信号与系统实验题目及答案
信号与系统实验教程(只有答案)
信 号 与 系 统实 验 教 程(只有答案)(实验报告)这么玩!目录 实验一 信号与系统的时域分析 (2)三、实验内容及步骤 (2)实验二 连续时间信号的频域分析 (14)三、实验内容及步骤 (14)实验三 连续时间LTI 系统的频域分析 (35)三、实验内容及步骤 (35)实验四 通信系统仿真 (41)三、实验内容及步骤 (41)实验五 连续时间LTI 系统的复频域分析 (51)三、实验内容及步骤 (51)实验一信号与系统的时域分析三、实验内容及步骤实验前,必须首先阅读本实验原理,读懂所给出的全部范例程序。
实验开始时,先在计算机上运行这些范例程序,观察所得到的信号的波形图。
并结合范例程序应该完成的工作,进一步分析程序中各个语句的作用,从而真正理解这些程序。
实验前,一定要针对下面的实验项目做好相应的实验准备工作,包括事先编写好相应的实验程序等事项。
Q1-1:修改程序Program1_1,将dt改为0.2,再执行该程序,保存图形,看看所得图形的效果如何?dt = 0.01时的信号波形dt = 0.2时的信号波形这两幅图形有什么区别,哪一幅图形看起来与实际信号波形更像?答:Q1-2:修改程序Program1_1,并以Q1_2为文件名存盘,产生实指数信号x(t)=e-0.5t。
要求在图形中加上网格线,并使用函数axis()控制图形的时间范围在0~2秒之间。
然后执行该程序,保存所的图形。
修改Program1_1后得到的程序Q1_2如下:信号x(t)=e-0.5t的波形图clear, % Clear all variablesclose all, % Close all figure windowsdt = 0.2; % Specify the step of time variablet = -2:dt:2; % Specify the interval of timex = exp(-0.5*t); % Generate the signalplot(t,x)grid on;axis ([0 2 0 1 ])title('Sinusoidal signal x(t)')xlabel('Time t (sec)')Q1-3:修改程序Program1_1,并以Q1_3为文件名存盘,使之能够仿真从键盘上任意输入的一个连续时间信号,并利用该程序仿真信号x(t)=e-2t。
信号与系统matlab实验及答案
产生离散衰减正弦序列()π0.8sin 4n x n n ⎛⎫= ⎪⎝⎭, 010n ≤≤,并画出其波形图。
n=0:10;x=sin(pi/4*n).*0.8.^n;stem(n,x);xlabel( 'n' );ylabel( 'x(n)' );用MATLAB 生成信号()0sinc at t -, a 和0t 都是实数,410t -<<,画波形图。
观察并分析a 和0t 的变化对波形的影响。
t=linspace(-4,7); a=1;t0=2;y=sinc(a*t-t0); plot(t,y);t=linspace(-4,7); a=2;t0=2;y=sinc(a*t-t0); plot(t,y);t=linspace(-4,7); a=1;t0=2;y=sinc(a*t-t0); plot(t,y);三组对比可得a 越大最大值越小,t0越大图像对称轴越往右移某频率为f 的正弦波可表示为()()cos 2πa x t ft =,对其进行等间隔抽样,得到的离散样值序列可表示为()()a t nT x n x t ==,其中T 称为抽样间隔,代表相邻样值间的时间间隔,1s f T=表示抽样频率,即单位时间内抽取样值的个数。
抽样频率取40 Hz s f =,信号频率f 分别取5Hz, 10Hz, 20Hz 和30Hz 。
请在同一张图中同时画出连续信号()a x t t 和序列()x n nT 的波形图,并观察和对比分析样值序列的变化。
可能用到的函数为plot, stem, hold on 。
fs = 40;t = 0 : 1/fs : 1 ;% ƵÂÊ·Ö±ðΪ5Hz,10Hz,20Hz,30Hz f1=5;xa = cos(2*pi*f1*t) ; subplot(1, 2, 1) ;plot(t, xa) ;axis([0, max(t), min(xa), max(xa)]) ;xlabel('t(s)') ;ylabel('Xa(t)') ;line([0, max(t)],[0,0]) ; subplot(1, 2, 2) ;stem(t, xa, '.') ;line([0, max(t)], [0, 0]) ;axis([0, max(t), min(xa), max(xa)]) ;xlabel('n') ;ylabel('X(n)') ;频率越高,图像更加密集。
信号与系统实验题目及答案
第一个信号实验得题目1实现下列常用信号(1);(2);(3);(4);(5)2连续信号得基本运算与波形变换已知信号,试画出下列各函数对时间t得波形:(1)(2)(3)(4)(5)3连续信号得卷积运算实现,其中、从第2个题目中任选3对组合。
4连续系统得时域分析(1)描述某连续系统得微分方程为,求当输入信号为时,该系统得零状态响应。
(2)已知描述某连续系统得微分方程为,试用MATLAB绘出该系统得冲激响应与阶跃响应得波形。
实验一答案:(1)在MATLAB软件得输入程序及显示波形如下:(2)在MATLAB软件得输入程序及显示波形如下:(3)在MA TLAB软件得输入程序及显示波形如下:(4)在MA TLAB软件得输入程序及显示波形如下:(5)在MATLAB软件得输入程序及显示波形如下:(1)得输入程序及波形如下:(2)得输入程序及波形如下:(3)得输入程序及波形如下:(2)系统得冲激响应与阶跃响应如下:(4)得输入程序及波形如下:(5)得输入程序及波形如下:(1)与(2)组合得卷积运算如下:(2)与(3)组合得卷积运算如下:(1)与(3)组合得卷积运算如下:(1)系统得零状态响应如下:第二个信号实验题目1(1)用数值法求门函数得傅里叶变换,并给出门函数得幅频特性曲线与相频特性曲线.(2)用符号法给出函数得傅里叶变换。
(3)已知系统函数为,画出该系统得零极点图。
2(1)用数值法给出函数幅频特性曲线与相频特性曲线.(2)对函数进行采样,采样间隔为0、01。
(3)已知输入信号为,载波频率为1000Hz,采样频率为5000Hz,试产生输入信号得调幅信号。
3(1)用符号法实现函数得傅里叶变换,并给出门函数得幅频特性曲线与相频特性曲线。
(2)已知系统函数为,输入信号为,求该系统得稳态响应。
(3)已知输入信号为,载波频率为100Hz,采样频率为400Hz,试产生输入信号得调频信号.4(1)已知系统函数为,画出该系统得零极点图.(2)已知函数用数值法给出函数得幅频特性曲线与相频特性曲线。
信号与系统实验答案1
实验一 离散时间信号的表示及可视化一、实验目的学会对离散时间信号进行标识和可视化处理。
二、实验源程序 (1)f(n)= )(n δn=-5:1:5; f=dirac(n); plot(n,f,'.'); xlabel('(n)'); ylabel('(f)'); axis([-5 5 -0.5 1.5])(2) f(n)=ε(n)f=Heaviside(n)n=-5:1:5; f=heaviside(n); plot(n,f,'.'); xlabel('(n)'); ylabel('(f)');axis([-5 5 -0.5 1.5]) (3) f(n)= ane (分别取a>0及a<0)a=1时 n=-5:1:5; f=exp(n); plot(n,f,'.');a=-1时 n=-5:1:5; f=exp(-n); plot(n,f,'.');(4) f(n)=R N (n) (分别取不同的N 值)N=10时 n=0:1:9; f=1;plot(n,f,'.');N=15时 n=0:1:14; f=1;plot(n,f,'.') (5) f(n)=Sa(nw)w=0.1时n=-45:1:45;f=sinc(0.1*n);plot(n,f,'.');xlabel('n');ylabel('f');axis([-50 50 -1 1])w=0.2时n=-45:1:45;f=sinc(0.2*n);plot(n,f,'.');xlabel('n');ylabel('f');axis([-50 50 -1 1])(6)f(n)=Sin(nw)(分别取不同的w值)w=100时n=-15:1:15;f=sin(100*n);plot(n,f,'.');xlabel('n');ylabel('f');w=200时n=-15:1:15;f=sin(200*n);plot(n,f,'.');xlabel('n');ylabel('f');三、程序运行结果及波形图(1)(2)(3)-5-4-3-2-1012345(n)(f)-5-4-3-2-1012345(n)(f)(4)0123456789024********(5)(6)-50-40-30-20-1001020304050-1-0.8-0.6-0.4-0.200.20.40.60.81nf-50-40-30-20-1001020304050-1-0.8-0.6-0.4-0.200.20.40.60.81nffnf-15-10-5051015n四、实验调试体会实验二 连续时间信号的表示及可视化一、实验目的熟练掌握连续时间信号的表示及可视化处理。
信号与系统练习题(带答案)
信号与系统练习题(带答案)1. 信号f(t)的波形如图所示。
分别画出信号(24),(24),(24)f t f t f t '''-+-+-+的波形,并且写出其表达式。
答案:2. 信号f ( t )的图形如下所示,对(a)写出f ' ( t )的表达式,对(b)写出f " ( t )的表达式,并分别画出它们的波形。
解 (a)20,21≤≤tf ' (t)= δ(t -2), t = 2-2δ(t -4), t = 4(b) f " (t ) = 2δ(t ) - 2δ(t -1)-2δ(t -3)+2δ(t -4)3. 已知f(5-2t)的波形如图所示,试画出f(t)的波形。
52:()(2)(2)(52)5252252:(52)(2)(2)()f t f t f t f t t tf t f t f t f t −−−→−−−→-−−−→---=-∴-→-→→ 压缩反转平移左移反转拉伸分析()右移求解过程55[52()]2,22t t t t -+=-∴+ 以代替而求得-2t ,即f(5-2t)左移(52)(2)f t f t -−−−→-时移由(2)反转:f(-2t)中以-t 代替t ,可求得f(2t),表明f(-2t)的波形 以t =0的纵轴为中心线对褶,注意()t δ是偶数,故112()2()22t t δδ--=+(2)(2)f t f t -−−−→反褶由(3)尺度变换:以12t 代替f(2t)中的t ,所得的f(t)波形将是f(2t)波形在时间轴上扩展两倍。
4. 求序列{}12[]1,2,1,0,1,2[][1cos()][]2f n n f n n u n π===+和的卷积和。
解:{}112222[]1,2,1[]2[1][2][]*[][]2[1][2]f n n n n f n f n f n f n f n δδδ==+-+-=+-+-5. 试求下列卷积。
(完整版)信号与系统练习及答案
信号与系统练习及答案一、单项选择题1.已知信号f (t )的波形如题1图所示,则f (t )的表达式为( )A .tu(t)B .(t-1)u(t-1)C .tu(t-1)D .2(t-1)u(t-1)2.积分式⎰-δ+δ++4422)]dt -(t 2(t))[23(t t 的积分结果是( ) A .14 B .24 C .26 D .283.已知f(t)的波形如题3(a )图所示,则f (5-2t)的波形为( )4.周期矩形脉冲的谱线间隔与( )A .脉冲幅度有关B .脉冲宽度有关C .脉冲周期有关D .周期和脉冲宽度有关 5.若矩形脉冲信号的宽度加宽,则它的频谱带宽( ) A .不变 B .变窄 C .变宽D .与脉冲宽度无关 6.如果两个信号分别通过系统函数为H (j ω)的系统后,得到相同的响应,那么这两个信号()A .一定相同 B .一定不同 C .只能为零 D .可以不同7.f(t)=)(t u e t 的拉氏变换为F (s )=11-s ,且收敛域为( ) A .Re[s]>0B .Re[s]<0C .Re[s]>1D .Re[s]<1 8.函数⎰-∞-δ=2t dx )x ()t (f 的单边拉氏变换F (s )等于( ) A .1 B .s 1 C .e -2s D .s1e -2s 9.单边拉氏变换F (s )=22++-s e )s (的原函数f(t)等于( ) A .e -2t u(t-1) B .e -2(t-1)u(t-1) C .e -2t u(t-2)D .e -2(t-2)u(t-2)答案: BCCCBDCDA二.填空题1.如果一线性时不变系统的单位冲激响应为h(t),则该系统的阶跃响应g(t)为_________。
2.已知x(t)的傅里叶变换为X (j ω),那么x (t-t 0)的傅里叶变换为_________________。
3.如果一线性时不变系统的输入为f(t),零状态响应为y f (t )=2f (t-t 0),则该系统的单位冲激响应h(t)为_________________。
长江大学信号与系统matlab实验答案
实验1 信号变换与系统非时变性质的波形绘制●用MA TLAB画出习题1-8的波形。
●用MA TLAB画出习题1-10的波形。
Eg 1.8代码如下:function [y]=zdyt(t) %定义函数zdyty=-2/3*(t-3).*(heaviside(-t+3)-heaviside(-t));endt0=-10;t1=4;dt=0.02;t=t0:dt:t1;f=zdyt(t);y=zdyt(t+3);x=zdyt(2*t-2);g=zdyt(2-2*t);h=zdyt(-0.5*t-1);fe=0.5*(zdyt(t)+zdyt(-t));fo=0.5*(zdyt(t)-zdyt(-t));subplot(7,1,1),plot(t,f);title('信号波形的变化')ylabel('f(t)')grid;line([t0 t1],[0 0]);subplot(7,1,2),plot(t,y);ylabel('y(t)')grid;line([t0 t1],[0 0]);subplot(7,1,3),plot(t,x);ylabel('x(t)')grid;line([t0 t1],[0 0]);subplot(7,1,4),plot(t,g);ylabel('g(t)')grid;line([t0 t1],[0 0]);subplot(7,1,5),plot(t,h);ylabel('h(t)')grid;line([t0 t1],[0 0]);subplot(7,1,6),plot(t,fe);ylabel('fe(t)')grid;line([t0 t1],[0 0]);subplot(7,1,7),plot(t,fo);ylabel('fo(t)')grid;line([t0 t1],[0 0]);xlabel('Time(sec)')结果:Eg1.10代码如下:function [u]=f(t) %定义函数f(t) u= heaviside(t)-heaviside(t-2); endfunction [u] =y(t) %定义函数y(t)u=2*(t.*heaviside(t)-2*(t-1).*heaviside(t-1)+(t-2).*heaviside(t-2)); endt0=-2;t1=5;dt=0.01; t=t0:dt:t1; f1=f(t); y1=y(t); f2=f(t)-f(t-2); y2=y(t)-y(t-2); f3=f(t)-f(t+1); y3=y(t)-y(t+1);subplot(3,2,1),plot(t,f1); title('激励——响应波形图') ylabel('f1(t)')grid;line([t0 t1],[0 0]);-10-8-6-4-2024012信号波形的变化f (t)-10-8-6-4-2024012y (t)-10-8-6-4-2024012x (t)-10-8-6-4-2024012g (t)-10-8-6-4-2024012h (t)-10-8-6-4-202400.51f e (t)-10-8-6-4-2024-101f o (t)Time(sec)subplot(3,2,2),plot(t,y1); ylabel('y1(t)')grid;line([t0 t1],[0 0]); subplot(3,2,3),plot(t,f2); ylabel('f2(t)')grid;line([t0 t1],[0 0]); subplot(3,2,4),plot(t,y2); ylabel('y2(t)')grid;line([t0 t1],[0 0]); subplot(3,2,5),plot(t,f3); ylabel('f3(t)')grid;line([t0 t1],[0 0]); subplot(3,2,6),plot(t,y3); ylabel('y3(t)')grid;line([t0 t1],[0 0]); xlabel('Time(sec)')结果:实验2 微分方程的符号计算和波形绘制上机内容用MA TLAB 计算习题2-1,并画出系统响应的波形。
重庆大学信号与系统实验(附标准答案)
2.当2π/ω为有理数时,则有2π/ω=N/M,这里N和M均为正整数,令N=2πM/ω,则
sinω(n+N)= sinω(n+ M2π/ω)= sin(ωn+ 2πM)= sinωn。
即这时正弦序列也是周期序列,且序列的最小周期为N=2πM/ω。
平移:将函数 沿横坐标平移 就得到函数
相乘:将 与 相乘,得到 。两波形重叠部分相乘有值,不重叠部分乘积为零
积分: 曲线下的面积即为 时刻的卷积。
2.2离散信号卷积和
输入为 ,输出为 的离散时间线性时不变系统的作用是用卷积求和来描述的:
信号 是系统对于单位冲激输入的响应。其计算步骤为:
横坐标 换成
翻转:将函数 以纵坐标为轴翻转,得到其对称函数
问题1:详细说明正弦离散时间信号的周期性与信号频率的关系,为什么?
答:根据周期序列的定义来讨论正弦离散时间信号的周期性,根据其周期性来找出其与信号频率
的关系。即找到一个正整数N使得恒等式sin(ωn)=sinω(n+N)成立。
分为几种情况讨论:
1.当2π/ω为整数时,令N=2π/ω,则
sinω(n+N)= sinω(n+2π/ω)= sin(ωn+2π)= sinωn。
12电科02班
姓名
艾渝
成绩
课程
名称
信号与系统(双语)
实验项目
名称
信号的时域表示、变换、采样及系统的时域特性
指导教师
文静
教师评语
()深入理解了实验原理,完成了实验步骤,实验过程原始记录翔实、清晰、准确,实验结果正确,分析透彻,很好地达到了实验目的。
信号与系统试题及答案
信号与系统试题及答案一、选择题1. 信号f(t)=cos(2πt+π/4)是()。
- A. 偶函数- B. 奇函数- C. 周期函数- D. 非周期函数答案:C2. 系统分析中,如果输入信号为x(t),输出信号为y(t),那么系统的冲激响应h(t)与输出信号y(t)的关系是()。
- A. y(t) = x(t) * h(t)- B. y(t) = ∫x(t)h(t)dt- C. y(t) = x(t) + h(t)- D. y(t) = x(t) - h(t)答案:B3. 一个线性时不变(LTI)系统,其频率响应H(ω)是输入信号X(ω)的傅里叶变换与系统冲激响应的乘积,那么该系统的逆傅里叶变换是()。
- A. X(ω) * H(ω)- B. X(ω) / H(ω)- C. 1 / (X(ω) * H(ω))- D. H(ω) / X(ω)答案:A二、简答题1. 解释什么是单位冲激函数,并说明它在信号与系统分析中的作用。
答案:单位冲激函数是一种理想化的信号,其在t=0时的值为1,其他时间的值为0。
数学上通常表示为δ(t)。
在信号与系统分析中,单位冲激函数是系统冲激响应分析的基础,它允许我们通过将输入信号分解为单位冲激函数的叠加来分析系统的响应。
单位冲激函数的傅里叶变换是常数1,这使得它在频域分析中也非常重要。
2. 描述连续时间信号的傅里叶变换及其物理意义。
答案:连续时间信号的傅里叶变换是一种数学变换,它将时域信号转换为频域信号。
对于一个连续时间信号x(t),其傅里叶变换X(ω)可以表示为:\[ X(ω) = \int_{-\infty}^{\infty} x(t) e^{-jωt} dt \] 其中,e^(-jωt)是指数形式的复指数函数。
物理意义上,傅里叶变换揭示了信号的频率成分,即信号由哪些频率的正弦波和余弦波组成。
通过分析X(ω),我们可以了解信号的频率特性,这对于信号处理和系统分析至关重要。
信号和系统试题及答案
信号和系统试题及答案一、选择题(每题4分,共20分)1. 信号的频谱分析中,傅里叶变换的物理意义是什么?A. 信号的时域表示B. 信号的频域表示C. 信号的相位信息D. 信号的幅度信息答案:B2. 在线性时不变系统中,系统的输出与输入的关系是什么?A. 线性关系B. 非线性关系C. 时变关系D. 随机关系答案:A3. 下列哪个函数不是周期函数?A. sin(t)B. cos(2t)C. e^(-t)D. cos(2πt)答案:C4. 系统稳定性的判定可以通过什么方法?A. 奈奎斯特准则B. 伯德图C. 相位裕度D. 所有以上答案:D5. 系统函数H(s)的零点和极点分别代表什么?A. 系统输入和输出B. 系统稳定性和不稳定性C. 系统增益和衰减D. 系统频率响应答案:B二、填空题(每题4分,共20分)1. 连续时间信号的傅里叶变换定义为:X(jω) = ____________。
答案:∫x(t)e^(-jωt)dt2. 如果一个系统的冲激响应h(t)是因果的,则系统的零状态响应y(t)与输入x(t)的关系为:y(t) = ____________。
答案:∫h(t-τ)x(τ)dτ3. 一个线性时不变系统的特性可以用其系统函数H(s)来描述,其中s 是复频域变量,代表的是 ____________。
答案:拉普拉斯变换4. 如果一个系统的频率响应H(jω)在ω=ω0处有极点,则在时域中对应的响应h(t)将具有 ____________。
答案:振荡特性5. 系统的因果性意味着系统的输出不会在输入之前出现,这可以用系统的冲激响应h(t)满足的条件来表示:h(t) = ____________。
答案:0,t < 0三、简答题(每题10分,共30分)1. 请简述傅里叶级数与傅里叶变换的区别。
答案:傅里叶级数适用于周期信号,是将周期信号分解为正弦和余弦函数的和,而傅里叶变换适用于非周期信号,是将信号分解为复指数函数的积分。
信号与系统实验及参考答案
信号与系统实验及参考答案1、信号的产⽣(sin,square,sinc,exp ):利⽤matlab 函数产⽣下列信号波形:正弦波,周期⽅波,Sinc 函数,指数函数。
2、信号的运算:(1)已知x (t)=sin(t )/t ,画出x (t +3)、x (2t +3)和x (-2t +3)的波形;(2)卷积运算)],2()()[2cos()(),(5.1)(5.1)(2321??=?+=?t u t u t t x t u e t u e t x t t 其卷积积分为)(*)()(211t x t x t y =;],2[)2(]1[)1(][],1[)3/2(][2143+?=??=?+n u n u n x n u n x n n n 其卷积和为][*][][432n x n x n y =;图⽰出所有函数及卷积积分/和的波形。
3、信号的分解:将⼀个周期性连续⽅波信号分解为傅⾥叶级数(1)将⽅波分解为多次谐波之和(1,3,5…19次)。
画成如图3-1所⽰的形式。
(2)⽐较最⾼谐波次数为6次、12次和24次时的⽅波波形,如图3-2所⽰。
图3-1 图3-2电⽓信息学院2009春“信号与系统”实验1参考答案1、(图)y=sin(2*t) y=square(4*pi*t) y=sinc(t) y=exp(-t)2、(1)(参考.m⽂件及图)syms t;x=sym('sin(t)/t'); %定义符号函数x(t)=sin(t)/tx1=subs(x,t,t+3); %对x进⾏时移x2=subs(x1,t,2*t); %对x1进⾏尺度变换x3=subs(x2,t,-t); %对x2进⾏反转subplot(2,2,1);ezplot(x,[-8,8]);grid on; %ezplot是符号函数绘图命令subplot(2,2,2);ezplot(x1,[-8,8]);grid on;subplot(2,2,3);ezplot(x2,[-8,8]);grid on;subplot(2,2,4);ezplot(x3,[-8,8]);grid on;(注:也可⽤⼀条指令:subs(x,t,-2*t+3)实现到x(-2t+3)的变换)x(t) x(t+3)x(2t+3) x(-2t+3)2、(2)(参考.m ⽂件及图)cleart=linspace(-10,10,1001);x1=1.5*exp(-2*t).*stepfun(t,0);x2=cos(2*t).*(stepfun(t,0)-stepfun(t,2));x12=1.5*exp(3*t).*(stepfun(t,-10)-stepfun(t,0.0));x6=(20/1001)*conv2(x1,x2,'same');x7=(20/1001)*conv2(x2,x12,'same');subplot 231;plot(t,x1+x12);axis([-5 5 -1.5 1.5]);grid on;xlabel('{\itx}_1({\itt})')subplot 232;plot(t,x2,'k');axis([-5 5 -1.5 1.5]);grid on;xlabel('{\itx}_2({\itt})')subplot 233;plot(t,x6+x7,'r');axis([-5 5 -1.5 1.5]);grid on;xlabel('{\ity}_1({\itt})')nmin=-20;nmax=20;nleng=nmax-nmin+1;n=nmin:nmax;x3=(-2/3).^n.*stepfun(n,1);x4=(-1).^(n+1).*stepfun(n,-1)-(-2).^(n-2).*stepfun(n,2);y2=conv2(x3,x4,'same');subplot 234;stem(n,x3,'.');axis([-4 6 -1 1]);grid on;xlabel('{\itx}_3[{\itn}]')subplot 235;stem(n,x4,'.');axis([-4 6 -20 10]);grid on;xlabel('{\itx}_4[{\itn}]')subplot 236;stem(n,y2,'.');axis([-4 6 -10 7]);grid on;xlabel('{\ity}_2[{\itn}]')][3n x ][4n x ][2n y )(1t x )(2t x )(1t y3、(1) ⽅波分解为多次谐波之和clearclose allt=0:0.01:2*pi;y=zeros(10,max(size(t)));x=zeros(size(t));for k=1:2:19 x=x+sin(k*t)/k;y((k+1)/2,:)=x;endsubplot(211),plot(t,y(1:9,:)),grid on;line([0,pi+0.5],[pi/4,pi]); text(pi+0.5,pi/4,'pi/4'); axis([0,2*pi,-1,1])halft=ceil(length(t)/2);subplot(212),mesh(t(1:halft),[1:10],y(:,1:halft))3、(2)⽅波的傅⾥叶级数,最⾼谐波次数为6, 12和34的波形⽐较tau_T=3/4; % 占空⽐3/4n_max=[6 12 34]; % 最⾼谐波次数:6,12,34 N=length(n_max); % 计算N次t=-1.1:.002:1.1;omega_0=2*pi; % 基波频率for k=1:Nn=[];n=[-n_max(k):n_max(k)];L_n=length(n);F_n=zeros(1,L_n);for i=1:L_n % 计算傅⾥叶复系数Fn F_n(i)=tau_T*sinc(tau_T*n(i))*exp(-j*tau_T*n(i)*pi);endF=F_n*exp(j*omega_0*n'*t); % 计算前⼏项的部分和subplot(N,1,k),plot(t,real(F),'linewidth',2); % 在N幅图中的第k⼦图画实部波形 axis([-1.1 1.1 -0.5 1.5]);line([-1.1 1.1],[0 0],'color','r'); % 画直线,表⽰横轴,线为红⾊ line([0 0],[-0.5 1.5],'color','r'); % 画直线,表⽰纵轴,线为红⾊bt=strcat('最⾼谐波次数=',num2str(n_max(k))); % 字符串连接title(bt); % 在N幅图中的第k⼦图上写标题end。
信号与系统实验答案
实验三1,. 利用DFT 近似分析连续信号x(t)=e -2t u(t)的幅度谱并与理论值比较,将理论频谱曲线和实际计算频谱曲线绘制在一个坐标系中。
(要求根据实际幅度频谱函数|X(j ω)|选择合适的抽样频率,根据时域波形选择合适的窗长度,根据序列点数选择合适的DFT 点数。
同时,减小抽样频率,观察最终理论值与计算值间的误差变化。
)fsam=50;Tp=6;N=512;T=1/fsam; t=0:T:Tp; x=exp(-2*t); X=T*fft(x,N); plot(t,x);xlabel('t');title('时域波形'); w=(-N/2:N/2-1)*(2*pi/N)*fsam; y=1./(j*w+2);figure; plot(w,abs(fftshift(X)),w,abs(y),'r-.'); title('幅度谱');xlabel('w'); legend('计算值','理论值');2.近似分析门函数信号2()g t 的幅度谱,并与理论值比较,将理论频谱曲线和实际计算频谱曲线绘制在一个坐标系中,其中分别选其最高频带上限m ω为π、4π、16π时三种情况,比较结果并简单解释其区别及原因。
(根据门函数的理论频谱表达式sin()()2()22Sa Sa ωτωτωω==,当n ωπ=±时值为0,并随自变量绝对值的增大呈递减趋势)fsam=16;N=512;T=1/fsam; t=-2:T:2;12345600.20.40.60.81t时域波形-200-100010020000.20.40.60.8幅度谱wx=[(t>=-1)&(t<=1)];X=T*fft(x,N);%消除1/T 因子的影响 plot(t,x);xlabel('t');title('时域波形'); w=(-N/2:N/2-1)*(2*pi/N)*fsam; y=2*sin(w)./w;%理论频谱值figure; plot(w,abs(fftshift(X)),w,abs(y),'r-.'); title('幅度谱');xlabel('w'); legend('计算值','理论值');-2-1.5-1-0.500.51 1.5200.20.40.60.81t时域波形-60-40-20020406000.511.522.5幅度谱w实验四。
信号与系统试题库史上最全内含答案)
信号与系统考试方式:闭卷 考试题型:1、简答题(5个小题),占30分;计算题(7个大题),占70分。
一、简答题:1.dtt df t f x e t y t )()()0()(+=-其中x(0)是初始状态,为全响应,为激励,)()(t y t f 试回答该系统是否是线性的?[答案:非线性]2.)()(sin )('t f t ty t y =+试判断该微分方程表示的系统是线性的还是非线性的,是时变的还是非时变的?[答案:线性时变的]3.已知有限频带信号)(t f 的最高频率为100Hz ,若对)3(*)2(t f t f 进行时域取样,求最小取样频率s f =?[答案:400s f Hz =]4.简述无失真传输的理想条件。
[答案:系统的幅频特性为一常数,而相频特性为通过原点的直线]5.求[]⎰∞∞--+dt t t e t )()('2δδ的值。
[答案:3]6.已知)()(ωj F t f ↔,求信号)52(-t f 的傅立叶变换。
[答案:521(25)()22j f t e F j ωω--↔]7.已知)(t f 的波形图如图所示,画出)2()2(t t f --ε的波形。
[答案: ]8.已知线性时不变系统,当输入)()()(3t e e t x t t ε--+=时,其零状态响应为)()22()(4t e e t y t t ε--+=,求系统的频率响应。
[答案:())4)(2(52)3(++++ωωωωj j j j ]9.求象函数2)1(32)(++=s s s F ,的初值)0(+f 和终值)(∞f 。
[答案:)0(+f =2,0)(=∞f ]10.若LTI 离散系统的阶跃响应为)(k g ,求其单位序列响应。
其中:)()21()(k k g k ε=。
[答案:1111()()(1)()()()(1)()()(1)222k k k h k g k g k k k k k εεδε-=--=--=--]11.已知()1 1 , 0,1,20 , k f k else ==⎧⎨⎩ ,()2 1 , 0,1,2,30 , k k f k else -==⎧⎨⎩设()()()12f k f k f k =*,求()3?f =。
(完整word版)信号与系统matlab实验及答案
产生离散衰减正弦序列()π0.8sin 4n x n n ⎛⎫= ⎪⎝⎭, 010n ≤≤,并画出其波形图。
n=0:10;x=sin (pi/4*n )。
*0。
8。
^n ;stem(n,x);xlabel( 'n’ );ylabel( 'x (n)’ );用MATLAB 生成信号()0sinc at t -, a 和0t 都是实数,410t -<<,画波形图。
观察并分析a 和0t 的变化对波形的影响。
t=linspace (—4,7); a=1; t0=2;y=sinc(a*t-t0);plot(t,y);t=linspace(—4,7);a=2;t0=2;y=sinc(a*t-t0); plot(t,y);t=linspace(-4,7);t0=2;y=sinc (a *t —t0); plot(t,y );三组对比可得a 越大最大值越小,t0越大图像对称轴越往右移某频率为f 的正弦波可表示为()()cos 2πa x t ft =,对其进行等间隔抽样,得到的离散样值序列可表示为()()a t nT x n x t ==,其中T 称为抽样间隔,代表相邻样值间的时间间隔,1s f T=表示抽样频率,即单位时间内抽取样值的个数。
抽样频率取40 Hz s f =,信号频率f 分别取5Hz , 10Hz, 20Hz 和30Hz 。
请在同一张图中同时画出连续信号()a x t t 和序列()x n nT 的波形图,并观察和对比分析样值序列的变化。
可能用到的函数为plot , stem , hold on 。
fs = 40;t = 0 : 1/fs : 1 ;% ƵÂÊ·Ö±ðΪ5Hz,10Hz ,20Hz ,30Hzxa = cos(2*pi*f1*t) ;subplot(1, 2, 1) ;plot(t, xa) ;axis([0, max(t), min(xa), max(xa)]) ;xlabel('t(s)’) ;ylabel('Xa(t)’) ;line([0, max(t)],[0,0]) ; subplot(1, 2, 2) ;stem(t, xa, '。
信号与系统实验网上答案
信号与系统实验网上答案第一篇:信号与系统实验网上答案目的:通过MATLAB编程实现对时域抽样定理的验证,加深抽样定理的理解。
同时训练应用计算机分析问题的能力。
任务:连续信号f(t)=cos(8*pi*t)+2*sin(40*pi*t)+cos(24*pi*t),经过理想抽样后得到抽样信号fs(t),通过理想低通滤波器后重构信号f(t)。
方法:1、确定f(t)的最高频率fm。
对于无限带宽信号,确定最高频率fm的方法:设其频谱的模降到10-5左右时的频率为fm。
2、确定Nyquist抽样间隔TN。
选定两个抽样时间:TSTN。
3、MATLAB的理想抽样为n=-200:200;nTs=n*Ts;或 nTs=-0.04:Ts:0.044、抽样信号通过理想低通滤波器的响应理想低通滤波器的冲激响应为系统响应为由于所以MATLAB计算为ft=fs*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t))));要求(画出6幅图):当TS1、在一幅图中画原连续信号f(t)和抽样信号fS(t)。
f(t)是包络线,fS(t)是离散信号。
2、画出重构的信号y(t)。
3、画出误差图,即error=abs(f(t)-y(t))的波形。
当TS>TN时同样可画出3幅图。
%a wm=40*pi;wc=1.2*wm;%理想低通截止频率Ts=[0.02 0.03];N=length(Ts);for k=1:N;n=-100:100;nTs=n*Ts(k);fs=(cos(8*pi*nTs)+2*sin(40*pi*nTs)+cos(24*pi*nTs)).*(u(nTs+ pi)-u(nTs-pi));t=-0.25:0.001:0.25;ft=fs*Ts(k)*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t))));t1=-0.25:0.001:0.25;f1=(cos(8*pi*t1)+2*sin(40*pi*t1)+cos(24*pi*t1)).*(u(t1+0.25) -u(t1-0.25));%在一副图中画原连续信号f(t)和样信号f_s(t)。
信号与系统实验答案
实验十二:连续时间系统的频域分析例题:1、使用MATLAB 函数实现下列信号的傅里叶变换,并画出变换后的曲线 求出e -|2t|的傅里叶变换,并画出变换后的曲线clear all; syms t f;f=fourier(exp((-2)*abs(t))); ezplot(f);-6-4-224600.10.20.30.40.50.60.70.80.91w4/(4+w 2)1、 使用MATLAB 函数实现下列信号的傅里叶逆变换 已知F (jw )=1/1+w 2,求信号的逆傅里叶变换syms t w;ifourier(1/(1+(w^2)),t);ans1/2*exp(-t)*heaviside(t)+1/2*exp(t)*heaviside(-t)3、使用MATLAB函数实现傅里叶的时移特性画出f(t)=1/2e-2t u(t)和f(t-1)的频谱图,观察信号时移对频谱的影响clear all;r=0.02;t=-5:r:5;N=200;w=2*pi;k=-N:N;w=k*w/N;f1=1/2*exp(-2*t).*stepfun(t,0);F=r*f1*exp(-j*t'*w);F1=abs(F);P1=angle(F);subplot(3,1,1);plot(t,f1);grid on;ylabel('f(t)');title('f(t)'); subplot(3,1,2); plot(w,F1); xlabel('w');grid on;ylabel('F(jw)'); subplot(3,1,3); plot(w,P1*180/pi); grid;xlabel('w'); ylabel('相位度');。
-5-4-3-2-10123450.5tf (t )f(t)-8-6-4-20246800.20.4wF (j w )-8-6-4-202468-100100w相位(度)4、 使用MATLAB 函数实现下列信号的频移变换已知f (t )为门函数,求f 1(t )= f (t )e -j5t 以及f 2(t )e j5t 的频谱图clear all; R=0.02; t=-2:R:2;f=stepfun(t,-1)-stepfun(t,1); f1=f.*exp(-j*5*t); f2=f.*exp(j*5*t); N=500; W1=5*pi; k=-N:N; W=k*W1/N;。
信号与系统实验答案
信号与系统实验答案验教(实验报告)班级:姓名:程实目录实验一:连续时间信号与系统的时域分析-------------------------------------------------4一、实验目的及要求---------------------------------------------------------------------------4二、实验原理-----------------------------------------------------------------------------------41、信号的时域表示方法------------------------------------------------------------------52、用MATLAB仿真连续时间信号和离散时间信号----------------------------------53、LTI系统的时域描述-----------------------------------------------------------------10三、实验步骤及内容--------------------------------------------------------------------------14四、实验报告要求-----------------------------------------------------------------------------26实验二:连续时间信号的频域分析---------------------------------------------------------27一、实验目的及要求--------------------------------------------------------------------------27二、实验原理----------------------------------------------------------------------------------271、连续时间周期信号的傅里叶级数CTFS---------------------------------------------272、连续时间信号的傅里叶变换CTFT--------------------------------------------------283、离散时间信号的傅里叶变换DTFT-------------------------------------------------294、连续时间周期信号的傅里叶级数CTFS的MATLAB实现------------------------295、用MATLAB实现CTFT及其逆变换的计算---------------------------------------33三、实验步骤及内容----------------------------------------------------------------------35四、实验报告要求-------------------------------------------------------------------------49实验三:连续时间LTI系统的频域分析---------------------------------------------------50一、实验目的及要求--------------------------------------------------------------------------50二、实验原理----------------------------------------------------------------------------------501、连续时间LTI系统的频率响应-------------------------------------------------------502、LTI系统的群延时---------------------------------------------------------------------513、用MATLAB计算系统的频率响应--------------------------------------------------52三、实验步骤及内容----------------------------------------------------------------------53四、实验报告要求-------------------------------------------------------------------------59实验四:通信系统仿真------------------------------------------------------------------------60一、实验目的及要求--------------------------------------------------------------------------60二、实验原理----------------------------------------------------------------------------------601、信号的抽样及抽样定理---------------------------------------------------------------602、信号抽样过程中的频谱混叠----------------------------------------------------------6323、信号重建-------------------------------------------------------------------------------644、调制与解调----------------------------------------------------------------------------------665、通信系统中的调制与解调仿真---------------------------------------------------------68三、实验步骤及内容------------------------------------------------------------------------68四、实验报告要求---------------------------------------------------------------------------78实验五:连续时间LTI系统的复频域分析----------------------------------------------79一、实验目的及要求------------------------------------------------------------------------79二、实验原理--------------------------------------------------------------------------------791、连续时间LTI系统的复频域描述--------------------------------------------------792、系统函数的零极点分布图-----------------------------------------------------------------813、拉普拉斯变换与傅里叶变换之间的关系-----------------------------------------------814、系统函数的零极点分布与系统稳定性和因果性之间的关系------------------------825、系统函数的零极点分布与系统的滤波特性-------------------------------------------836、拉普拉斯逆变换的计算-------------------------------------------------------------84三、实验步骤及内容------------------------------------------------------------------------86四、实验报告要求---------------------------------------------------------------------------913实验一信号与系统的时域分析一、实验目的1、熟悉和掌握常用的用于信号与系统时域仿真分析的MATLAB函数;2、掌握连续时间和离散时间信号的MATLAB产生,掌握用周期延拓的方法将一个非周期信号进行周期信号延拓形成一个周期信号的MATLAB编程;3、牢固掌握系统的单位冲激响应的概念,掌握LTI系统的卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质;4、掌握利用MATLAB计算卷积的编程方法,并利用所编写的MATLAB程序验证卷积的常用基本性质;掌握MATLAB描述LTI系统的常用方法及有关函数,并学会利用MATLAB求解LTI系统响应,绘制相应曲线。
信号与系统实验指导全部实验答案
信号与系统实验指导全部实验答案实验一连续时间信号的MATLAB 表示实验目的 1.掌握MATLAB 语言的基本操作,学习基本的编程功能; 2.掌握MATLAB 产生常用连续时间信号的编程方法;3.观察并熟悉常用连续时间信号的波形和特性。
实验原理:1. 连续信号MA TLAB 实现原理从严格意义上讲,MATLAB 数值计算的方法并不能处理连续时间信号。
然而,可用连续信号在等时间间隔点的取样值来近似表示连续信号,即当取样时间间隔足够小时,这些离散样值能够被MATLAB 处理,并且能较好地近似表示连续信号。
MATLAB 提供了大量生成基本信号的函数。
比如常用的指数信号、正余弦信号等都是MATLAB 的内部函数。
为了表示连续时间信号,需定义某一时间或自变量的范围和取样时间间隔,然后调用该函数计算这些点的函数值,最后画出其波形图。
实验内容:正弦信号抽样信号矩形脉冲信号单位跃阶信号实验编程:(1)t=0:0.01:3;K=2;a=-1.5;w=10; ft=K*exp((a+i*w)*t); A=real(ft); B=imag(ft); C=abs(ft);D=angle(ft);subplot(2,2,1),plot(t,A),grid on;title('实部');subplot(2,2,2),plot(t,B),grid on;title('虚部'); subplot(2,2,3),plot(t,C),grid on;title('取模'); subplot(2,2,4),plot(t,D),grid on;title('相角');实部2211-1-2-1取模相角25100-5(2)t=0:0.001:3;y=square(2*pi*10*t,30);方波信号plot(t,y);axis([0,1,-1,1]); title('方波信号');0.5-0.5-1 00.20.40.60.81(3)t=-2:0.01:2;y=uCT(t+0.5)-uCT(t-0.5); plot(t,y),grid on axis([-2,2,0,1.5]); xlabel('t(s)'),ylabel('y(s)') title('门函数')10.50 -2-1.5-1-0.5门函数y (s )0t(s)0.511.52实验二连续时间LTI 系统的时域分析实验目的1.运用MATLAB 符号求解连续系统的零输入响应和零状态响应; 2.运用MATLAB 数值求解连续系统的零状态响应; 3.运用MATLAB 求解连续系统的冲激响应和阶跃响应;4.运用MATLAB 卷积积分法求解系统的零状态响应。
(完整版)信号与系统练习及答案
信号与系统练习及答案一、单项选择题1.已知信号f (t )的波形如题1图所示,则f (t )的表达式为( )A .tu(t)B .(t-1)u(t-1)C .tu(t-1)D .2(t-1)u(t-1)2.积分式⎰-δ+δ++4422)]dt -(t 2(t))[23(t t 的积分结果是( ) A .14 B .24 C .26 D .283.已知f(t)的波形如题3(a )图所示,则f (5-2t)的波形为( )4.周期矩形脉冲的谱线间隔与( )A .脉冲幅度有关B .脉冲宽度有关C .脉冲周期有关D .周期和脉冲宽度有关 5.若矩形脉冲信号的宽度加宽,则它的频谱带宽( ) A .不变 B .变窄 C .变宽D .与脉冲宽度无关 6.如果两个信号分别通过系统函数为H (j ω)的系统后,得到相同的响应,那么这两个信号()A .一定相同 B .一定不同 C .只能为零 D .可以不同7.f(t)=)(t u e t 的拉氏变换为F (s )=11-s ,且收敛域为( ) A .Re[s]>0B .Re[s]<0C .Re[s]>1D .Re[s]<1 8.函数⎰-∞-δ=2t dx )x ()t (f 的单边拉氏变换F (s )等于( ) A .1 B .s 1 C .e -2s D .s1e -2s 9.单边拉氏变换F (s )=22++-s e )s (的原函数f(t)等于( ) A .e -2t u(t-1) B .e -2(t-1)u(t-1) C .e -2t u(t-2)D .e -2(t-2)u(t-2)答案: BCCCBDCDA二.填空题1.如果一线性时不变系统的单位冲激响应为h(t),则该系统的阶跃响应g(t)为_________。
2.已知x(t)的傅里叶变换为X (j ω),那么x (t-t 0)的傅里叶变换为_________________。
3.如果一线性时不变系统的输入为f(t),零状态响应为y f (t )=2f (t-t 0),则该系统的单位冲激响应h(t)为_________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一个信号实验的题目1实现下列常用信号 (1)(5)u t +;(2)(1)t δ-;(3)cos(3)sin(2)t t +;(4)()[(1)(2)]f t t u t t u t t =⨯---; (5)0.5()4cos(),010t f t e t t π-=⨯= 2连续信号的基本运算与波形变换已知信号22,21()33t t f t ⎧-+-≤≤⎪=⎨⎪⎩,试画出下列各函数对时间t 的波形: (1)()f t -(2)(2)f t -+(3)(2)f t (4)1(1)2d f t dt +(5)(2)t f d ττ-∞-⎰3连续信号的卷积运算实现12()()f t f t *,其中1()f t 、2()f t 从第2个题目中任选3对组合。
4连续系统的时域分析(1) 描述某连续系统的微分方程为()2()()()2()y t y t y t f t f t ''''++=+,求当输入信号为2()2()t f t e u t -=时,该系统的零状态响应()y t 。
(2) 已知描述某连续系统的微分方程为2()()3()()y t y t y t f t '''+-=,试用MATLAB 绘出该系统的冲激响应和阶跃响应的波形。
实验一答案:(1)(5)u t +在MATLAB 软件的输入程序及显示波形如下:(2)(1)t δ-在MATLAB 软件的输入程序及显示波形如下:(3)cos(3)sin(2)t t +在MATLAB 软件的输入程序及显示波形如下:(4)()[(1)(2)]f t t u t t u t t =⨯---在MATLAB 软件的输入程序及显示波形如下:(5)0.5()4cos(),010t f t e t t π-=⨯=在MATLAB 软件的输入程序及显示波形如下:(1)()f t -的输入程序及波形如下:(2)(2)f t -+的输入程序及波形如下:(3)(2)f t 的输入程序及波形如下:(2)系统的冲激响应和阶跃响应如下:(4)1(1)2d f t dt +的输入程序及波形如下:(5)(2)t f d ττ-∞-⎰的输入程序及波形如下:(1)()f t -和(2)(2)f t -+组合的卷积运算如下:(2)(2)f t -+和(3)(2)f t 组合的卷积运算如下:(1)()f t 和(3)(2)f t 组合的卷积运算如下:(1)系统的零状态响应()y t 如下:第二个信号实验题目1(1)用数值法求门函数4()G t 的傅里叶变换,并给出门函数的幅频特性曲线和相频特性曲线。
(2)用符号法给出函数5()2()()3t f t e u t -=的傅里叶变换。
(3)已知系统函数为3421()3s s H s s s ++=++,画出该系统的零极点图。
2(1)用数值法给出函数5(2)2()(2)3t f t e u t --=-幅频特性曲线和相频特性曲线。
(2)对函数5(2)2()(2)3t f t e u t --=-进行采样,采样间隔为0.01。
(3)已知输入信号为()sin(100)f t t =,载波频率为1000Hz ,采样频率为5000 Hz ,试产生输入信号的调幅信号。
3(1)用符号法实现函数4()G t 的傅里叶变换,并给出门函数的幅频特性曲线和相频特性曲线。
(2)已知系统函数为3421()3s s H s s s ++=++,输入信号为()sin(100)f t t =,求该系统的稳态响应。
(3)已知输入信号为()sin(100)f t t =,载波频率为100Hz ,采样频率为400 Hz ,试产生输入信号的调频信号。
4(1)已知系统函数为231()3s s H s s s ++=++,画出该系统的零极点图。
(2)已知函数5()2()()3t f t e u t -=用数值法给出函数(3)f t 的幅频特性曲线和相频特性曲线。
(3)实现系统函数3421()3s s H s s s ++=++的频率响应。
(4)已知输入信号为()cos(100)f t t =,载波频率为100Hz ,采样频率为400 Hz ,试产生输入信号的调相信号。
5(1)用数值法给出函数5(2)2()(2)3t f t e u t -+=+幅频特性曲线和相频特性曲线。
(2)用符号法实现函数22i ω+的傅里叶逆变换。
(3)已知输入信号为()5sin(200)f t t =,载波频率为1000Hz ,采样频率为5000 Hz ,试产生输入信号的调频信号。
实验二答案:(1) 用数值法求门函数4()G t 的傅里叶变换,并给出门函数的幅频特性曲线和相频特性曲线。
t=linspace(-4,4,200); f=0*t;f(t>=-2&t<=2)=1;W=linspace(-4*pi,4*pi,200); F=0*W; for N=1:200 for M=1:200F(N)=F(N)+8/200*f(M).*exp(-j*W(N)*t(M)); end endsubplot(4,4,1); plot(t,f); subplot(4,4,2); plot(W,F); subplot(4,4,3); plot(W,abs(F)); H=freqs(6,9,W); subplot(4,4,4); plot(W,angle(F))(2) 用符号法给出函数5()2()()3t f t e u t -=的傅里叶变换。
syms t f ;f=sym('(2/3)*exp(-5*t)*heaviside(t)'); F=fourier(f); pretty(F)(3) 已知系统函数为3421()3s s H s s s ++=++,画出该系统的零极点图。
num=[0 1 0 1 1]; den=[1 0 1 0 3]; G=tf(num,den); subplot(2,2,1); pzmap(G);幅频曲线相频曲线时间(s)幅值调幅信号1计算序列)(2)(1n u n f n =与序列)5()()(2--=n u n u n f 的卷积和;2已知离散系统的差分方程为()5(1)6(2)()y n y n y n f n --+-=,求系统的频率响应,若()2()n f n u n =,求系统的零状态响应。
3利用SIMULINK 画出(2)的系统框图。
实验三答案:1. 计算序列)(2)(1n u n f n =与序列)5()()(2--=n u n u n f 的卷积和;n=0:1:10; x=2.^n stem(n,x) n=0:1:4 x1=ones(1,5) stem(n1,x1) y=conv(x,x1) n2=0:1:14 stem(n2,y)2. 已知离散系统的差分方程为()5(1)6(2)()y n y n y n f n --+-=,求系统的频率响应,若()2()n f n u n =,求系统的零状态响应。
b=[1];a=[1,-5,6];w=linspace(0,50,200); freqs(b,a,w)n=[0:10]; f=2.^n; a=[1,-5,6]; b=[1]; y=[0];xic=filtic(b,a,y); y1=filter(b,a,f,xic)1求()cos()()f n an u n =的Z 变换和2()()azF z z a =-的Z 反变换。
2已知某离散系统的系统函数为23221()0.50.0050.3z z H z z z z ++=--+,试用MATLAB 求出该系统的零极点,并画出零极点图,求系统的单位冲激响应和幅频响应,并判断系统是否稳定。
3 一系统的微分方程为()5()10()()y t y t y t f t '''++=,试利用MA TLAB 求其系统的状态方程。
4 已知某连续时间系统的状态方程和输出方程为.111.222()()()230101()10()()x t x t f t x t f t x t ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥=⋅+⋅⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦111222()()()1110()01()10()y t x t f t y t x t f t ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=⋅+⋅⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦试用M ATLAB 计算其系统函数矩阵()H s 。
实验四答案:求()cos()()f n an u n =的Z 变换和2()()azF z z a =-的Z 反变换。
1. syms a nf=cos(a*n);F=ztrans(f); pretty(F)syms k zFz=a*z/(z-a)^2; fk=iztrans(Fz,k); pretty(fk);2. 已知某离散系统的系统函数为23221()0.50.0050.3z z H z z z z ++=--+,试用MATLAB 求出该系统的零极点,并画出零极点图,求系统的单位冲激响应和幅频响应,并判断系统是否稳定。
b=[0,1,2,1]a=[1,-0.5,-0.005,0.3] [R,P,K]=tf2zp(b,a) figure(1) zplane(b,a)legend('零点','极点'); grid on ; num=[0 1 2 1]den=[1 -0.5 -0.005 0.3] h=impz(num,den) figure(2) stem(h)[H,w]=freqz(num,den) figure(3) plot(abs(H))3. 一系统的微分方程为()5()10()()y t y t y t f t '''++=,试利用MATLAB 求其系统的状态方程。
a=[1]; a = 1b=[1 5 10 ]; b = 1 5 10[A B C D]=tf2ss(a,b); A = -5 -10 B = 1 1 0 0C = 0 1D = 04. 已知某连续时间系统的状态方程和输出方程为.111.222()()()230101()10()()x t x t f t x t f t x t ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥=⋅+⋅⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦111222()()()1110()01()10()y t x t f t y t x t f t ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=⋅+⋅⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦试用MATLAB 计算其系统函数矩阵()H s 。
A=[2 3; 0 -1]; num1 = 1 0 -1 B=[0 1;1 0]; 1 -2 0 C=[1 1;0 -1]; den1 = 1 -1 -2 D=[1 0;1 0]; num2 = 0 1 1 [num1,den1]=ss2tf(A,B,C,D,1) 0 0 0 [num2,den2]=ss2tf(A,B,C,D,2) den2 = 1 -1 -2。