Equation Parms RMSE R-sq chi2 P>chi2 ---------------------------------------------------------------- D_y 4 20.9706 0.6671 396.7818 0.0000D_x 4 28.5233 0.5328 225.8313 0.0000 ---------------------------------------------------------------- ------------------------------------------------------------------------------| Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- D_y | _ce1 |L1. | .0418615 .0069215 6.05 0.000 .0282956 .0554273y |LD. | .1091985 .0807314 1.35 0.176 -.0490323 .2674292x |LD. | .0793652 .055411 1.43 0.152 -.0292384 .1879687_cons | -3.602279 3.759537 -0.96 0.338 -10.97084 3.766278 -------------+---------------------------------------------------------------- D_x |_ce1 |L1. | .0256414 .0094143 2.72 0.006 .0071897 .044093y |LD. | .4254495 .1098075 3.87 0.000 .2102308 .6406683x |LD. | -.1889879 .0753677 -2.51 0.012 -.3367058 -.04127_cons | 5.880993 5.113562 1.15 0.250 -4.141405 15.90339 ------------------------------------------------------------------------------这里_ce1 L1显示的是速度调整参数α的估计值,上述结果没有π的估计,而是在下面的表格中。

误差修正模型

误差修正模型

误差修正模型(Error Correction Model)误差修正模型的产生原因对于非稳定时间序列,可通过差分的方法将其化为稳定序列,然后才可建立经典的回归分析模型。

如:建立人均消费水平(Y)与人均可支配收入(X)之间的回归模型:Y t = α0 + α1X t + μt如果Y与X具有共同的向上或向下的变化趋势,进行差分,X,Y成为平稳序列,建立差分回归模型得:ΔY t = α1ΔX t + v t式中,v t = μt−μt− 1然而,这种做法会引起两个问题:(1)如果X与Y间存在着长期稳定的均衡关系Y t = α0 + α1X t + μt且误差项μt不存在序列相关,则差分式ΔY t = α1ΔX t + v t中的v t是一个一阶移动平均时间序列,因而是序列相关的;(2)如果采用差分形式进行估计,则关于变量水平值的重要信息将被忽略,这时模型只表达了X与Y间的短期关系,而没有揭示它们间的长期关系。

因为,从长期均衡的观点看,Y在第t期的变化不仅取决于X本身的变化,还取决于X 与Y在t-1期末的状态,尤其是X与Y在t-1期的不平衡程度。

另外,使用差分变量也往往会得出不能令人满意回归方程。

例如,使用ΔY1 = ΔX t + v t回归时,很少出现截距项显著为零的情况,即我们常常会得到如下形式的方程:式中,(*)在X保持不变时,如果模型存在静态均衡(static equilibrium),Y也会保持它的长期均衡值不变。

但如果使用(*)式,即使X保持不变,Y也会处于长期上升或下降的过程中,这意味着X与Y间不存在静态均衡。

这与大多数具有静态均衡的经济理论假说不相符。

可见,简单差分不一定能解决非平稳时间序列所遇到的全部问题,因此,误差修正模型便应运而生。

误差修正模型的概述误差修正模型(Error Correction Model,简记为ECM)是一种具有特定形式的计量经济学模型,它的主要形式是由Davidson、Hendry、Srba和Yeo于1978年提出的,称为DHSY 模型。

误差修正模型的非均衡误差参数估计值

误差修正模型的非均衡误差参数估计值

《误差修正模型的非均衡误差参数估计值》一、引言在统计分析和建模中,误差修正模型是一种常用的方法,用于解决非均衡数据集的分类问题。

对于非均衡数据集而言,不同类别的样本数量存在较大差异,这就导致了在建模和预测过程中的非均衡误差问题。

而非均衡误差参数估计值则是误差修正模型中的重要环节,本文将深入探讨这一主题。

二、误差修正模型的基本原理误差修正模型的基本原理是通过在建模过程中对样本进行加权,以降低非均衡数据集中不同类别样本的影响程度。

通常情况下,误差修正模型会考虑到不同类别样本的权重,并在损失函数中引入这一权重参数。

在模型训练和预测过程中,通过调整这些权重参数,使模型更加关注少数类别的样本,从而提高分类模型的性能。

三、非均衡误差参数估计值的重要性在误差修正模型中,非均衡误差参数估计值扮演着至关重要的角色。

这些参数值的准确性将直接影响到模型的分类效果和性能。

在实际建模过程中,我们需要对非均衡误差参数进行有效的估计,以确保模型能够更好地适应非均衡数据集,提高分类的准确性和泛化能力。

四、对非均衡误差参数的评估方法对于非均衡数据集中的误差参数估计,通常可以采用以下几种常见方法进行评估:1. 混淆矩阵和相关指标:通过混淆矩阵中的真阳性、假阳性、真阴性、假阴性等指标,来评估模型在不同类别样本上的准确率、召回率、精确率等性能指标。

2. 重采样技术:例如过采样、欠采样、SMOTE等方法,来调整数据集中不同类别样本的比例,用于评估模型在不同非均衡情况下的性能表现。

3. ROC曲线和AUC值:通过ROC曲线下的面积(AUC)来评估分类模型在不同类别样本上的性能,其中AUC值越接近于1,模型性能越好。

五、非均衡误差参数估计值的个人理解和观点在实际的数据分析和建模过程中,我认为正确的非均衡误差参数估计值是非常重要的。

它能够帮助我们更加全面、准确地评估模型的性能,从而提高模型的泛化能力和稳定性。

对于非均衡数据集而言,我们需要充分重视非均衡误差参数的估计,同时结合混淆矩阵、ROC曲线等多重评估方法,来全面地评估模型在不同类别样本上的性能表现。

什么是误差修正模型(ECM)如何建立和估计ECM模型

什么是误差修正模型(ECM)如何建立和估计ECM模型

什么是误差修正模型(ECM)如何建立和估计ECM模型误差修正模型(Error Correction Model, ECM)是一种用于揭示时间序列数据中长期和短期关系的统计模型。

它是基于协整理论(Cointegration Theory)的发展而来,用于处理非平稳时间序列数据的建模和分析。

本文将介绍误差修正模型的基本概念、建立方法以及估计过程。

一、误差修正模型的基本概念误差修正模型是基于向量自回归模型(Vector Autoregressive Model, VAR)的延伸,用于描述经济系统中变量之间的动态关系。

它的核心思想是变量之间存在长期均衡关系,并且当系统偏离均衡状态时,会通过误差修正机制迅速回归到均衡。

在误差修正模型中,被解释变量(因变量)的变化量由其自身的滞后项、其他变量的滞后项和误差修正项来决定。

其中,误差修正项是系统偏离均衡状态的驱动力,它通过反映系统失衡的程度来进行调整,促使系统回归到长期均衡。

因此,误差修正模型可以同时捕捉长期和短期的关系,具有强大的解释和预测能力。

二、建立误差修正模型的方法建立误差修正模型主要包括两个步骤:协整关系检验和模型参数估计。

1. 协整关系检验协整关系检验是判断变量之间是否存在长期均衡关系的重要步骤。

常用的协整关系检验方法包括ADF检验(Augmented Dickey-Fuller test)、PP检验(Phillips-Perron test)等。

这些检验方法可以判断变量是否为非平稳的单整序列,以及变量之间是否存在稳定的线性关系。

2. 模型参数估计在进行误差修正模型参数估计之前,需要确定模型的滞后阶数(Lag Order)。

滞后阶数的选择可以通过信息准则(如AIC、BIC等)来确定,准则值较小的滞后阶数会得到更好的模型拟合效果。

模型参数估计可以使用最小二乘法(Ordinary Least Squares, OLS)或极大似然估计法(Maximum Likelihood Estimation, MLE)进行。

第三章(3-5节)协整与误差修正模型

第三章(3-5节)协整与误差修正模型

第三节协整理论——时间序列模型的协整关系一、问题来源来源:伪回归(虚假回归)现象MC(蒙特卡罗)的模拟结果发现:利用2个相互独立的非平稳序列、或者2个都包含时间趋势但彼此无关的序列,可能建立显著的回归模型;称这种现象为“伪回归”现象,所建立的模型是伪回归模型。

伪回归现象意味着传统统计检验方法失去意义,需要重新讨论对非平稳序列能否直接建立回归模型的问题。

二、平稳性(一)平稳时间序列定义:μ=)(t y E)(),(s r y y COV s t t =- (序列的相关性只与间隔有关,与时刻无关) 推论:)0()(r y D t = = 常数图形特征:(1)在均值周围波动,频繁穿越均值;(2)波动幅度大致相同;-2-112240260340360DJ PY图1 日元兑美元差分序列 图2上证综指收益率平稳时间序列的含义:任何外来冲击(或振动)对序列变动轨迹的影响是短暂的,t时刻的振动影响在t+1期会减弱,t+2期会更弱,随着时间推移这种影响会逐渐消失,序列将恢复到其平均水平(称外来冲击影响具有“短记忆”特征)。

但是,对于非平稳时间序列,振动的影响会无限地持续下去,t时刻的振动影响不会在以后的时期中衰减,所以序列也难以恢复到一个稳定状态,外来冲击影响有长记忆性。

(二)常见平稳序列1.白噪声过程(white noise )0)(=t y E 2)(σ=t y D 0),(=-s t t y y COV记成: y t ~ i.i.d (0, σ2)古典回归模型中的随机误差项即为白噪声序列。

2.自回归过程(Auto regression —AR 过程)1t t t y y ρε-=+ ||1ρ<,εt ~ i.i.d (0, σ2)(三)常见非平稳序列1.趋势平稳过程(trend stationary)(又称为:退势平稳过程,确定趋势过程)。

y t =α + βt + εt , εt~i.i.d(0, σ2)性质:(1)E (y t )=α + βt , D (y t ) = σ2 , COV(y t ,y t-s ) = 0(2)图形:围绕趋势线等幅波动,外来冲击影响短暂;(3)可以扩展成带趋势的AR 过程:1t t t y t y αβρε-=+++ ||1ρ<特点:由于存在长期趋势使得均值不是常数,所以是非平稳序列;但是序列始终围绕着趋势线波动,外来冲击是短记忆的,所以又具备平稳序列的特征。

时间序列的协整检验与误差修正模型讲义

时间序列的协整检验与误差修正模型讲义

时间序列的协整检验与误差修正模型讲义时间序列的协整检验与误差修正模型是在经济学和金融学中广泛使用的方法,用于分析两个或多个变量之间的长期稳定关系。

本讲义将介绍协整检验的基本概念和步骤,并讨论误差修正模型的理论背景和实际应用。

一、协整检验1. 概念与原理协整是指两个或多个变量之间存在长期稳定的关系,即它们的线性组合是平稳的。

协整关系可以用来解释一个变量对另一个变量的影响,并提供长期均衡关系的信息。

协整检验的基本原理是利用单位根检验方法,测试变量是否存在单位根(非平稳性)。

如果变量存在单位根,则它们是非平稳的;如果变量不存在单位根,则它们是平稳的。

如果变量之间存在协整关系,它们的线性组合将是平稳的。

2. 协整检验的步骤协整检验的一般步骤如下:- 收集数据并绘制时间序列图,观察变量之间的趋势和关系;- 进行单位根检验,常用的方法包括ADF检验、Phillips-Perron检验等;- 如果变量存在单位根,则进行差分,直到变量变为平稳的;- 应用最小二乘法等方法,估计协整关系方程;- 进行残差平稳性检验,确保协整关系的合理性;- 如果协整关系存在,可以进行模型的进一步分析与应用。

二、误差修正模型(Error Correction Model, ECM)1. 概念与原理误差修正模型是一种动态模型,用于解释协整关系的调整速度和误差纠正机制。

在误差修正模型中,除了协整关系的线性组合外,还引入了误差修正项,用于捕捉变量之间的短期非平衡关系。

误差修正项反映了系统离开长期均衡后的调整速度,通过估计误差修正项的系数,可以判断系统是否有趋向于均衡的能力。

当误差修正项的系数为负数且显著时,表示系统具有自我修复的能力;当系数为零时,表示系统处于长期均衡状态;当系数为正数时,表示系统趋向于进一步偏离均衡。

2. ECM模型的应用误差修正模型可以用于解释和预测时间序列数据的长期和短期动态变化。

它在经济学和金融学中有广泛的应用,如货币供给与通货膨胀、利率与消费支出、汇率与经济增长等领域。

eviews误差修正模型

eviews误差修正模型

SC信息准则
SC值最小 SC信息准则;又称施瓦兹准则;即Schwarz
Criterion 其检验思想也是通过比较不同分布滞后模
型的拟合优度来确定合适的滞后期长度 检 验过程是:在模型中逐期添加滞后变量;直 到SC值不再降低时为止;即选择使SC值达 到最小的滞后期k
AIC最小原则是判定模型好坏标准之一;犹 如R2R平方一样 AIC和SC舒瓦茨信息常常 一并作为判断模型拟合程度的标准之一;特 别是在滞后阶数的选择上
第一步:输入变量略
打开序列;点击QuickEstimate Equation对变 量 gini gini1 c t进行自回归
目的:查看常数项和时间趋势项是否显著
第二步:上图结果显示常数项显著;因此 对原始数据单位根检验中同时加入常数 项
注意:
Maximun lags严格的说;要逐步加入滞后 期;最后根据AIC最小准则来选取
比如;一个VAR向量自回归模型;经济理论 往往无法确定滞后阶数;这时往往采用AIC 或者SC最小原则;即观察不同的阶数的VAR 模型;哪个模型的AIC或者SC值最小就选用 哪个模型进行分析 AIC SC都会在模型参 数中给出
确定序列具有单位根的阶数
ADF检验形式的选择
操作:数据gini2;lnpergdp
1 单位根检验的方法 2 最优滞后项的选择 3 确定序列具有单位根的阶数
1 单位根检验的方法
单位根检验有众多的模型可供选择;常用 的ADFAugmented Dickey Fuller检验和 PPPhillipsPerron检验
推荐使用:ADF检验
2 最优滞后阶数的选择
1 AIC信息准则 2 SC准则
同理;相同的过程处理序列GDP 原始数据ADF检验

时间序列的协整检验与误差修正模型

时间序列的协整检验与误差修正模型

时间序列的协整检验与误差修正模型时间序列的协整检验与误差修正模型是经济学中常用的方法,用于分析两个或多个变量之间的长期关系。

协整检验是在时间序列数据中,判断变量之间是否存在长期平衡关系的一种方法。

误差修正模型是在协整关系已经验证的基础上,建立起变量之间的因果关系,对短期的偏离进行修正的模型。

协整检验的原理是基于单位根检验的思想,判断时间序列是否为平稳序列。

平稳序列是指序列的均值和方差不随时间发生变化。

如果两个变量都是非平稳序列,但它们的线性组合是平稳序列,那么可以认为这两个变量是协整的。

常用的协整检验方法有Engle-Granger方法和Johansen方法。

Engle-Granger方法是一种直观简单的协整检验方法。

它的步骤如下:首先,分别对两个变量进行单位根检验,确认它们是否为非平稳序列。

然后,对两个变量进行线性回归,得到残差序列。

接下来,对残差序列进行单位根检验,确认它是否为平稳序列。

最后,如果残差序列是平稳序列,则可以判断两个变量之间存在协整关系。

协整检验完成后,接下来可以建立误差修正模型。

误差修正模型是基于协整关系的基础上建立起来的,以短期的偏离修正为核心。

它的核心假设是,在长期平衡关系的约束下,两个变量之间的短期偏离可以通过一个修正项来消除。

误差修正模型的基本形式是多元线性回归模型,其中包含自变量、因变量以及一个误差修正项。

误差修正模型的估计和推断可以使用最小二乘法或最大似然法等统计方法进行。

通过对误差修正模型的估计和推断,可以对变量之间的因果关系进行分析。

同时,误差修正模型还可以用于预测和决策分析。

综上所述,时间序列的协整检验与误差修正模型是分析变量之间长期关系的重要工具。

协整检验可以判断变量是否具有长期平衡关系,而误差修正模型则可以分析变量之间的短期调整过程。

这些方法在经济学、金融学、管理学等领域都有广泛的应用。

时间序列的协整检验与误差修正模型是经济学中常用的方法,用于分析两个或多个变量之间的长期关系。

stata误差修正模型命令

stata误差修正模型命令

stata误差修正模型命令摘要:1.Stata误差修正模型简介2.误差修正模型基本原理3.常用误差修正模型命令介绍4.实例演示5.总结与建议正文:随着计量经济学的发展,误差修正模型(Error Correction Model,简称ECM)在实证研究中得到了广泛应用。

Stata作为强大的统计分析软件,为用户提供了丰富的误差修正模型命令。

本文将介绍Stata中的误差修正模型命令,帮助读者更好地运用这些工具进行实证研究。

1.Stata误差修正模型简介误差修正模型是一种具有时间序列特征的回归模型,它将变量的当前值与过去值相结合,以预测未来趋势。

误差修正模型主要分为两类:一类是单方程误差修正模型,另一类是多元误差修正模型。

在Stata中,我们可以使用以下命令构建误差修正模型。

2.误差修正模型基本原理误差修正模型的基本原理是,将变量的当前值与过去值进行回归,得到一个方程。

然后,将这个方程的残差(即预测值与实际值之差)作为解释变量,再次进行回归,得到另一个方程。

这两个方程组成一个误差修正模型。

在Stata中,我们可以使用以下命令构建误差修正模型。

3.常用误差修正模型命令介绍(1)命令:xtserialxtserial命令用于构建单方程误差修正模型。

例如,以下命令构建了一个关于变量y的误差修正模型:```xtserial y x1 x2, ecm(1)```(2)命令:xtareasxtareas命令用于构建多元误差修正模型。

例如,以下命令构建了一个关于变量y、x1和x2的误差修正模型:```xtareas y x1 x2, ecm(1)```4.实例演示以下是一个关于我国居民消费的实例,我们使用xtserial命令构建误差修正模型:```* 导入数据use "居民消费.dta", clear* 构建误差修正模型xtserial consumption expenditure, ecm(1)```5.总结与建议本文对Stata中的误差修正模型命令进行了简要介绍。

误差修正模型

误差修正模型

m
得残差平方和ESSR
ESSR - ESSUR m F= ~ F (m, n - k ) ESSUR n-k
n为观测个数 k为无限制条件回归 待估参数个数
如果:F>Fa(m,n-k) ,则拒绝原假设,认为X是Y的格兰杰原 因。
PDF 文件使用 "pdfFactory" 试用版本创建 èìì
PDF 文件使用 "pdfFactory" 试用版本创建 ÿ
例如:检验M2与GDP之间的因果关系
PDF 文件使用 "pdfFactory" 试用版本创建 ÿ
PDF 文件使用 "pdfFactory" 试用版本创建
对两变量Y与X,格兰杰因果关系检验要求估计:
Yt = å a i X t -i + å b i Yt -i + m1t
i =1 i =1
m
m

m
(*) (**)
X t = å li Yt -i + å d i X t -i + m 2t
i =1 i =1
m
可能存在有四种检验结果: (1)X对Y有单向影响,表现为(*)式X各滞后项前的参数整体为 零,而Y各滞后项前的参数整体不为零; (2)Y对X有单向影响,表现为(**)式Y各滞后项前的参数整体为 零,而X各滞后项前的参数整体不为零; (3)Y与X间存在双向影响,表现为Y与X各滞后项前的参数整体不为 零; (4)Y与X间不存在影响,表现为Y与X各滞后项前的参数整体为零。
(*)
引入三阶滞后项的误差修正模型与(*)式相仿,只 不过模型中多出差分滞后项DYt-2,DXt-2,。
PDF 文件使用 "pdfFactory" 试用版本创建 ìì

误差修正模型

误差修正模型

其中,EC =长期关系模型中的残差。
在具体建模中,首先要对长期关系模型的设定 是否合理进行单位根检验,以保证 EC 为平稳序 列。其次,对短期动态关系中各变量的滞后项, 进行从一般到特殊的检验,将不显著的滞后项 逐渐剔除,直到找出了最佳形式为止。通常滞 后期在 =0,1,2,3 中进行试验。 i
第四节 格兰杰因果检验
三、误差修正模型
(Error Correction Model ,ECM)
误差修正模型(ECM,也称误差修正模型)是一种 具有特定形式的计量经济模型。
建立误差修正模型一般采用两步,分别建立区分 数据长期特征和短期待征的计量经济学模型。
第一步,建立长期关系模型。即通过水平变量和 OLS法估计出时间序列变量间的关系。若估计结 果形成平稳的残差序列时,那么这些变量间就存 在相互协整的关系.长期关系模型的变量选择是 合理的,回归系数具有经济意义。
u1t

在上述回归中添加X的滞后变量作为独立 解释变量,得到一个无约束回归:
Yt iYt i i X t i u2t
i 1 i 1 s m

如果X是Y变化的原因,无约束回归模型的解
释能力应该显著强于有约束回归模型的解释
能力。如果存在这样一种关系,称X是Y的格
兰杰原因。
其一般形式为: M M ( )t 0 1Yt 2 t 3 ( )t -1 t P P 其中: 为物价指数 M为相应的名义货币余额, P (通常用GDP的平减指数表示), Y 为实际的国民收 入(GDP), 为季度通货膨胀率(根据综合物价指 数衡量)。这里关于实际收入(产业规模)和机会成
m 为约束条件的个数, s m 是无约束回归的系数个数,n 为样本容量。

实验四协整检验及误差修正模型实验报告

实验四协整检验及误差修正模型实验报告

实验四协整检验及误差修正模型实验报告一、实验目的协整检验及误差修正模型是时间序列分析中常用的方法。

本实验的目的是通过对两个时间序列数据的协整检验,并建立误差修正模型,来研究两个变量之间的长期关系以及短期波动情况。

二、实验步骤1.数据准备本实验所用数据为两个变量的时间序列数据。

我们需要确保数据的平稳性,并进行必要的数据预处理,如差分、对数化等。

2.协整检验协整检验是用来判断两个变量之间是否存在长期的关系。

本实验使用了Johansen协整检验方法。

该方法是基于向量自回归(VAR)模型的极大似然估计,用于检验多个时间序列之间的协整关系。

在进行协整检验之前,需要明确时间序列的滞后阶数,以及是否需要进行季节调整。

3.误差修正模型误差修正模型(ECM)是一种动态模型,用来描述变量之间的长期关系以及短期波动调整过程。

该模型基于协整检验的结果,使用差分变量进行建模,其中包含了误差修正项。

实验中,我们需要确定模型的滞后阶数,以及是否需要引入滞后差分变量等。

4.模型评估建立模型后,我们需要进行模型的评估与诊断,确保模型的有效性与准确性。

评估指标包括模型的拟合度、残差的正态性、自相关性以及异方差性等。

三、实验结果通过进行协整检验,我们得到了两个变量之间的协整关系。

根据检验结果,我们建立了误差修正模型,并进行参数估计与显著性检验。

最终的模型结果显示,模型的拟合效果良好,残差的正态性与自相关性得到了充分的满足。

四、实验分析根据实验结果1.两个变量存在着长期的关系,即它们在长期内呈现出稳定的均衡状态。

2.模型中的误差修正项描述了两个变量之间的短期波动调整过程,即使两个变量之间存在着均衡关系,也需要通过误差修正项来实现调整。

3.通过模型的参数估计与显著性检验,我们可以得到两个变量对于均衡关系的贡献程度,以及它们之间的动态调整速度。

五、实验总结协整检验及误差修正模型是时间序列分析中常用的方法,用于研究变量之间的长期关系以及短期波动调整过程。

时间序列的协整和误差修正模型

时间序列的协整和误差修正模型

时间序列的协整和误差修正模型时间序列分析中,协整和误差修正模型是两个重要的概念。

协整是指两个或多个时间序列之间的长期关系,而误差修正模型是一种用来修正时间序列中的误差的模型。

协整是经济学家提出的一个概念,用来解决时间序列数据存在的非平稳性的问题。

在实际应用中,有很多时间序列数据是非平稳的,即其均值和方差不随时间变化而保持不变。

然而,这些非平稳的时间序列之间可能存在长期的关系,也就是说它们会随着时间变化而趋于稳定。

这种关系可以通过协整分析来检验和建模。

协整模型的一种常见形式是误差修正模型(Error Correction Model,ECM)。

误差修正模型是建立在协整模型的基础上的,它可以用来描述时间序列数据之间的长期关系,并且考虑了这些时间序列数据之间的短期变动。

在误差修正模型中,如果两个时间序列之间存在协整关系,那么它们之间的生成误差(随机扰动)会导致它们之间的偏离程度逐渐回归到长期均衡的水平。

因此,误差修正模型是通过引入误差修正项来解决协整关系中存在的短期波动的问题。

误差修正模型的基本思想是,当两个时间序列之间存在协整关系时,如果它们之间的误差超过一定的阈值,那么它们之间的误差就会被修正回长期均衡的水平。

这种修正过程可以通过引入一个误差修正项来实现,从而使得模型具备误差修正的能力。

总之,协整和误差修正模型是对时间序列数据进行建模和分析的重要工具。

协整可以用来检验和描述时间序列之间的长期关系,而误差修正模型则是在协整的基础上引入修正项,用来处理时间序列之间的短期波动。

这些方法在经济学和金融学等领域中具有广泛的应用价值。

协整和误差修正模型是时间序列分析中非常重要的概念。

协整是指两个或多个非平稳时间序列之间存在的长期关系,而误差修正模型则是通过引入误差修正项来描述时间序列的短期波动。

在实际应用中,许多经济和金融时间序列是非平稳的,即它们的均值和方差会随时间变化而发生变动。

这种非平稳性可能会导致误导性的统计结果,因为传统的统计方法要求时间序列数据是平稳的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节误差修正模型(Error Correction Model,ECM)一、误差修正模型的构造对于yt的(1,1阶自回归分布滞后模型:在模型两端同时减yt-1,在模型右端,得:其中,,,。

记(5-5)则(5-6)称模型(5-6)为“误差修正模型”,简称ECM。

二、误差修正模型的含义如果yt ~ I(1,xt ~ I(1,则模型(5-6)左端,右端,所以只有当yt和xt协整、即yt 和xt之间存在长期均衡关系时,式(5-5)中的ecm~I(0,模型(5-6)两端的平稳性才会相同。

当yt和xt协整时,设协整回归方程为:它反映了yt与xt的长期均衡关系,所以称式(5-5)中的ecmt-1是前一期的“非均衡误差”,称误差修正模型(5-6)中的是误差修正项,是修正系数,由于通常,这样;当ecmt-1 >0时(即出现正误差),误差修正项< 0,而ecmt-1 < 0时(即出现负误差),> 0,两者的方向恰好相反,所以,误差修正是一个反向调整过程(负反馈机制)。

误差修正模型有以下几个明确的含义:1.均衡的偏差调整机制2.协整与长期均衡的关系3.经济变量的长期与短期变化模型长期趋势模型:短期波动模型:三、误差修正模型的估计建立ECM的具体步骤为:1.检验被解释变量y与解释变量x(可以是多个变量)之间的协整性;2.如果y与x存在协整关系,估计协整回归方程,计算残差序列e t:3.将e t-1作为一个解释变量,估计误差修正模型:说明:(1)第1步协整检验中,如果残差是确定趋势过程,可以在第2步的协整回归方程中加入趋势变量;(2)第2步可以估计动态自回归分布滞后模型:此时,长期参数为:协整回归方程和残差也相应取成:,(3)第2步估计出ECM之后,可以检验模型的残差是否存在长期趋势和自相关性。

如果存在长期趋势,则在ECM中加入趋势变量。

如果存在自相关性,则在ECM的右端加入的滞后项来消除自相关性,误差修正项的滞后期一般也要作相应调整。

如取成以下形式:由于模型中的各项都是平稳变量,所以可以用t检验判断各项的显著性,逐个剔除其中不显著的变量,当然误差修正项要尽可能保留。

【例5-3】建立例5-2中我国货币供应量与国民收入的误差修正模型。

协整关系。

在例5-2中已经得到我国货币供应量和国民收入的对数都是一阶单整变量,而且是协整的;所以,直接估计误差修正模型(设残差序列是):LS D(LX D(LX E(-1估计结果如图5-9所示,误差修正项的符号是负的,但是t 检验不显著。

对模型的残差序列进行自相关检验,DW检验和BG检验结果都说明存在一阶自相关;所以,点击方程窗口的Estimate按钮,在方程描述框中重新定义待估方程:D(LX D(LX E(-1 D(LX(-1 D(LY(-1根据输出结果,剔除其中不显著的,得到图5-10的估计结果。

模型中误差修正项的符号是负的,而且各项的t检验显著,所以,我国货币供应量的误差修正模型为:(4.87)(-2.92)(-2.58)R2=0.4693 SE=0.0603 DW=0.9649图5-9 ECM的最初估计结果图5-10 ECM的最终估计结果案例分析:我国金融发展与经济增长的协整分析表5-4中列出了1989~2006年期间我国国内生产总值指数(1978=100)、货币供应量M2(亿元)、金融机构年末贷款余额(亿元)和商品零售价格指数(1978=100)的统计资料。

现以货币供应量和贷款余额反映金融的发展情况,分析金融发展与经济增长的协整关系,以及相应的误差修正模型。

表5-4 我国1989~2006年统计资料年份国内生广义货贷款余商品零产总值Y 币M2额L 售价格指数P1 989271.312716.914360.123.41 99281.715293.417680.727.71 991307.619349.921337.8213.71 992351.425402.226322.9225.21 993400.434879.832943.1254.91 994452.846923.539976.0310.21 995502.360750.550544.1356.11 996552.676094.961156.6377.81 997603.990995.374914.1380.8165110448379 9 8.2 98.5 6524.10.9 19 9 9700.9119897.993734.3359.8 20 0 0759.9134610.499371.1354.4 20 0 1823.0158301.9112314.7351.6 20 0 2897.8185007.0131293.9347.0 20 0987.8221222.815899346.3 6.2 72 041087.4254107.0178197.8356.42 051200.8298755.7194690.0359.32 061334.345603.6225347.0362.91.数据处理与单整性检验为消除价格因素的影响,将货币供应量M2和贷款余额L 都除以物价指数P,得到实际货币量;同时为了将各项指标的变化趋势转变成线性趋势,对所有变量都取对数。

变量的处理过程为:GENR LY=LOG(YGENR LMP=LOG(M2/PGENR LLP=LOG(L/P模型形式为:对模型中的变量进行单位根检验,表5-5列出了有关检验结果。

该表是另外一种常用的检验结果表现形式,其中,p表示麦金农单侧概率值,即ADF统计量对应的伴随概率;在ADF统计量值上的*号,表示检验的显著情况:无*号表示不显著,***、**、*分别表示在1%、5%、10%的显著水平下显著。

表5-5的检验结果表明,所有变量都是确定趋势过程,此时不需要再对各个变量的一阶差分进行单位根检验了,即都~I(1。

表5-5 单位根检验输出结果变量(c,t,m)ADF检验值pLY (c,t,3)-3.6044* 0.0582LMP (c,t,2)-8.1469*** 0.0000LLP (c,t,1)-3.9926** 0.02912.协整性检验估计协整回归方程,由于模型中变量都含有长期趋势,所以在原模型中再加上取食变量T,键入命令:LS LY C LMP LLP T,估计结果如图5-11所示。

图5-11 协整回归方程估计结果(1)由于模型中LMP与LLP高度相关,多重共线性的影响使得贷款变量的系数符号为负,经济意义不合理。

经过多个模型的测算,最终将LMP与LLP合并成一个变量表示金融的发展规模,得到如图5-12所示的估计结果。

图5-12 协整回归方程估计结果(2)在方程窗口中点击Proc \Make Residual Series,生成残差序列(设变量名为E);进一步检验残差序列的平稳性(检验结果见图5-13),在1%的显著水平下,残差序列是平稳的。

所以,根据EG两步检验法,lnGDP与实际货币和实际贷款(的对数)之间存在着协整关系。

协整回归方程为:图5-13 残差序列E的平稳性检验结果3.建立误差修正模型为表示简单起见,设:LX=LMP+LLP;键入命令:GENR LX=LMP+LLPLS D(LY E(-1输出结果显示Et-1的系数不显著,对模型进行残差检验,发现存在一阶自相关性;所以,在模型中再加入LY和LX的滞后项,利用t检验剔除不显著变量后,得到ECM的最后估计结果(见图5-14)。

图5-14 ECM的最终估计结果所以,我国经济增长与金融发展的关系模型可以表述成:长期均衡关系:短期波动模型:。

相关文档
最新文档