等差数列等比数列基础练习题
高中数学等差数列,等比数列基础题
2017年04月08日高中数学一.选择题(共21小题)1.在等差数列{a n},若a3=16,a9=80,则a6等于()A.13 B.15 C.17 D.482.已知等差数列{a n}满足a1=1,a n+2﹣a n=6,则a11等于()A.31 B.32 C.61 D.623.在等差数列{a n}中,已知a3+a8=6,则3a2+a16的值为()A.24 B.18 C.16 D.124.已知正项等差数列{a n}中,a1+a2+a3=15,若a1+2,a2+5,a3+13成等比数列,则a10=()A.21 B.22 C.23 D.245.在等差数列{a n}中,若a3=9,a6=15,则a12等于()A.3 B.12 C.27 D.366.已知等差数量{a n}前5项和为35,a5=11,则a4=()A.9 B.10 C.12 D.137.若公差为2的等差数列{a n}的前9项和为81,则a9=()A.1 B.9 C.17 D.198.已知数列{a n}是等差数列,a3+a13=20,a2=﹣2,则a15=()A.20 B.24 C.28 D.349.在等差数列{a n}中,2(a1+a3+a5)+3(a8+a10)=36,则a6=()A.8 B.6 C.4 D.310.数列{a n}满足a1=0,﹣=1(n≥2,n∈N*),则a2017=()A.B.C.D.11.若数列{a n}中,a n=43﹣3n,则S n最大值n=()A.13 B.14 C.15 D.14或1512.等差数列{a n}的前n项和为S n,且S5=6,a2=1,则公差d等于()A.B.C.D.213.在等差数列{a n}中,a9=a12+3,则数列{a n}的前11项和S11=()A.24 B.48 C.66 D.13214.一已知等差数列{a n}中,其前n项和为S n,若a3+a4+a5=42,则S7=()A.98 B.49 C.14 D.14715.已知等差数列{a n}满足:a2=2,S n﹣S n﹣3=54(n>3),S n=100,则n=()A.7 B.8 C.9 D.1016.等差数列{a n}中,若a3=6,a6=3,则a9等于()A.﹣2 B.﹣1 C.0 D.117.在等差数列{a n}中,2a7=a9+7,则数列{a n}的前9项和S9=()A.21 B.35 C.63 D.12618.在等差数列{a n}中,若a3+a11=6,则其前13项的和S13的值是()A.32 B.39 C.46 D.7819.等差数列{a n}中,a2+a3+a4=3,S n为等差数列{a n}的前n项和,则S5=()A.3 B.4 C.5 D.620.已知等差数列{a n}的前n项和为S n,若S10=55,则a3+a8=()A.5 B.C.10 D.1121.已知{a n}是等差数列,且公差d≠0,S n为其前n项和,且S5=S6,则S11=()A.0 B.1 C.6 D.11二.解答题(共9小题)27.设等差数列{a n}的公差为d,前n项和为S n,已知a5=9,S7=49.(1)求数列{a n}的通项公式;(2)令b n=a n•2n,求数列{b n}的前n项和.28.已知在等差数列{a n}中,a2=4,a5+a6=15.(1)求数列{a n}的通项公式;(2)设b n=2+n,求b1+b2+…+b10.2017年04月08日597459648的高中数学组卷参考答案与试题解析一.选择题(共21小题)1.(2017•红桥区模拟)在等差数列{a n},若a3=16,a9=80,则a6等于()A.13 B.15 C.17 D.48【解答】解:在等差数列{a n}中,由a3=16,a9=80,得2a6=a3+a9=16+80=96,∴a6=48.故选:D.2.(2017•许昌二模)已知等差数列{a n}满足a1=1,a n+2﹣a n=6,则a11等于()A.31 B.32 C.61 D.62【解答】解:∵等差数列{a n}满足a1=1,a n+2﹣a n=6,∴a3=6+1=7,a5=6+7=13,a7=6+13=19,a9=6+19=25,a11=6+25=31.故选:A.3.(2017•抚州模拟)在等差数列{a n}中,已知a3+a8=6,则3a2+a16的值为()A.24 B.18 C.16 D.12【解答】解:∵a3+a8=6,∴3a2+a16=2a2+a2+a16=2a2+2a9=2(a3+a8)=12.故选:D.4.(2017•九江二模)已知正项等差数列{a n}中,a1+a2+a3=15,若a1+2,a2+5,a3+13成等比数列,则a10=()A.21 B.22 C.23 D.24【解答】解:设公差为d,a3=+2d由a1+a2+a3=15,即3a2=15,∴a2=5,∴a1=5﹣d,a3=5+d又a1+2,a2+5,a3+13成等比数列,可得:(a2+5)2=(a1+2)(a3+13)∴100=(7﹣d)(18+d)解得:d=2或d=﹣13∵等差数列{a n}是正项数列∴d=﹣13(舍去).∴a1=3.a n=a1+(n﹣1)d.∴a10=21故选A5.(2017•西青区模拟)在等差数列{a n}中,若a3=9,a6=15,则a12等于()A.3 B.12 C.27 D.36【解答】解:在等差数列{a n}中,a3,a6,a9,a12构成等差数列,设新数列构成为d,则d=a6﹣a3=15﹣9=6,∴a12=a3+3d=9+3×6=27.故选:C.6.(2017•马鞍山一模)已知等差数量{a n}前5项和为35,a5=11,则a4=()A.9 B.10 C.12 D.13【解答】解:设等差数列的首项为a1,∵a5=11,S5=35,∴,解得:a1=3.∴d=.∴a4=a1+3d=3+3×2=9.故选:A.7.(2017•福建模拟)若公差为2的等差数列{a n}的前9项和为81,则a9=()A.1 B.9 C.17 D.19【解答】解:∵公差为2的等差数列{a n}的前9项和为81,∴,解得a1=1,∴a9=1+(9﹣1)×2=17.故选:C.8.(2017•安徽模拟)已知数列{a n}是等差数列,a3+a13=20,a2=﹣2,则a15=()A.20 B.24 C.28 D.34【解答】解:∵a3+a13=2a8=20,∴a8=10,又a2=﹣2,∴d=2,得a15=a2+13d=24.故选:B.9.(2017•太原一模)在等差数列{a n}中,2(a1+a3+a5)+3(a8+a10)=36,则a6=()A.8 B.6 C.4 D.3【解答】解:∵等差数列{a n}中,2(a1+a3+a5)+3(a8+a10)=36,∴2(a1+a1+2d+a1+4d)+3(a1+7d+a1+10d)=36+3(a1+7d+a1+9d)=36,∴12a1+60d=12(a1+5d)=36,∴a6=a1+5d=3.故选:D.10.(2017•贵阳一模)数列{a n}满足a1=0,﹣=1(n≥2,n∈N*),则a2017=()A.B.C.D.【解答】解:∵数列{a n}满足a1=0,﹣=1(n≥2,n∈N*),∴=1,∴{}是首项为1,公差为1的等差数列,∴=1+(n﹣1)=n,∴,解得a2017=.故选:C.11.(2017•宝清县校级一模)若数列{a n}中,a n=43﹣3n,则S n最大值n=()A.13 B.14 C.15 D.14或15【解答】解:∵数列{a n}中,a n=43﹣3n,∴a1=40,∴S n=是关于n的二次函数,函数图象是开口向下的抛物线上的一些横坐标为正整数的点,对称轴为n=,又n为正整数,与最接近的一个正整数为14,故S n取得最大值时,n=14.故选B.12.(2017•南关区校级模拟)等差数列{a n}的前n项和为S n,且S5=6,a2=1,则公差d等于()A.B.C.D.2【解答】解:∵等差数列{a n}的前n项和为S n,且S5=6,a2=1,∴,解得,d=.故选:A.13.(2017•衡阳一模)在等差数列{a n}中,a9=a12+3,则数列{a n}的前11项和S11=()A.24 B.48 C.66 D.132【解答】解:在等差数列{a n}中,a9=a12+3,∴,解a1+5d=6,∴数列{a n}的前11项和S11=(a1+a11)=11(a1+5d)=11×6=66.故选:C.14.(2017•葫芦岛一模)一已知等差数列{a n}中,其前n项和为S n,若a3+a4+a5=42,则S7=()A.98 B.49 C.14 D.147【解答】解:等差数列{a n}中,因为a3+a4+a5=42,所以3a4=42,解得a4=14,所以S7==7a4=7×14=98,故选A.15.(2017•南关区校级模拟)已知等差数列{a n}满足:a2=2,S n﹣S n﹣3=54(n>3),S n=100,则n=()A.7 B.8 C.9 D.10【解答】解:∵等差数列{a n}满足:a2=2,S n﹣S n﹣3=54(n>3),S n=100,∴a n+a n﹣1+a n﹣2=54(n>3),又数列{a n}为等差数列,∴3a n=54(n≥2),﹣1=18.(n≥2),∴a n﹣1又a2=2,S n=100,∴S n===100,∴n=10.故选:D.16.(2017•河北区模拟)等差数列{a n}中,若a3=6,a6=3,则a9等于()A.﹣2 B.﹣1 C.0 D.1【解答】解:等差数列{a n}中,∵a3=6,a6=3,∴,解得a1=8,d=﹣1,∴a9=a1+8d=8﹣8=0.故选:C.17.(2017•永州二模)在等差数列{a n}中,2a7=a9+7,则数列{a n}的前9项和S9=()A.21 B.35 C.63 D.126【解答】解:∵在等差数列{a n}中,2a7=a9+7,∴2(a1+6d)=a1+8d+7,∴a1+4d=a5=7,∴数列{a n}的前9项和S9==63.故选:C.18.(2017•抚顺一模)在等差数列{a n}中,若a3+a11=6,则其前13项的和S13的值是()A.32 B.39 C.46 D.78【解答】解:∵等差数列{a n}中,a3+a11=6,∴其前13项的和:S13==.故选:B.19.(2017•大庆二模)等差数列{a n}中,a2+a3+a4=3,S n为等差数列{a n}的前n 项和,则S5=()A.3 B.4 C.5 D.6【解答】解:∵等差数列{a n}中,a2+a3+a4=3,S n为等差数列{a n}的前n项和,∴a2+a3+a4=3a3=3,解得a3=1,∴S5==5a3=5.故选:C.20.(2017•广安模拟)已知等差数列{a n}的前n项和为S n,若S10=55,则a3+a8=()A.5 B.C.10 D.11【解答】解:∵等差数列{a n}的前n项和为S n,S10=55,∴S10===5(a3+a8)=55,解得a3+a8=11.故选:D.21.(2017•贵阳一模)已知{a n}是等差数列,且公差d≠0,S n为其前n项和,且S5=S6,则S11=()A.0 B.1 C.6 D.11【解答】解:∵{a n}是等差数列,且公差d≠0,S n为其前n项和,且S5=S6,∴a6=S6﹣S5=0,∴S11=(a1+a11)=11a6=0.故选:A.二.解答题(共9小题)22.(2016春•惠安县校级期末)已知数列{a n}是首项为1,且公差不为0的等差数列,而等比数列{b n}的前3项分别是a1,a2,a6.(1)求数列{a n}的通项公式.(2)如果b1+b2+b3+…+b n=5,求正整数n的值.【解答】解:(1)设数列{a n}的公差为d,…(1分)∵a1,a2,a6成等比数列,∴,…(2分)∴(1+d)2=1×(1+5d),由d≠0,解得d=3,…(5分)∴a n=1+(n﹣1)×3=3n﹣2.…(6分)(2)∵等比数列{b n}的前3项分别是a1,a2,a6.∴数列{b n}的首项b1=a1=1,公比为q==4,…(7分)由b1+b2+b3+…+b n=5,得:b1+b2+b3+…+b n==5,解得n=2.…(11分)∴正整数n的值是2.…(12分)23.(2016春•郫县期末)已知数列{a n}是一个等差数列(1)a1=1,a4=7,求通项公式a n及前n项和S n;(2)设S7=14,求a3+a5.【解答】解:(1)设{a n}的公差为d,则,∴;(2)∵,∴a1+a7=4,由等差数列的性质,得a3+a5=a1+a7=4.24.(2016秋•伊宁市校级期末)已知等比数列{a n},a1=2,a4=16(1)求数列{a n}的通项公式.(2)求S10的值.【解答】解:(1)由题意,{a n}是等比数列{a n},设公比为q,∵a1=2,a4=16,即a4=a1•q3=16,解得:q=2,通项公式a n=a1•q n﹣1=2n.(2)根据等比数列的前n项和S n=则S10=.25.(2016秋•桂林期末)设等差数列{a n}的前n项和为S n,且a3=2,S7=21.(1)求数列{a n}的通项公式;(2)设b n=2an,求数列{b n}的前n项和T n.【解答】解:(1)设{a n}的公差为d,则,解得.∴a n=a1+(n﹣1)d=n﹣1.(2)由(1)可得b n=2n﹣1,∴{b n}为以1为首项,以2为公比的等比数列,∴T n==2n﹣1.26.(2016春•扬州期末)已知等差数列{a n}中,a3=8,a6=17.(1)求a1,d;(2)设b n=a n+2n﹣1,求数列{b n}的前n项和S n.【解答】解:(1)由可解得:a1=2,d=3.(2)由(1)可得a n=3n﹣1,所以,所以27.(2016秋•珠海期末)设等差数列{a n}的公差为d,前n项和为S n,已知a5=9,S7=49.(1)求数列{a n}的通项公式;(2)令b n=a n•2n,求数列{b n}的前n项和.【解答】解:(1)在等差数列{a n}中,由S7=7(a1+a7)=49,得:a4=7,又∵a5=9,∴公差d=2,a1=1,∴数列{a n}的通项公式a n=2n﹣1 (n∈N+),(2)b n=a n•2n=(2n﹣1)•2n,令数列{b n}的前n项和为T n,T n=1×21+3×22+5×23+…+(2n﹣3)×2n﹣1+(2n﹣1)•2n…①2 T n=1×22+3×23++…+(2n﹣5)×2n﹣1+(2n﹣3)•2n+(2n﹣1)•2n+1…②﹣T n=2+2(22+23++…+2n﹣1+•2n)﹣(2n﹣1)•2n+1=2+2n+2﹣8﹣+(2n﹣1)•2n+1;∴T n=(2n﹣3)2n+1+6.28.(2016秋•月湖区校级期中)已知在等差数列{a n}中,a2=4,a5+a6=15.(1)求数列{a n}的通项公式;(2)设b n=2+n,求b1+b2+…+b10.【解答】解:(1)∵由题意可知,解得a1=3,d=1,∴a n=n+2;(2)∵,∴.29.(2016秋•延川县校级期中)已知等差数列{a n}的前n项和,(1)求此数列的通项公式;(2)求S n的最小值.【解答】解:(1)∵数列{a n}是等差数列,设其首相为a1,公差为d,等差数列{a n}的前n项和,∴a1=S1=1﹣10=﹣9,a n=S n﹣S n﹣1=(n2﹣10n)﹣[(n﹣1)2﹣10(n﹣1)]=2n﹣11.n=1时,2n﹣11=﹣9=a1,∴a n=2n﹣11.(2)∵等差数列{a n}的前n项和:=(n﹣5)2﹣25,∴当n=5时,S n取最小值S5=﹣25.30.(2016春•仙居县校级期中)设等差数列{a n}的前n项和公式是S n=5n2+3n,求(1)a1,a2,a3;(2){a n}的通项公式.【解答】解:解:(1)由S n=5n2+3n,得a1=S1=8,,=54﹣26=28;(2)当n≥2时,=10n﹣2.验证a1=8适合上式,∴a n=10n﹣2.。
等差等比数列基础练习题
等差等比数列基础练习题1.等差数列8,5,2,…的第20项为-43.2.在等差数列中已知a1=12,a6=27,则d=3.3.在等差数列中已知d=-3,a7=8,则a1=-16.4.(a+b)与(a-b)的等差中项是a。
5.等差数列-10,-6,-2,2,…前11项的和是54.6.正整数前n个数的和是n(n+1)/2.7.数列{an}的前n项和Sn=3n^2-n,则an=6n-1.8.已知数列{an}的通项公式an=3n-50,则当n=17时,Sn 的值最小,S17的最小值是-200.1.求等差数列8,5,2,…的第20项。
2.已知等差数列中a1=12,a6=27,求公差d。
3.已知等差数列中d=-3,a7=8,求首项a1.4.若(a+b)与(a-b)的等差中项为a,求a和b的关系。
5.求等差数列-10,-6,-2,2,…前11项的和。
6.求正整数前n个数的和。
7.已知数列{an}的前n项和Sn=3n^2-n,求通项公式an。
8.已知数列{an}的通项公式an=3n-50,求当n=17时,Sn 的最小值。
月来夜亮精品三、计算题1.求等差数列 $\{a_n\}$ 的未知数:1) 已知 $a_1=1$,$d=-3$,$S_n=-5$,求 $n$ 和 $a_n$。
解:由等差数列前 $n$ 项和公式$S_n=\dfrac{n}{2}(a_1+a_n)$,得到 $a_n=a_1+(n-1)d$,代入已知条件得到:begin{cases}a_1=1\\d=-3\\S_n=-5\end{cases}$$begin{cases}S_n=\dfrac{n}{2}(a_1+a_n)=-5\\a_n=a_1+(n-1)d=-3n+4\end{cases}$$将 $a_n$ 代入 $S_n$ 的公式,解得 $n=3$,再代入$a_n$ 的公式得到 $a_3=-5$。
2) 已知 $a_1=2$,$d=2$,$a_{15}=-10$,求 $a_1$ 和$S_{66}$。
(完整版)等差等比数列求和与差的练习题
(完整版)等差等比数列求和与差的练习题
题目一:等差数列求和
已知等差数列的首项为$a_1$,公差为$d$,求该等差数列的前$n$项和$S_n$。
解答步骤:
1. 根据公式$S_n = \frac{n}{2}(a_1 + a_n)$计算出结果。
题目二:等差数列差的问题
已知等差数列的首项为$a_1$,公差为$d$,依次计算以下问题:
1. $a_3 - a_2$;
2. $a_5 - a_3$;
3. $a_{10} - a_5$。
解答步骤:
1. 利用公式$a_n = a_1 + (n-1)d$计算出各项的值;
2. 按照题目给定的差问题计算出结果。
题目三:等比数列求和
已知等比数列的首项为$a_1$,公比为$r$,求该等比数列的前$n$项和$S_n$。
解答步骤:
1. 如果公比$r=1$,则$S_n = n \cdot a_1$,直接计算结果;
2. 如果公比$r \neq 1$,则$S_n = a_1 \cdot \frac{1 - r^n}{1 - r}$,按照公式计算结果。
题目四:等比数列差的问题
已知等比数列的首项为$a_1$,公比为$r$,依次计算以下问题:
1. $a_2 - a_1$;
2. $a_4 - a_2$;
3. $a_{10} - a_{5}$。
解答步骤:
1. 利用公式$a_n = a_1 \cdot r^{(n-1)}$计算各项的值;
2. 按照题目给定的差问题计算出结果。
以上是关于等差数列求和与差的练题的完整版文档。
等差数列与等比数列复习题
等差数列与等比数列复习题11.已知{}n a 是等差数列,6720a a +=,7828a a +=,那么该数列的前13项和13S 等于( )A .156B .132C .110D .1002.已知数列{}n a 是等差数列,若91130a a +<,10110a a ⋅<,且数列{}n a 的前n 项和n S 有最大值,那么n S 取得最小正值时n 等于( ) A .20 B .17 C .19 D .213.设各项均为正数的等差数列n a n 的前}{项和为,1,>m S n 若0211=-++-m m m a a a 且m S m 则,3812=-等于 ( )A .38B .20C .10D .9 4.等差数列{}n a 与{}n b 的前n 项和分别是n S 和n T ,已知37+=n nT S n n ,则55b a 等于( )A.7B.32 C.1370 D.4215.设等比数列{}n a 的前n 项和记为n S ,若2:1:510=S S ,则=515:S S ( ) A 、3:4 B 、2:3 C 、1:2 D 、1:3 6.设等比数列{}n a 中,前n 项和为n S ,已知3S =8,6S =7,则987a a a ++等于( ) A.18 B.-18 C.578 D.5587.设等比数列{}n a 的前n 项和为n S ,满足0,1n a q >>,且3520a a +=,2664a a ⋅=,则5S =( )A .31B .36C .42D .48 8.等比数列{}n a 中, ____________S ,12,415105===则S S9.数列{}11(12)(124)...(12...2)n -++++++++++的前n 项和为_____________. 10.在等比数列{}n a 中,若141,42a a ==-,则12||||...||n a a a +++=____________.11.等差数列}{n a 的前m 项和为30,前m 2项和为100,则它的前m 3项和为 . 12.已知数列{}n a 的通项公式*21()n a n n N =+∈,其前n 项和为n S ,则数列}{nS n的前10项的和为13.设n S 为数列{}n a 的前n 项和,且对任意n N *∈时,点(,)n n a S 都在函数11()22f x x =-+的图象上。
等差数列与等比数列(题型归纳)
等差数列与等比数列【考情分析】【题型一】等差、等比数列基本运算【题组练透】1.(山东省淄博市2021届高三二模数学试题)已知{}n a 为等比数列,n S 为其前n 项和,若32342S a a a =++,则公比q =().A .12B .12-C .1D .2【答案】D 【解析】因为32342S a a a =++,所以()3412232a a a a a a ++=++,即41232a a a a ++=,因为10a ≠,所以232q q q ++=,即()()2210q q q -++=,因为210q q ++≠,所以q =2.故选:D2.我国明代数学家程大位的《算法统宗》中有这样一个问题:今有钞二百三十八贯,令五等人从上作互和减半分之,只云戊不及甲三十三贯六百文,问:各该钞若干?其意思是:现有钱238贯,采用等差数列的方法依次分给甲、乙、丙、丁、戊五个人,现在只知道戊所得钱比甲少33贯600文(1贯=1000文),问各人各得钱多少?在这个问题中,戊所得钱数为()A .30.8贯B .39.2贯C .47.6贯D .64.4贯【答案】A【继续】依次记甲、乙、丙、丁、戊五个人所得钱数为a 1,a 2,a 3,a 4,a 5,由数列{a n }为等差数列,可记公差为d ,依题意得:()123451155223833.6a a a a a a d a a ⎧++++=+=⎨-=⎩,解得a 1=64.4,d =﹣8.4,所以a 5=64.4﹣33.6=30.8,即戊所得钱数为30.8贯.故选:A.3.(2021·武汉市第一中学高三二模)等差数列{a n }的前n 项和记为S n ,若a 1>0,S 10=S 20,则()A .d <0B .a 16<0C .S n ≤S 15D .当且仅当S n <0时n ≥32【答案】ABC【解析】设等差数列{a n }的公差为d ,∵S 10=S 20,∴10a 1+45d =20a 1+190d ,∴2a 1+29d =0,∵a 1>0,∴d <0,故A 正确;∴a 1+14d +a 1+15d =0,即a 15+a 16=0,∵d <0,∴a 15>a 16,∴a 15>0,a 16<0,故B 正确;∴S n ≤S 15,故C 正确;又131311631()3102a a S a +==<,130********()15()02a a S a a +==+=,∴当且仅当S n <0时,n ≥31,故D 错误.故选:ABC .4.(2021·湖南长沙市·高三其他模拟)已知等比数列{}n a 中,22a =,514a =,则满足12231212n n a a a a a a +++⋅⋅⋅+≤成立的最大正整数n 的值为______.【答案】3【解析】已知{}n a 为等比数列,设其公比为q ,由352a a q =⋅得,3124q ⋅=,318q =,解得12q =,又22a =.∴14a =.因为21211==4n n n n a a q a a +++,所以数列{}1n n a a +也是等比数列,其首项为128a a =,公比为14.∴()1223132211432nn n a a a a a a -+++⋅⋅⋅+=-≤,从而有11464n⎛⎫≥ ⎪⎝⎭.∴3n ≤.故max 3n =.故答案为:3.【提分秘籍】1.在等差(比)数列中,a 1,d(q),n,a n ,S n 五个量中知道其中任意三个,就可以求出其他两个.解这类问题时,一般是转化为首项a 1和公差d(公比q)这两个基本量的有关运算.2.对于等比数列的前n 项和公式,应按照公比q 与1的关系分类讨论,一般地,若涉及n 较小的等比数列前n 项和问题,为防止遗忘分类讨论,可直接利用通项公式写出,而不必使用前n 项和公式.【题型二】等差、等比数列的性质【题组练透】1.(2021·陕西西安市·西北工业大学附属中学高三其他模拟(文))等比数列{}n a 的各项均为正数,且154a a =,则2122232425log log log log log a a a a a ++++=()A .10B .5C .8D .4【答案】B 【分析】应用等比数列等比中项的性质可得32a =,运用对数的运算性质可得原式为235log a ,代入3a 可计算结果.【详解】解:因为154a a =,且0n a >,则有32a =521222324252323log log log log log log 5log 5a a a a a a a ++++===.故选:B.2.(2021·山东青岛市·高三三模)行列式是近代数学中研究线性方程的有力工具,其中最简单的二阶行列式的运算定义如下:1112112221122122a a a a a a a a =-,已知n S 是等差数列{}n a 的前n 项和,若()7911001a a -=,则15S =()A .152B .45C .75D .150【答案】C 【分析】先由行列式的定义化简,再根据等差数列的前n 项和公式求和即可.【详解】由行列式的定义有9711(10)0a a ⨯-⨯-=,即1875a d a +==,所以11581515()1527522a a a S +⨯===.故选:C.3.(2021·广东潮州市·高三二模)已知数列{}n a 满足()*,01nn a n k n N k =⋅∈<<,下列命题正确的有()A .当12k =时,数列{}n a 为递减数列B .当45k =时,数列{}n a 一定有最大项C .当102k <<时,数列{}n a 为递减数列D .当1kk-为正整数时,数列{}n a 必有两项相等的最大项【答案】BCD 【分析】分别代入12k =和45k =计算判断AB 选项;再利用放缩法计算判断C 选项;设1=-k n k ,则1=+k nn ,所以化简得11n na a +=,可知数列{}n a 为常数数列,可判断D ;【详解】当12k=时,1212a a==,知A错误;当45k=时,1415nna na n++=⋅,当4n<,11nnaa+>,4n>,11nnaa+<,所以可判断{}n a一定有最大项,B正确;当12k<<时,11112nna n nka n n+++=<≤,所以数列{}n a为递减数列,C正确;当1kk-为正整数时,其值不妨取为n,则1=+k nn,所以11111+++==⋅=+nna n n nka n n n,可知数列{}n a为常数数列,D正确;故选:BCD.4.已知数列{a n}为等差数列,若a2+a8=23π,则tan(a3+a7)的值为A .33B .-33CD【解析】∵数列{a n}为等差数列,∴a3+a7=a2+a8=23π.∴tan(a3+a7)=tan 2 3π【提分秘籍】1.利用等差(等比)数列的性质求解的关键是抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解.2.活用函数的性质:数列是一种特殊的函数,具有函数的一些性质,如单调性、周期性等,可利用函数的这些性质解题.【题型三】等差、等比数列的判断与证明【典例分析】【典例】若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:}1{nS 成等差数列;(2)求数列{a n }的通项公式.(1)证明当n ≥2时,由a n +2S n S n -1=0,得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2,又1S 1=1a 1=2,故}1{nS 是首项为2,公差为2的等差数列.(2)由(1)可得1S n =2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1).当n =1时,a 1=12不适合上式.故a n n =1,-12n (n -1),n ≥2.【变式探究1】本例条件不变,判断数列{a n }是否为等差数列,并说明理由.【解析】因为a n =S n -S n -1(n ≥2),a n +2S n S n -1=0,所以S n -S n -1+2S n S n -1=0(n ≥2).所以1S n -1S n -1=2(n ≥2).又1S 1=1a 1=2,所以}1{nS 是以2为首项,2为公差的等差数列.所以1S n =2+(n -1)×2=2n ,故S n =12n.所以当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1),所以a n +1=-12n (n +1),又a n +1-a n =-12n (n +1)--12n (n -1)=-12n }1111{--+n n =1n (n -1)(n +1).所以当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是一个等差数列.【变式探究2】本例中,若将条件变为a 1=35,na n +1=(n +1)a n +n (n +1),试求数列{a n }的通项公式.【解析】由已知可得a n +1n +1=a n n +1,即a n +1n +1-a nn=1,又a 1=35,∴}{na n 是以a 11=35为首项,1为公差的等差数列,∴a n n =35+(n -1)·1=n -25,∴a n =n 2-25n .【提分秘籍】1.常见的判定等差数列的方法(1)定义法:对于数列{a n },若a n+1-a n =d(n ∈N *)(d 为常数),则数列{a n }是等差数列;(2)等差中项法:对于数列{a n },若2a n+1=a n +a n+2(n ∈N *),则数列{a n }是等差数列.2.常见的判定等比数列的方法(1)定义法:若n n a a 1+=q(q≠0,n ∈N *)或1-n n a a=q(q≠0,n≥2,n ∈N *),则数列{a n }是等比数列;(2)等比中项法:若数列{a n }中,a n ≠0且21-n a =a n ·a n-2(n≥3,n ∈N *),则数列{a n }是等比数列.注意:如果要证明一个数列是等差(等比)数列,则必须用定义法或等差(等比)中项法.判断时易忽视定义中从第2项起,以后每项与前一项的差(比)是同一常数,即易忽视验证a 2-a 1=d(12a a =q)这一关键条件【变式演练】1.(2021·广东省级名校联考)已知S n 是数列{a n }的前n 项和,且满足S n -2a n =n -4.(1)证明:{S n -n +2}为等比数列;(2)求数列{S n }的前n 项和T n .(1)证明因为a n =S n -S n -1(n ≥2),所以S n -2(S n -S n -1)=n -4(n ≥2),则S n =2S n -1-n +4(n ≥2),所以S n -n +2=2[S n -1-(n -1)+2](n ≥2),又由题意知a 1-2a 1=-3,所以a 1=3,则S 1-1+2=4,所以{S n -n +2}是首项为4,公比为2等比数列.(2)由(1)知S n -n +2=2n +1,所以S n =2n +1+n -2,于是T n =(22+23+…+2n +1)+(1+2+…+n )-2n=4(1-2n )1-2+n (n +1)2-2n =2n +3+n 2-3n -82.1.(2021·山西阳泉市·高三三模(文))在正项等比数列{}n a 中,34a a m +=,1314a a n +=,则2324a a +的值为()A .nmB .22n m C .2n mD .2n m 【答案】C 【分析】利用广义通项公式计算,可得10nq m=,即可得到答案;【详解】10101010131434n a a a q a q q m n q m+=+=⋅=⇒=,∴()14210232413n n a a a a q n m m+=+⋅=⋅=,故选:C.2.(2021·宁波市北仑中学高三其他模拟)设n S 是某个等差数列的前n 项和,若201920202020S S ==,则2021S =()A .220202019-B .220202019+C .120201010-D .120201010+【答案】A 【分析】由题设易得12019a d =-且20212020S S d =+,利用等差数列前n 项和公式,由20192020S =求d ,即可求2021S .【详解】由题意知:20200a =即12019a d =-,且20212020S S d =+,∴201912019201820192019(1010)20202S a d d ⨯=+=⨯-=,故22019d =-,∴2021220202019S =-.故选:A3.(2021·济南市·山东省实验中学高三二模)已知等差数列{}n a 的项数为奇数,其中所有奇数项之和为319,所有偶数项之和为290,则该数列的中间项为()A .28B .29C .30D .31【答案】B 【分析】本题可设等差数列{}n a 共有21n +项,然后通过S S -奇偶即可得出结果.【详解】设等差数列{}n a 共有21n +项,则13521n S a a a a +=++++ 奇,2462n S a a a a =++++ 偶,中间项为1n a +,故()()()13254212n nS S a a a a a a a +-=+-+-++- 奇偶111n a d d d a nd a +=++++=+= ,131929029n a S S +=-=-=奇偶,故选:B.4.(2021·安徽马鞍山市·高三三模(文))在天然气和煤气还未普及时,农民通常会用水稻秸秆作为生火做饭的材料.每年水稻收割结束之后,农民们都会把水稻秸秆收集起来,然后堆成如图的草堆,供生火做饭使用.通常他们堆草堆的时候都是先把秸秆先捆成一捆一捆的,然后堆成下面近似成一个圆柱体,上面近似成一个圆锥体的形状.假设圆柱体堆了7层,每层所用的小捆草数量相同,上面收小时,每层小捆草数量是下一层的12倍.若共用255捆,最上一层只有一捆,则草堆自上往下共有几层()A .13B .12C .11D .10【答案】B 【分析】由题可知,上面的圆锥每层的数量是以1为首项,2为公比的等比数列;设草堆自上往下共有x 层,则圆锥有()7x -层,依题意列关系式.【详解】设草堆自上往下共有x 层,则圆锥有()7x -层,由题可知,上面的圆锥每层的数量是以1为首项,2为公比的等比数列,则287122272255x x --+++++⨯= ,()771127225512x x --⨯-+⨯=-,解得:12x =∴草堆自上往下共有12层.故选:B.【点睛】知识点点睛:等比数列前n 项和()111n n a q S q-=-.5.(2021·全国高三其他模拟)已知数列{}n a 满足12a =,()11312,n n n n a a a a n n N *--+=-≥∈,若123nn Ta a a a =⋅⋅⋅,当10n T >时,n 的最小值为()A .3B .5C .6D .7【答案】C 【分析】将已知递推关系式变形可得1111112n n a a --=--,由此可知数列11n a ⎧⎫⎨⎬-⎩⎭为等差数列,由等差数列通项公式可取得11n a -,进而得到n a ;由123n n T a a a a =⋅⋅⋅可上下相消求得n T ,结合n *∈N 解不等式可求得n 的最小值.【详解】由1131n n n n a a a a --+=-得:11311n n n a a a ---=+,()11111121312211111n n n n n n n a a a a a a a ---------∴-=-==+++,()()111111121111212112n n n n n n a a a a a a -----+-+∴===+----,即1111112n n a a --=--,∴数列11n a ⎧⎫⎨⎬-⎩⎭是以1111a =-为首项,12为公差的等差数列,()11111122n n n a +∴=+-=-,则31n n a n +=+,()()123234562323416n n n n n n T a a a a n n ++++=⋅⋅⋅=⨯⨯⨯⋅⋅⋅⨯⨯=+∴,由10n T >得:()()23106n n ++>,又n *∈N ,6n ∴≥且n *∈N ,n ∴的最小值为6.故选:C.【点睛】关键点点睛:本题考查数列中的不等式的求解问题,解题关键是能够根据已知的递推关系式,构造出全新的等差数列,利用等差数列通项公式求得通项后,即可确定n a .6.(2021·四川内江市·高三一模(理))若数列{}n a 满足1120n na a +-=,则称{}n a 为“梦想数列”,已知正项数列1nb ⎧⎫⎨⎬⎩⎭为“梦想数列”,且1231b b b ++=,则678b b b ++=()A .4B .8C .16D .32【答案】D 【分析】利用等比数列的定义可推导出“梦想数列”{}n a 是公比为12的等比数列,进而结合题意可知数列{}n b 是公比为2的等比数列,由此可得()56781232b b b b b b ++=++,即可得解.【详解】由题意可知,若数列{}n a 为“梦想数列”,则1120n n a a +-=,可得112n n a a +=,所以,“梦想数列”{}n a 是公比为12的等比数列,若正项数列1n b ⎧⎫⎨⎬⎩⎭为“梦想数列”,则1112n n b b +=,所以,12n n b b +=,即正项数列{}n b 是公比为2的等比数列,因为1231b b b ++=,因此,()5678123232b b b b b b ++=++=.故选:D.【点睛】关键点点睛:本题考查数列的新定义“梦想数列”,解题的关键就是紧扣新定义,本题中,“梦想数列”就是公比为12的等比数列,解题要将这种定义应用到数列1n b ⎧⎫⎨⎬⎩⎭中,推导出数列{}n b 为等比数列,然后利用等比数列基本量法求解.7.(2021·全国高三其他模拟)已知n S 为等差数列{}n a 的前n 项和,且220a =,798S =,则()A .1534a a +=B .89a a <C .9n S S ≤D .满足0nS <的n 的最小值为17【答案】AD 【分析】先由等差数列的性质及798S =求得414a =,结合220a =及等差数列的性质即可判断选项A ;由选项A 得到数列{}n a 的公差,进而得到等差数列{}n a 的通项公式,然后求出8a ,9a 的值,结合{}n a 的增减性即可判断选项B ,C ;由等差数列的性质及8a ,9a 易得到16S ,17S 的值,结合{}n a 的增减性即可判断选项D .【详解】因为()177477982a a S a +===,所以414a =.又220a =,所以152434a a a a +=+=,A 选项正确;设等差数列{}n a 的公差为d ,由4226a a d -==-,解得3d =-,所以()()223263n a a n n =+-⨯-=-.826382a =-⨯=,926391a =-⨯=-.所以89a a >,B 选项不正确;由3d =-知数列{}n a 为递减数列,又820a =>,910a =-<.所以8S 为n S 的最大值,C 选项不正确;因为()()1161689168802a a S a a +==+=>,()11717917171702a a S a +==⨯=-<.所以满足0n S <的n 的最小值为17,D 选项正确.故选AD .【点睛】结论点睛:在处理等差数列及其前n 项和问题时,通常会用到如下的一些性质结论;1.通项性质:若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则有a m +a n =a p +a q =2a k .2.前n 项和的性质:(1)S m ,S 2m -S m ,S 3m -S 2m ,…成等差数列(2)S 2n -1=(2n -1)a n .8.(2021·全国(文))《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).关于这个问题,下列说法正确的是()A .甲得钱是戊得钱的2倍B .乙得钱比丁得钱多12钱C .甲、丙得钱的和是乙得钱的2倍D .丁、戊得钱的和比甲得钱多13钱【答案】AC 【分析】由等差数列的性质,可设甲、乙、丙、丁、戊所得钱分别为2a d -,a d -,a ,a d +,2a d +,结合已知求a ,d ,即可得甲、乙、丙、丁、戊所得钱,进而判断选项的正误.【详解】依题意,设甲、乙、丙、丁、戊所得钱分别为2a d -,a d -,a ,a d +,2a d +,且22a d a d a a d a d -+-=++++,即6a d =-,又2255a d a d a a d a d a -+-+++++==,∴1a =,16d =-,即1421263a d ⎛⎫-=-⨯-= ⎪⎝⎭,17166a d ⎛⎫-=--= ⎪⎝⎭,15166a d ⎛⎫+=+-= ⎪⎝⎭,1221263a d ⎛⎫+=+⨯-= ⎪⎝⎭,∴甲得43钱,乙得76钱,丙得1钱,丁得56钱,戊得23钱,则有如下结论:甲得钱是戊得钱的2倍,故A 正确;乙得钱比丁得钱多751663-=钱,故B 错误;甲、丙得钱的和是乙得钱的413276+=倍,故C 正确;丁、戊得钱的和比甲得钱多52416336+-=钱,故D 错误.故选:AC .9.(2021·全国高二专题练习)数列{}n a 为等比数列,公比q >1,其前n 项和为S n ,若a 5﹣a 1=15,2416a a ⋅=,则下列说法正确的是()A .S n +1=2S n +1B .a n =2nC .数列{log 3(S n +1)}是等比数列D .对任意的正整数k (k 为常数),数列{log 2(S n +k ﹣S n )}是公差为1的等差数列【答案】AD 【分析】根据条件可求出12n n a -=,21nn S =-,然后逐一判断即可.【详解】因为公比为q >1,由512415,16,a a a a -=⎧⎨⋅=⎩可得41131115,16,a q a a q a q ⎧-=⎨⋅=⎩,即421154q q -=,所以4q 4﹣15q 2﹣4=0,解得q 2=4,所以112a q =⎧⎨=⎩,所以12n n a -=,()1122112n n nS ⋅-==--,所以112121n n n S S ++=-=+,S n +1=2n ,所以log 3(S n +1)=n log 32,所以数列{log 3(S n +1)}是等差数列,对任意的正整数n ,k ,S n +k ﹣S n =2n +k ﹣2n =(2k ﹣1)2n ,所以log 2(S n +k ﹣S n )=n +log 2(2k ﹣1),所以数列{log 2(S n +k ﹣S n )}是公差为1的等差数列,故选:AD10.(2021·济南市历城第二中学高二开学考试)设等差数列{}n a 的前n 项和为n S ,若20212020220212020S S -=,则数列{}n a 公差为___________.【答案】4【分析】由等差数列性质可知,112n S n a d n -=+,从而得到结果.【详解】由等差数列性质可知,112n S n a d n -=+又20212020220212020S S -=,∴2019101022d d -=,解得,4d =故答案为:411.(2021·河南高三月考(理))已知数列{}n b ,()1*12N n n b b b n +-==∈,等比数列{}n a 中,11a b =,48a b =,若数列{}n b 中去掉与数列{}n a 相同的项后余下的项按原顺序组成数列{}n c ,则{}n c 前200项的和为___________.【答案】42962【分析】根据等差数列的定义,结合等比数列的通项公式、等差数列和等比数列的前n 项和公式进行求解即可.【详解】∵12n n b b +-=,∴{}n b 为等差数列,又12b =,∴2n b n =,∴12a =,416a =,则等比数列{}n a 的公比为2=,∴2n n a =.∵208416b =,12a =,24a =,38a =,416a =,532a =,664a =,7128a =,8256a =,9512a =.∴()()1220012208128c c c b b b a a a ++⋅⋅⋅+=++⋅⋅⋅+-++⋅⋅⋅+()()82122082416212⨯-⨯+=--()920920822=⨯--42962=.故答案为:4296212.(2021·广东汕头市·高三三模)已知数列{}n a 满足()12335213nn a a a n a ++++-= ,则3a =__________,若对任意的N n *∈,()1nn a λ≥-恒成立,则λ的取值范围为_____________.【答案】185[]3,2-【分析】由1n =可求得1a 的值,令2n ≥由()12335213nn a a a n a ++++-= 可得出()1123135233n n a a a n a --++++-= ,两式作差可得出数列{}n a 的通项公式,可得出3a 的值,然后分n 为奇数和偶数两种情况讨论,分析数列{}n a 的单调性,由此可求得实数λ的取值范围.【详解】当1n =时,13a =;当2n ≥时,()()12313523213nn n a a a n a n a -++++-+-= ,可得()1123135233n n a a a n a --++++-= ,上述两式作差可得()11213323nn n n n a ---=-=⋅,即12321n n a n -⋅=-,13a =不满足12321n n a n -⋅=-,所以,13,123,221n n n a n n -=⎧⎪=⎨⋅≥⎪-⎩,则23231855a ⨯==.当2n ≥时,()()()118312323021212121n n n n n n a a n n n n -+⋅⋅-⋅⋅-=-=>+--+,即1n n a a +>,所以,数列{}n a 从第二项开始为递增数列,对任意的N n *∈,()1nn a λ≥-恒成立.①若n 为正奇数,则n a λ≥-,1351835a a a =<=<< ,则3λ-≤,可得3λ≥-;②若n 为正偶数,则n a λ≥,可得22a λ≤=.综上所述,32λ-≤≤.故答案为:185;[]3,2-.【点睛】思路点睛:已知数列{}n a 的前n 项和n S ,求通项公式n a 的步骤:(1)当1n =时,11a S =;(2)当2n ≥时,根据n S 可得出1n S -,化简得出1n n n a S S -=-;(3)如果1a 满足当2n ≥时1nn n a S S -=-的通项公式,那么数列{}n a 的通项公式为1n n n a S S -=-;如果1a 不满足当2n ≥时1n n n a S S -=-的通项公式,那么数列{}n a 的通项公式要分段表示为11,1,2n nn S n a S S n -=⎧=⎨-≥⎩.13.(2021·山东临沂市·高三二模)已知正项数列{}n a 的前n 项和为n S ,数列{}n b 为等比数列,满足21444n n S a n +=--,且1112a b =+=,44a b =.(1)求证:数列{}n a 为等差数列;(2)若从数列{}n a 中去掉数列{}n b 的项后余下的项按原来的顺序组成数列{}n c ,求123100c c c c +++⋅⋅⋅+.【答案】(1)证明见解析;(2)11302.【分析】(1)由递推公式,将n 换成1n -,与原式作差,化简,求出1a ,结合等差数列的定义可证明.(2)先求出,n n a b 的通项公式,求出数列{}n a 的前100项中,与{}n b 重合的项,然后再求和即可.【详解】(1)证明:∵21444n n S a n +=--,∴当2n ≥时,2144n n S a n -=-,所以22n n 1n4a a a 4+=--,∴()2212n n a a +=+,又0na >,所以12n n a a +=+.当1n =时,21248S a =-,即21248a a =-,又12a =,∴24a =,212a a -=适合上式,所以数列{}n a 是首项为2,公差为2的等差数列.(2)由(1)可知2n a n =,设{}n b 的公比为q ,又448b a ==,1111b a =-=,∴38q =,∴2q =,∴12n n b -=.∴11b =,212b a ==,324b a ==,448b a ==,5816b a ==,61632b a ==,73264b a ==,864128b a ==,9128256b a ==.∴()()123100123107238c c c c a a a a b b b +++⋅⋅⋅+=+++⋅⋅⋅+-++⋅⋅⋅+()()7212107221411302212-+=-=-.【点睛】关键点睛:本题考查利用递推关系证明数列为等差数列,数列求和问题,解答本题的关键是应用1111n nn S n a S S n -=⎧=⎨->⎩时,注意n 的范围,以及求和时根据条件123100c c c c +++⋅⋅⋅+()()123107238a a a a b b b =+++⋅⋅⋅+-++⋅⋅⋅+,属于中档题.14.(2021·山东枣庄市·高三二模)已知数列{}n a 中,121a a ==,且212n n n a a a ++=+.记1n n n b a a +=+,求证:(1){}n b 是等比数列;(2){}n b 的前n 项和n T 满足:3121223112n n n b b b T T T T T T ++++⋅⋅⋅+<⋅⋅⋅.【答案】(1)证明见解析;(2)证明见解析.【分析】(1)将212n n n a a a ++=+变形为()2112n n n n a a a a ++++=+,并计算1b 的值,由此根据定义可证明{}n b 是等比数列;(2)先根据等比数列的前n 项和公式求解出n T ,然后根据1111n n n n n n n b T T T T T T ++++-=⋅⋅并采用裂项相消的方法求解出11n n n b T T ++⎧⎫⎨⋅⎩⎭的前n 项和,最后分析11n n n b T T ++⎧⎫⎨⎬⋅⎩⎭的前n 项和并完成证明.【详解】(1)证明:由212n n n a a a ++=+,得()121122n n n n n n b a a a a b ++++=+=+=,又11220b a a =+=≠,所以{}n b 是以2为首项,2为公比的等比数列.(2)由(1)知,()22222112n n n T -⨯==--.于是1111111111122121n n n n n n n n n n n b T T T T T T T T ++++++-⎛⎫==-=- ⎪⋅⋅--⎝⎭.31212231n n n b b b T T T T T T ++++⋅⋅⋅+⋅⋅⋅1223111111112212121212121n n +⎡⎤⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+ ⎪ ⎪ ⎪⎢⎥------⎝⎭⎝⎭⎝⎭⎣⎦1111221n +⎛⎫=- ⎪-⎝⎭.因为11021n +>-,所以3121223112n n n b b b T T T T T T ++++⋅⋅⋅+<⋅⋅⋅.。
等差等比数列性质练习题
等差等比数列性质练习题等差数列性质1已知数列a n中,a n 0^ 1 2(n N ,n 2),若a1 3,则此数列的第10项是 ___________________2、等差数列a n的前n项和为s n,若a4 18 a5,则s8等于______________3、在等差数列中,a i与an是方程2x2 3 x 7 0的两根,贝U a为___________4、等差数列a n共有2n 1项,所有奇数项之和为132,所有偶数项之和为120,则n等于 ________________5、在x和y之间插入n个实数,使它们与x, y组成等差数列,则此数列的公差为 ______6、首相为-24的等差数列,从第10项起开始为正数,则公差d的取值范围 _____________7、已知等差数列a n中,前15项之和为05 90,则a8等于_______________1&已知数列{a n}中,a3=2,a7=1,又数列{——}为等差数列,则a n= _________a n 19、数列 a n 满足:a13, a26, a n+2a n+1 a n , a2004 =10、在等差数列a n中,a m n , a n m (m,n € N+),则 a mn11、等差数列a n中,已知a11,a2a5 4,a n33,则n为312、已知在数列{a n}中,a1 = —10,a n+1=a n+2,则|a1|+|a2|+|a3|+…+|a10|等于_13、已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是 _______________14、设数列{a n}和{b n}都是等差数列,其中a1=24,一=75,且a2+b2=100,则数列{a n+b n}的第100项2 若S^ 1, S 4,求 a17 a18 a19 a20的值;3若已知首项a113,且S3 Sn,问此数列前多少项的和最大?为15、设a n是公差为正数的等差数列,若6 a2 a3 15 , a22a3 80,则an盹盹_________________16、在等方程(x2 2x m)(x2 2x n) 0的四个根组成一个首项为1的等差数列,贝U |m—n|= __________417、若a n为等差数列,a2, a10是方程x2 3x 5 0的两根,贝U a? ______________________ 。
等差等比数列专题题目+答案
高三二轮复习讲义 等差、等比数列1.(2015·江苏卷)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.2.(2014·江苏卷)在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.3.(2010·江苏卷)函数y =x 2(x >0)的图象在点(a k ,a 2k )处的切线与x 轴交点的横坐标为a k +1,k 为正整数,a 1=16,则a 1+a 3+a 5=________.4.(2013·江苏卷)在正项等比数列{a n }中,a 5=12,a 6+a 7=3.则满足a 1+a 2+…+a n >a 1a 2…a n 的最大正整数n 的值为________.5、等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则S n 的最小值为________.6、 (2015·郑州模拟)设等比数列{a n }的前n 项和为S n ,若S m -1=5,S m =-11,S m +1=21,则m 等于________.7、 (2015·苏北四市模拟)在等差数列{a n }中,a 1=-2 015,其前n 项和为S n ,若S 1212-S 1010=2,则S 2 015的值为________.8、在等比数列{a n }中,公比q =2,前87项和S 87=140,则a 3+a 6+a 9+…+a 87=________.9、(2015·苏州期中)在等差数列{a n }中,a 5=3,a 6=-2,则a 3+a 4+…+a 8=________.10、设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.11、 数列{a n }的前n 项和为S n ,a 1=1,且对任意正整数n ,点(a n +1,S n )在直线2x +y -2=0上. (1)求数列{a n }的通项公式;(2)是否存在实数λ,使得数列⎩⎨⎧⎭⎬⎫S n +λn +λ2n 为等差数列?若存在,求出λ的值;若不存在,请说明理由.12、 已知数列{a n }是各项均不为0的等差数列,S n 为其前n 项和,且满足a 2n =S 2n -1,令b n=1a n ·a n +1,数列{b n }的前n 项和为T n .(1)求数列{a n }的通项公式及数列{b n }的前n 项和T n ;(2)是否存在正整数m ,n (1<m <n ),使得T 1,T m ,T n 成等比数列?若存在,求出所有的m ,n 的值;若不存在,请说明理由.13.(2015·广州模拟)等比数列{a n }的前n 项和为S n ,若2S 4=S 5+S 6,则数列{a n }的公比q 的值为________.14.(2015·南师附中调研)设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 7=________.15.(2015·南通检测)已知等比数列{a n }为递增数列,且a 3+a 7=3,a 2a 8=2,则a 13a 11=________.16.在等比数列{a n }中,已知a 1+a 3=8,a 5+a 7=4,则a 9+a 11+a 13+a 15=________.17.(2015·阳泉模拟)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.18.(2015·安徽卷)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于________.19.(2015·福建卷改编)若a,b是函数f(x)=x2-px+q(p>0,q>0)的两个不同的零点,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于________.20.已知{a n}是等差数列,满足a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n-a n}为等比数列.(1)求数列{a n}和{b n}的通项公式;(2)求数列{b n}的前n项和.21.(2015·洛阳模拟)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5. (1)求数列{b n }的通项公式; (2)数列{b n }的前n 项和为S n ,求证:数列⎩⎨⎧⎭⎬⎫S n +54是等比数列.22.(2015·苏、锡、常、镇调研)已知数列{a n }是首项为133,公比为133的等比数列,设b n +15log 3a n =t ,常数t ∈N *.(1)求证:{b n }为等差数列;(2)设数列{c n }满足c n =a n b n ,是否存在正整数k ,使c k ,c k +1,c k +2按某种次序排列后成等比数列?若存在,求k ,t 的值;若不存在,请说明理由.数列的综合应用1、(2015·江苏卷)设a 1,a 2,a 3,a 4是各项为正数且公差为d (d ≠0)的等差数列. (1)证明:2a 1,2a 2,2a 3,2a 4依次构成等比数列;(2)是否存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列?并说明理由;(3)是否存在a 1,d 及正整数n ,k ,使得a n 1,a n +k 2,a n +2k 3,a n +3k 4依次构成等比数列?并说明理由.2、(2011·江苏卷)设M 为部分正整数组成的集合,数列{a n }的首项a 1=1,前n 项的和为S n ,已知对任意的整数k ∈M ,当整数n >k 时,S n +k +S n -k =2(S n +S k )都成立. (1)设M ={1},a 2=2,求a 5的值; (2)设M ={3,4},求数列{a n }的通项公式.3、(2012·江苏卷)已知各项均为正数的两个数列{a n }和{b n }满足:a n +1=a n +b na 2n +b 2n,n ∈N *. (1)设b n +1=1+b n a n ,n ∈N *,求证:数列2n n b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是等差数列;(2)设b n +1=2·b na n ,n ∈N *,且{a n }是等比数列,求a 1和b 1的值.4、如果无穷数列{a n}满足下列条件:①a n+a n+22≤a n+1;②存在实数M,使得a n≤M,其中n∈N*,那么我们称数列{a n}为Ω数列.(1)设数列{b n}的通项为b n=5n-2n,且是Ω数列,求M的取值范围;(2)设{c n}是各项为正数的等比数列,S n是其前n项和,c3=14,S3=74,证明:数列{S n}是Ω数列;(3)设数列{d n}是各项均为正整数的Ω数列,求证:d n≤d n+1.5、(2014·江苏卷)设数列{a n}的前n项和为S n.若对任意的正整数n,总存在正整数m,使得S n=a m,则称{a n}是“H数列”.(1)若数列{a n}的前n项和S n=2n(n∈N*),证明:{a n}是“H数列”;(2)设{a n}是等差数列,其首项a1=1,公差d<0.若{a n}是“H数列”,求d的值;(3)证明:对任意的等差数列{a n},总存在两个“H数列”{b n}和{c n},使得a n=b n+c n(n∈N*)成立.6、(2014·泰州期末)设数列{a n}的前n项积为T n,已知对∀n,m∈N*,当n>m时,总有T nT m=T n-m·q(n-m)m(q>0是常数).(1)求证:数列{a n}是等比数列;(2)设正整数k,m,n(k<m<n)成等差数列,试比较T n·T k和(T m)2的大小,并说明理由;(3)探究:命题p:“对∀n,m∈N*,当n>m时,总有T nT m=T n-m·q(n-m)m(q>0是常数)”是命题t:“数列{a n}是公比为q(q>0)的等比数列”的充要条件吗?若是,请给出证明;若不是,请说明理由.7、 (2015·徐州质检)已知数列{a n },{b n }满足a 1=3,a n b n =2,b n +1=a n ⎝⎛⎭⎪⎫b n -21+a n ,n ∈N *.(1)求证:数列⎩⎨⎧⎭⎬⎫1b n 是等差数列,并求数列{b n }的通项公式;(2)设数列{c n }满足c n =2a n -5,对于给定的正整数p ,是否存在正整数q ,r (p <q <r ),使得1c p,1c q,1cr成等差数列?若存在,试用p 表示q ,r ;若不存在,请说明理由.18.(2015·全国Ⅱ卷)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =____________.19.数列{a n }的通项公式a n =1 n +n +1,若{a n }的前n 项和为24,则n 为________.20.(2012·江苏卷改编)各项均为正数的等比数列{a n }满足a 1a 7=4,a 6=8,若函数f (x )=a 1x +a 2x 2+a 3x 3+…+a 10x 10的导数为f ′(x ),则f ′⎝ ⎛⎭⎪⎫12=________.21.在等差数列{a n }中,a 1=142,d =-2,从第一项起,每隔两项取出一项,构成新的数列{b n },则此数列的前n 项和S n 取得最大值时n 的值是________.22.在正项数列{a n }中,a 1=2,a n +1=2a n +3×5n ,则数列{a n }的通项公式为________.23.(2015·苏、锡、常、镇模拟)已知各项都为正的等比数列{a n }满足a 7=a 6+2a 5,存在两项a m ,a n 使得 a m ·a n =4a 1,则1m +4n 的最小值为________.24.(2015·南通调研)设S n 为数列{a n }的前n 项之和,若不等式a 2n +S 2n n2≥λa 21对任何等差数列{a n }及任何正整数n 恒成立,则λ的最大值为________.25.(2015·南京、盐城模拟)已知等比数列{a n }的首项为43,公比为-13,其前n 项和为S n ,若A ≤S n -1S n≤B 对n ∈N *恒成立,则B -A 的最小值为________.26.数列{a n}满足a n=2a n-1+2n+1(n∈N*,n≥2),a3=27.(1)求a1,a2的值;(2)是否存在一个实数t,使得b n=12n(a n+t)(n∈N*),且数列{b n}为等差数列?若存在,求出实数t;若不存在,请说明理由;(3)求数列{a n}的前n项和S n.27.(2013·江苏卷)设{a n}是首项为a,公差为d的等差数列(d≠0),S n是其前n项的和.记b n=nS nn2+c,n∈N*,其中c为实数.(1)若c=0,且b1,b2,b4成等比数列,证明:S nk=n2S k(k,n∈N*);(2)若{b n}是等差数列,证明:c=0.28.(2014·南京、盐城模拟)已知数列{a n}满足a1=a(a>0,a∈N*),a1+a2+…+a n-pa n+1=0(p≠0,p≠-1,n∈N*).(1)求数列{a n}的通项公式a n;(2)若对每一个正整数k,若将a k+1,a k+2,a k+3按从小到大的顺序排列后,此三项均能构成等差数列,且公差为d k.①求p的值及对应的数列{d k}.②记S k为数列{d k}的前k项和,问是否存在a,使得S k<30对任意正整数k恒成立?若存在,求出a 的最大值;若不存在,请说明理由.。
等差等比数列测试题
14.若数列{an}的通项公式为an= ,则前n项和为( )
A.
Sn=1﹣
B.
Sn=2﹣ C.Sn=n(1﹣ )D.Sn=2﹣
二、填空题:(每小题5分,共60分)
15、在等比数列 中, ,q=2,则a5=
16、在等差数列 中,a3=9,a6=3,则公差d=
17、在等比数列 中, ,a3=9,则公比q=
28、等比数列{an}的前n项和为Sn,已知S1,S3,S2成等差数列.(1)求{an}的公比q;(2)若a1-a3=3,求Sn.
等差数列与等比数列测试题
班别姓名成绩
一、选择题:(每小题5分,共70分)
题号
1
2
3
4
5
6
7
8
9
10
11
12
13
14
答案
1、在等差数列 中, ,d=3,则 等于()
A、5 B、8 C、11 D、13
2、在等比数列 中, ,q=3,则S9等于()
A、 B、 C、 D、
3.等差数列{an}中,a1=,a2+a5=4,an=33,则n等于()
A.-B.-C.D.
7.若等差数列{an}的前5项和S5=25,且a2=3,则a7=()
A.12B.13C.14D.15
8.已知等比数列{an}中,a5=4,a7=6,则a9等于()
A.7B.8C.9D.10
9.已知等比数列{an}的公比q=﹣ ,则 等于( )
A.﹣ B.-3 C. D.3
10.设等比数列{an}的公比q=2,前n项和为Sn,则=()
A.48B.49C.50D.51
4.已知{a)
A.20B.48C.60D.72
(完整版)等差等比数列综合练习题
等差数列等比数列综合练习题一.选择题1. 已知031=--+n n a a ,则数列{}n a 是 ( )A. 递增数列B. 递减数列C. 常数列D. 摆动数列 2.等比数列}{n a 中,首项81=a ,公比21=q ,那么它的前5项的和5S 的值是( ) A .231 B .233 C .235 D .2373. 设n S 是等差数列}{n a 的前n 项和,若S 7=35,则a 4=( ) A. 8 B.7C.6D.54. 等差数列}{n a 中,=-=++10915812,1203a a a a a 则( ) A .24B .22C .20D .-85. 数列{}n a 的通项公式为n n a n 2832-=,则数列{}n a 各项中最小项是 ( ) A. 第4项 B.第5项 C. 第6项 D. 第7项6.已知a ,b ,c ,d 是公比为2的等比数列,则dc ba ++22等于( ) A .1 B .21 C .41D .817.在等比数列{}n a 中,7114146,5,a a a a •=+=则2010a a =( ) A.23B.32C.23或32 D.23-或 32- 8.已知等比数列{}n a 中,n a >0,243546225a a a a a a ++=,那么35a a +=( ) A.5 B .10 C.15 D .209.各项不为零的等差数列{}n a 中,有23711220a a a -+=,数列{}n b 是等比数列,且7768,b a b b ==则( )A.2B. 4C.8 D .16 10.已知等差数列{}n a 中, 211210,10,38,n m m m m a m a a a S -+-≠>+-==若且则m 等于 A. 38 B. 20 C.10D. 911.已知n s 是等差数列{}n a *()n N ∈的前n 项和,且675s s s >>,下列结论中不正确的是( )A. d<0B. 110s >C.120s <D. 130s < 12.等差数列}{n a 中,1a ,2a ,4a 恰好成等比数列,则14a a 的值是( ) A .1 B .2 C .3 D .4二.填空题13.已知{a n }为等差数列,a 15=8,a 60=20,则a 75=________ 14. 在等比数列}{n a 中,1682=•a a ,则5a =__________15.在等差数列{a n }中,若a 7=m ,a 14=n ,则a 21=__________ 16. 若数列{}n x 满足1lg 1lg n n x x +=+()n N *∈,且12100100x x x +++=,则()101102200lg x x x +++=________17.等差数列{a n }的前n 项和为S n ,若a 3+a 17=10,则S 19的值_________ 18.已知等比数列{a n }中,a 1+a 2+a 3=40,a 4+a 5+a 6=20,则前9项之和等于_________三.解答题19. 设三个数a ,b ,c 成等差数列,其和为6,又a ,b ,1+c 成等比数列,求此三个数.20. 已知数列{}n a 中,111,23n n a a a -==+,求此数列的通项公式.21. 设等差数列{}na的前n项和公式是253ns n n=+,求它的前3项,并求它的通项公式.22. 已知等比数列{}n a的前n项和记为S n,,S10=10,S30=70,求S40。
高中数学《等差数列、等比数列》专题练习题(含答案解析)
高中数学《等差数列、等比数列》专题练习题(含答案解析)一、选择题1.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8 C [设{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3d a 1+4d24,6a 1+6×52d =48,解得d =4.故选C .]2.设公比为q (q >0)的等比数列{}a n 的前n 项和为S n ,若S 2=3a 2+2,S 4=3a 4+2,则a 1等于( )A .-2B .-1C .12D .23B [S 4-S 2=a 3+a 4=3a 4-3a 2 ,即3a 2+a 3-2a 4=0,即3a 2+a 2q -2a 2q 2=0 ,即2q 2-q -3=0,解得q =-1 (舍)或q =32,当q =32时,代入S 2=3a 2+2,得a 1+a 1q =3a 1q +2,解得a 1=-1,故选B .]3.(2018·莆田市3月质量检测)等比数列{a n }的前n 项和为S n ,已知S 2=a 1+2a 3,a 4=1,则S 4=( )A .78B .158C .14D .15D [由S 2=a 1+2a 3,得a 1+a 2=a 1+2a 3,即a 2=2a 3,又{a n }为等比数列,所以公比q =a 3a 2=12,又a 4=a 1q 3=a 18=1,所以a 1=8.S 4=a 11-q 41-q=8×⎝ ⎛⎭⎪⎫1-1161-12=15.故选D .]4.设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13C [∵a 1>0,a 6a 7<0,∴a 6>0,a 7<0,等差数列的公差小于零,又a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,∴S 12>0,S 13<0,∴满足S n >0的最大自然数n 的值为12.]5.(2018·衡水模拟)设等比数列{a n }的前n 项和为S n ,若S m -1=5,S m =-11,S m+1=21,则m 等于( )A .3B .4C .5D .6C [在等比数列中,因为S m -1=5,S m =-11,S m +1=21,所以a m =S m -S m -1=-11-5=-16,a m +1=S m +1-S m =32.则公比q =a m +1a m=32-16=-2,因为S m =-11, 所以a 1[12m ]1+2=-11,①又a m +1=a 1(-2)m =32,② 两式联立解得m =5,a 1=-1.] 6.等差数列{a n }中,a na 2n是一个与n 无关的常数,则该常数的可能值的集合为( )A .{1}B .⎩⎨⎧⎭⎬⎫1,12C .⎩⎨⎧⎭⎬⎫12D .⎩⎨⎧⎭⎬⎫0,12,1B [a na 2n =a 1n -1da 12n -1d =a 1-d +nda 1-d +2nd,若a 1=d ,则a na 2n =12;若a 1≠0,d =0,则a n a 2n =1.∵a 1=d ≠0,∴a na 2n ≠0,∴该常数的可能值的集合为⎩⎨⎧⎭⎬⎫1,12.] 7.已知等比数列{a n }中,a 2a 10=6a 6,等差数列{b n }中,b 4+b 6=a 6,则数列{b n }的前9项和为( )A .9B .27C .54D .72B [根据等比数列的基本性质有a 2a 10=a 26=6a 6,a 6=6,所以b 4+b 6=a 6=6,所以S 9=9b 1+b 92=9b 4+b 62=27.]8.(2018·安阳模拟)正项等比数列{a n }中,a 2=8,16a 24=a 1a 5,则数列{a n }的前n 项积T n 中的最大值为( )A .T 3B .T 4C .T 5D .T 6A [设正项等比数列{a n }的公比为q (q >0),则16a 24=a 1a 5=a 2a 4=8a 4,a 4=12,q 2=a 4a 2=116,又q >0,则q =14,a n =a 2q n -2=8×⎝ ⎛⎭⎪⎫14n -2=27-2n ,则T n =a 1a 2…a n =25+3+…+(7-2n )=2n (6-n ),当n =3时,n (6-n )取得最大值9,此时T n 最大,即(T n )max =T 3,故选A .]二、填空题9.已知公差不为0的等差数列{a n }满足a 1,a 3,a 4成等比数列,S n 为数列{a n }的前n 项和,则S 3-S 2S 5-S 3的值为________.2 [根据等比中项有a 23=a 1·a 4,即(a 1+2d )2=a 1(a 1+3d ),化简得a 1=-4d ,S 3-S 2S 5-S 3=a 3a 4+a 5=a 1+2d 2a 1+7d =-2d -d=2.] 10.已知数列{a n }满足a 1=-40,且na n +1-(n +1)a n =2n 2+2n ,则a n 取最小值时n 的值为________.10或11 [由na n +1-(n +1)a n =2n 2+2n =2n (n +1),两边同时除以n (n +1),得a n +1n +1-a nn =2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为-40、公差为2的等差数列,所以a nn =-40+(n -1)×2=2n -42,所以a n=2n 2-42n ,对于二次函数f (x )=2x 2-42x ,在x =-b2a=--424=10.5时,f (x )取得最小值,因为n 取正整数,且10和11到10.5的距离相等,所以n 取10或11时,a n 取最小值.]11.已知正项等差数列{a n }的前n 项和为S n ,S 10=40,则a 3·a 8的最大值为________. 16 [S 10=10a 1+a 102=40⇒a 1+a 10=a 3+a 8=8,a 3·a 8≤⎝ ⎛⎭⎪⎫a 3+a 822=⎝ ⎛⎭⎪⎫822=16, 当且仅当a 3=a 8=4时“=”成立.]12.已知函数{a n }满足a n +1+1=a n +12a n +3,且a 1=1,则数列⎩⎨⎧⎭⎬⎫2a n +1的前20项和为________.780 [由a n +1+1=a n +12a n +3得2a n +3a n +1=1a n +1+1,即1a n +1+1-1a n +1=2,∴数列⎩⎨⎧⎭⎬⎫1a n +1是以12为首项,2为公差的等差数列,则1a n +1=2n -32,∴数列⎩⎨⎧⎭⎬⎫2a n +1是以1为首项,4为公差的等差数列,其前20项的和为20+10×19×4=780.]三、解答题13.(2018·德阳二诊)已知数列{a n }满足a 1=1,a n +1=2a n +1 . (1)求证:数列{a n +1}为等比数列;(2)求数列⎩⎨⎧⎭⎬⎫2n a n a n +1的前n 项和T n . [解] (1)∵a n +1=2a n +1,∴a n +1+1=2(a n +1). 又a 1=1,∴a 1+1=2≠0,a n +1≠0.∴{a n +1}是以2为首项,2为公比的等比数列. (2)由(1)知a n =2n -1, ∴2na n a n +1=2n2n -12n +1-1=12n -1-12n +1-1,∴T n =12-1-122-1+122-1-123-1+…+12n -1-12n +1-1=1-12n +1-1.14.已知数列{}a n 的前n 项和为S n ,且S n =2a n -3n (n ∈N *). (1)求a 1,a 2,a 3的值;(2)是否存在常数λ,使得数列{a n +λ}为等比数列?若存在,求出λ的值和通项公式a n ;若不存在,请说明理由.[解] (1)当n =1时,由S 1=2a 1-3×1,得a 1=3; 当n =2时,由S 2=2a 2-3×2,可得a 2=9; 当n =3时,由S 3=2a 3-3×3,得a 3=21. (2)令(a 2+λ)2=(a 1+λ)·(a 3+λ), 即(9+λ)2=(3+λ)·(21+λ),解得λ=3. 由S n =2a n -3n 及S n +1=2a n +1-3(n +1), 两式相减,得a n +1=2a n +3.由以上结论得a n +1+3=(2a n +3)+3=2(a n +3), 所以数列{a n +3}是首项为6,公比为2的等比数列, 因此存在λ=3,使得数列{a n +3}为等比数列,所以a n+3=(a1+3)×2n-1,a n=3(2n-1)(n∈N*).。
等差等比数列基础知识复习
数列专题复习(一)等差数列1.定义:2.通项公式:3.前n 项和公式:4.性质:基础训练:1.已知为等差数列,且-2=-1, =0,则公差d =2.在等差数列中,,则.3.数列{}n a 满足112n n a a -=+(*2,n n N ≥∈), 21a =,n S 是{}n a 的前n 项和, 则21S = .4.设等差数列的前项和为,若则 .5.等差数列的前项和为,且则6. 已知首项为23,公差为整数的等差数列{}n a ,且670,0a a ><(1)求数列的公差;(2)求前n 项和n S 的最大值;(3)当n S >0时,求n 的最大值。
{}n a 7a 4a 3a }{n a 6,7253+==a a a ____________6=a {}n a n n S 535a a =95S S ={}n a n n S 53655,S S -=4a =7.数列{n a }的前n 项和为210n S n n =-,求数列{}n a 的通项公式。
8. 等差数列的判定和证明(1)已知数列{}n a ,*12112,2232)n n a a a a n n N +===+≥∈,(,判断{}n a 是等差数列吗?(2)已知各项均为正数的数列{}n a 满足1n n a a -=2*2)n n N ≥∈(,,判断数列{lg n a }是否是等差数列。
(3)已知数列{}n a 中,135a =,112n n a a -=-*2)n n N ≥∈(,,数列{}n b 满足11n n b a =- (*n N ∈)①求证数列{}n b 是等差数列;②求数列{}n a 中的最大项与最小项,并说明理由。
(一)等比数列1.定义:2.通项公式:3.前n 项和公式:4.性质:基础训练:1.在各项都为正数等比数列{}n a 中,首项13a =,前三项和为21,则345a a a ++等于A 33B 72C 84D 1892.等比数列{}n a 中,29a =,5243a =,则{}n a 前4项和为3.等比数列{}n a 中,若331,3a S ==,则q =4.等比数列{}n a 中,7116a a ⋅=,4145a a +=,则2010a a 等于5. 在数列{}n a 中,()10,1n n S ka k k =+≠≠,(1)求证:{}n a 是等比数列; (2)求通项公式n a 。
等差数列等比数列练习题
等差数列等比数列练习题等差数列和等比数列是数学中常见的两种数列。
它们在数学和实际生活中都有着广泛的应用。
通过练习题的形式,我们可以更好地理解和掌握这两种数列的性质和运算方法。
一、等差数列练习题1. 求等差数列1,4,7,10,...的第n项。
解析:等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差。
根据题目中的数列,首项a1=1,公差d=3。
代入公式得到an = 1 + (n-1)3。
2. 已知等差数列的首项为5,公差为2,若数列的第n项为23,求n。
解析:根据等差数列的通项公式an = a1 + (n-1)d,代入已知条件得到23 = 5 + (n-1)2。
解方程得到n = 10。
3. 若等差数列的前n项和为Sn = 3n^2 + 2n,求数列的首项和公差。
解析:等差数列的前n项和公式为Sn = n/2(a1 + an),代入已知条件得到3n^2 + 2n = n/2(a1 + a1 + (n-1)d)。
化简得到3n^2 + 2n = n/2(2a1 + (n-1)d)。
由此可得2a1 + (n-1)d = 6n + 4。
由于a1和d都是整数,所以2a1 + (n-1)d必须是偶数。
因此,6n + 4必须是偶数,即n必须是奇数。
又因为Sn = 3n^2 + 2n,所以n必须是奇数时Sn才是整数。
根据这个条件,我们可以列举n的值,找到满足条件的n。
当n = 1时,Sn = 5;当n = 3时,Sn = 35;当n = 5时,Sn = 105。
由此可得首项a1 = 5,公差d = 6。
二、等比数列练习题1. 求等比数列2,6,18,54,...的第n项。
解析:等比数列的通项公式为an = a1 * r^(n-1),其中a1为首项,r为公比。
根据题目中的数列,首项a1=2,公比r=3。
代入公式得到an = 2 * 3^(n-1)。
2. 已知等比数列的首项为4,公比为0.5,若数列的第n项为1/128,求n。
等差数列与等比数列比较基础训练题(含详解)
等差数列与等比数列比较基础训练题(含
详解)
等差数列与等比数列比较基础训练题(含详解)
问题一
已知等差数列的首项为 a1,公差为 d,求第 n 项的公式。
答案:第 n 项的公式为 an = a1 + (n-1)d 。
问题二
已知公比为 q,等比数列的首项为 a1,求第 n 项的公式。
答案:第 n 项的公式为 an = a1 * q^(n-1) 。
问题三
已知等差数列的首项为 a1,公差为 d,第 n 项的值为 an,求前n 项和的公式。
答案:前 n 项和的公式为 Sn = (n/2)(a1 + an) 。
问题四
已知公比为 q,等比数列的首项为 a1,第 n 项的值为 an,求前n 项和的公式。
答案:前 n 项和的公式为 Sn = a1 * (q^n - 1) / (q - 1) 。
问题五
已知等差数列的首项为 a1,公差为 d,求等差数列的公差。
答案:公差为 d。
问题六
已知公比为 q,等比数列的首项为 a1,求等比数列的公比。
答案:公比为 q。
问题七
已知等差数列的首项为 a1,等差为 d,前 n 项和为 Sn,求 n。
答案:n = (2 * Sn - a1) / d + 1。
问题八
已知等比数列的首项为 a1,公比为 q,前 n 项和为 Sn,求 n。
答案:n = log(q * Sn / a1) / log(q) + 1。
以上是等差数列与等比数列的基础训练题及详解,希望对您有帮助。
等差与等比数列习题和答案
等差与等比数列1.数列1,3,7,15,…的通项公式a n 等于( ). (A )2n (B )2n +1 (C )2n -1 (D )2n -1【提示】排除法.由已知,各项均为奇数.所以(A )、(D )不正确.对于(B ),由于n =1时,21+1=3.所以(B )也不正确.也可以直接归纳出2n -1. 【答案】(C ).2.已知等差数列的公差为d ,它的前n 项和S n =-n 2,那么( ). (A )a n =2 n -1,d =-2 (B )a n =2 n -1,d =2 (C )a n =-2 n +1,d =-2 (D )a n =-2 n +1,d =2 【提示】由S n =-n 2 知,a 1=S 1=-1,a 2=S 2-a 1=-3,从而d =-2,且a n =a 1+(n -1)d =-1+(n -1)〃(-2)=-2 n +1. 【答案】(C ).3.在a 和b (a ≠b )两数之间插入n 个数,使它们与a 、b 组成等差数列,则该数列的公差为( ). (A )na b - (B )1+-n a b (C )1+-n b a (D )2+-n a b【提示】b =a +[(n +2)-1]d . 【答案】(B ).4.数列{a n }中,a n =-2 n +100,当前n 项和S n 达到最大值时,n 等于( ).(A )49 (B )50 (C )51 (D )49或50【提示】令a n =-2 n +100≥0,得n ≤50.即a 49 以前各项均为正数,a 50=0,故S 49 或S 50 最大.【答案】(D ).5.等比数列{a n }的首项a 1=-1,前n 项和为S n ,若510S S =3231,则510a a 等于( ). (A )-321 (B )-21 (C )321 (D )21【提示】由已知可求得q =-21. 【答案】(A ).6.等差数列{a n }中,a 1>0,S 5=S 11,则第一个使a n <0的项是( ). (A )a 7 (B )a 8 (C )a 9 (D )a 10【提示】由S 5=S 11 得2 a 1+15 d =0,又a 1>0,所以d <0.而2 a n =2 a 1+2(n -1)d =(2 n -17)d <0,所以2 n -17>0即n >8.5. 【答案】(C ).7.已知数列{a n }中,a 3,a 10 是方程x 2-3 x -5=0的两根,若{a n }是等差数列,则a 5+a 8=___________________;若{a n }是等比数列,则a 6〃a 7=______________.【提示】a 3+a 10=3,a 3a 10=-5.再利用已知与所求中的关系可求. 【答案】a 5+a 8=a 3+a 10=3;a 6〃a 7=a 3〃a 10=-5.8.在等比数列{a n }中,若其中三项a 1、a 2、a 4 又成等差数列,则公比是_____________.【提示】由已知,得2(a 1q )=a 1+a 1q 3 即q 3-2 q +1=0. 【答案】1或251±-.9.等差数列{a n }的公差d >0.已知S 6=51,a 2〃a 5=52.则S 7=_______________.【提示】列出a 1 和d 的方程组,求a 1 和d .进而求S 7 .或由S 6=2)(661a a +=3(a 2+a 5)=51,得方程组⎩⎨⎧=⋅=+52175252a a a a ,求出a 2,a 5,进而求S 7 . 【答案】70.10.已知等差数列{a n }的公差d ≠0,且a 1、a 3、a 9 成等比数列,则1042931a a a a a a ++++=___________.【提示】由已知推出a 1=d (d ≠0),并代入所求式中,消去d 即可. 【答案】1613.11.已知数列{}n a 的通项公式a n =3n -50,则当n=______时,S n 的值最小,S n 的最小值是__________。
等差数列与等比数列类比总结(全面知识点+100道练习题附解析)精编材料word版
等差数列与等比数列知识点总结及经典题目100道练习题:答案解析:14d +5 6解析:nS有最小值,可知1a<,0d>761aa<-变形得676a aa+<,故6a<,67a a+>671121212()12()22a aa aS++==>当12n<时,nS很明显都是小于0的故nS取到最小正数时的n为12.答案:1257解析:由1020S S=知对称轴为15n=,故最大值为前15项之和.答案:A5 8解析:41434442S a d⨯=+=,81878562S a d⨯=+=两式联立解得114a=,2d=-故2(1)14(2)152nn nS n n n-=+⨯-=-+对称轴为7.5,故当7n=或8n=时取最大值27715756S=-+⨯=.答案:最大值为7856S S==59解析:根据对称性,由67S S=可知58S S=,49S S=由中间到两端以此减小,所以985S S S<=,C选项错误.答案:C6 0解析:由条件可知函数零点在18与19之间,又函数过原点则对称轴应介于182与192之间,即大于9小于9.5数列的下标只能取正整数,离对称轴最近的正整数为9,故9S最大.答案:C数学浪子整理制作,侵权必究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.选择题
1.2005是数列7,13,19,25,31,,中的第( )项.A. 332 B. 333 C. 334 D. 335
2.在等差数列{}n a 中,若===371,313a d a 则,( )
(A )12 (B )15 (C )17 (D )16
3.在等差数列中,若a 2=4,d =3则9S =( )
(A )117 (B )10 (C )99 (D )90
4.等差数列3,7,11,,---的一个通项公式为( )
A. 47n -
B. 47n --
C. 41n +
D. 41n -+
5.已知等差数列的公差为d ,它的前n 项和S n =n 2,那么( ).
(A )a n =2n -1,d =-2 (B )a n =2n -1,d =2
(C )a n =-2n +1,d =-2 (D )a n =-2n +1,d =2
6.在等差数列}{n a 中,已知1254=+a a ,那么它的前8项和=8S ( ) A 12 B 24 C 36 D 48
7.在等比数列{}n a 中,5,6144117=+=⋅a a a a ,则=10
20
a a ( )
A.32
B.23
C. 32或23
D. -32或-23
8.等比数列{}n a 中,已知121264a a a =,则46a a 的值为( )
A .16
B .24
C .48
D .128
9.实数12345,,,,a a a a a 依次成等比数列,其中a 1=2,a 5=8,则a 3的值为(
)
A. -4
B.4
C. ±4
D. 5
10.设等比数列{ n a }的前n 项和为n S ,若 6
3S S =3 ,则 6
9S S =
A . 2 B. 7
3 C. 8
3 D. 31
11.等比数列{}n a 的前n 项和为n S ,若242S S =,则公比为( )
A.1
B.1或-1
C.21
或21
- D.2或-2
12.已知等比数列{a n }的公比为2,前4项的和是1,则前8项的和为
A .15
B .17
C .19
D .21
13.已知{}n a 为等差数列,且7a -24a =-1, 3a =0,则公差d =()
A.-2
B.-12
C.12
D.2 14.在等比数列{n a }中,44a =,则26a a ⋅等于( )
A. 4
B. 8
C. 16
D. 32
15.在等比数列{n a }中,333S a =,则其公比q 的值为( )
A. 12-
B. 12
C. 1或12
- D.1-或12 16.已知为等差数列,,则等于()
A. -1
B. 1
C. 3
D.7
17.如果-1,a,b,c,-9成等比数列,那么( )
A.b=3,ac=9
B.b=-3,ac=9
C.b=3,ac=-9
D.b=-3,ac=-9
18.设{}n a 是等比为正数的等比数列,若a 1=1,a 5=16,则数列{}n a 的前7项的和为( )
A.63
B.64
C.127
D.128
19.等差数列{}n a 的前n 项和为n S ,且3S =6,1a =4, 则公差d 等于
A .1
B 53
C.- 2 D 3 20.设等比数列{}n a 的公比q=2,前n 项和为n S ,则24a S 等于( )
A.2
B.4
C.215
D.2
17 21.设n S 为等比数列{}n a 的前n 项和,已知3432S a =-,2332S a =-,则公比q =
A.3
B.4
C.5
D.6
22.已知各项均为正数的等比数列{}n a ,123a a a =5,789a a a =10,则456a a a =( )
A. 52
B. 7
C. 6
D. 42
23.在等比数列{}n a 中,5,6144117=+=⋅a a a a ,则
=1020a a ( ) A.32 B.23 C. 32或23 D. -32或-2
3 24.等比数列{}n a 中,已知121264a a a =,则46a a 的值为( )
A .16
B .24
C .48
D .128
25.实数12345,,,,a a a a a 依次成等比数列,其中a 1=2,a 5=8,则a 3的值为( )
A. -4
B.4
C. ±4
D. 5
26.设等比数列{ n a }的前n 项和为n S ,若 63S S =3 ,则 69S S = A . 2 B. 73
C. 83
D. 3 27.等比数列{}n a 的前n 项和为n S ,若242S S =,则公比为( )
A.1
B.1或-1
C.
21或2
1- D.2或-2 28.已知等比数列{a n }的公比为2,前4项的和是1,则前8项的和为
A .15
B .17
C .19
D .21。