开关电源控制环路设计(初级篇)

合集下载

反激式开关电源(flyback)环路设计基础

反激式开关电源(flyback)环路设计基础

反激式开关电源(flyback)是一种常见的电源结构,广泛应用于电子设备中。

它具有结构简单、成本低廉、效率高等优点,在消费电子、工业控制和通信设备等领域被广泛应用。

本文旨在介绍反激式开关电源环路设计的基础知识,包括工作原理、设计步骤和注意事项。

一、反激式开关电源的工作原理1.1 反激式开关电源的基本结构反激式开关电源由输入滤波器、整流桥、高频变压器、功率开关器件、输出整流滤波器、控制电路等组成。

其中,高频变压器是反激式开关电源的关键部件,通过变压器实现输入电压的隔离和变换,功率开关器件则控制变压器的工作状态,实现电源的调节和稳定输出。

1.2 反激式开关电源的工作原理反激式开关电源通过功率开关器件周期性地将输入电压斩波,将输入电能存储在变压器的磁场中,然后再将其转换为输出电压。

在工作周期的后半段,存储的能量释放到输出负载上,从而实现对输出电压的调节。

通过控制功率开关器件的导通时间和断态时间,可以实现对输出电压的调节和稳定。

二、反激式开关电源环路设计的基础知识2.1 反激式开关电源的设计步骤(1)确定电源的输入输出参数:包括输入电压范围、输出电压、输出电流、负载调整范围等;(2)选择功率开关器件和高频变压器:根据电源的输入输出参数和工作频率选择合适的功率开关器件和高频变压器;(3)设计反激式开关电源的控制电路:根据所选的功率开关器件和高频变压器设计相应的控制电路,包括PWM控制电路、电源启动电路等;(4)设计输入输出滤波器和保护电路:设计输入输出滤波器,保证电源的输入输出稳定和干净,设计过压、过流、过温等保护电路,保证电源的安全稳定工作。

2.2 反激式开关电源环路设计的注意事项(1)磁性元件的设计:高频变压器和输出感应元件的设计是整个反激式开关电源设计的关键,应合理设计磁芯、线圈匝数等参数,保证磁性元件承载功率、效率和体积的平衡;(2)功率开关器件的选择和驱动:应选择合适的功率开关器件,并设计合理的驱动电路,保证功率开关器件的可靠工作和转换效率;(3)控制电路的设计:应根据功率开关器件的工作特性和工作频率设计合适的PWM控制电路和反馈控制电路,保证电源的稳定可调;(4)输入输出滤波器和保护电路的设计:应合理设计输入输出滤波器和保护电路,保证电源的输入输出稳定和安全可靠。

开关电源环路设计与计算

开关电源环路设计与计算

Ro
+ ss
LCo1 n2 D'2
)
right 系统右半平面零点: On-B 负载电容ESR 零点:
wrz
=
n2Ro (1− D)2 Lm D
wz
=
1 Ro1C
On-Bright confidential
11
右半平面零点(RHZ)的直观理ao解 RHZ在boost, buck-boost, flyback(占空比由输入输出电压和匝比决 np 定)CCM中都存在,而DCM中没有RHZ。 Te 负载突然增加→输出电压下降→EA+PWM 反应→占空比增大(Wrong to Way)→反激时间减小→输出电流减小(通过输出diode)→输出电压下降更多 l (临时)。此即典型RHZ响应特性。 On-Bright Confidentia 在DCM中,占空比增大导致输出电流增大,故不存在此RHZ
fiden 控制模式 n ¾ 电压模式 o ¾ 电流模式
ht C 开关电源系统可分为两大块 -Brig ¾ 负反馈回路(feedback loop) On ¾ 保护功能(OVP, OCP, OTP ……)
On-Bright confidenቤተ መጻሕፍቲ ባይዱial
4
开(OV关no-Bl电traigg源het MC系oon统dfeid基PeWn本tiaMl组tSo成yTsetn部epma分)o
On-Bright confidential
24
环路的补偿考虑

出况一环环通裕者位统对跨也些路路常量高增有(这接可高需补补(频益1G8样,以频要偿偿的带0ai-等n或适极补的网。宽9O0效m者当点偿目络内=na9为r-输引或以的放只0gB°环irn出入者获是在有ig)相路,到一零得:E一h位带A因t地些点足在个C裕宽(为e。零。够带极or量内环rn在点的宽点o)只rf路i环或相内(,da一有m存e路者位等pn个或一在l的极裕效itf导者个i很iae其点量为rl致一极多,t他以(单oP9个点例零h地抵极0Ta°极)如极es方消点.en相点.T点m,环系.pL移和,a4a根路统r3go,一1i据带.低)n个的)实宽从环频零和输际外而路的极增入情的系单或点益输

控制环路设计

控制环路设计

开关电源控制环设计资料来源:Switching power supply control loop design(ASTEC-Application Note 5)译者:smartway1. 绪论在开关模式的功率转换器中,功率开关的导通时间是根据输入和输出电压来调节的。

因而,功率转换器是一种反映输入与输出的变化而使其导通时间被调制的独立控制系统。

由于理论近似,控制环的设计往往陷入复杂的方程式中,使开关电源的控制设计面临挑战并且常常走入误区。

下面几页将展示控制环的简单化近似分析,首先大体了解开关电源系统中影响性能的各种参数。

给出一个实际的开关电源作为演示以表明哪些器件与设计控制环的特性有关。

测试结果和测量方法也包含在其中。

2. 基本控制环概念2.1 传输函数和博得图系统的传输函数定义为输出除以输入。

它由增益和相位因素组成并可以在博得图上分别用图形表示。

整个系统的闭环增益是环路里各个部分增益的乘积。

在博得图中,增益用对数图表示。

因为两个数的乘积的对数等于他们各自对数的和,他们的增益可以画成图相加。

系统的相位是整个环路相移之和。

2.2 极点数学上,在传输方程式中,当分母为零时会产生一个极点。

在图形上,当增益以20dB 每十倍频的斜率开始递减时,在博得图上会产生一个极点。

图1举例说明一个低通滤波器通常在系统中产生一个极点。

其传输函数和博得图也一并给出。

2.3 零点零点是频域范围内的传输函数当分子等于零时产生的。

在博得图中,零点发生在增益以20dB每十倍频的斜率开始递增的点,并伴随有90度的相位超前。

图2描述一个由高通滤波器电路引起的零点。

存在第二种零点,即右半平面零点,它引起相位滞后而非超前。

伴随着增益递增,右半平面零点引起90度的相位滞后。

右半平面零点经常出现于BOOST和BUCK-BOOST转换器中,所以,在设计反馈补偿电路的时候要非常警惕,以使系统的穿越频率大大低于右半平面零点的频率。

右半平面零点的博得图见图3。

开关电源控制环路设计

开关电源控制环路设计

开关电源控制环路设计前馈环节通常由开关电源的输出电压或电流采样电路、误差放大器、比较器和PWM控制器等组成。

开关电源的输出电压或电流通过采样电路进行实时的电压或电流测量,并将测量值与设定值进行比较。

误差放大器将比较器输出的误差信号放大,并输出给PWM控制器。

PWM控制器根据误差信号调整开关管的导通和关断时间,从而控制开关电源输出电压或电流的稳定性。

反馈环节通常由输出电压或电流反馈回路组成。

反馈回路通过将开关电源输出电压或电流与参考电压或电流进行比较,得到误差信号,并将其输入到前馈环节的比较器中。

反馈环节的作用是通过不断地调整开关电源的工作状态,使输出电压或电流尽量接近设定值,并抵消部分外部环境的影响,以保持开关电源稳定工作。

在开关电源控制环路设计中,需要考虑诸多因素。

首先是前馈环节的设计。

前馈环节应具有高增益和低失真的特性,能够准确地将输出电压或电流的变化转换为误差信号,并将其输出给PWM控制器。

其次是PWM控制器的设计。

PWM控制器应能够按照误差信号的大小和方向,精确地调整开关管的导通和关断时间,并保持开关电源输出电压或电流的稳定性。

最后是反馈环节的设计。

反馈环节应能够准确地测量开关电源的输出电压或电流,并将其输入到前馈环节的比较器中。

同时,反馈环节还需考虑去除噪声和抑制振荡等问题,以保证闭环控制系统的稳定性和可靠性。

开关电源控制环路设计的关键是要平衡稳定性和动态响应速度。

稳定性是指开关电源在加载变化或输入电压波动等情况下,输出电压或电流能够尽快地恢复到设定值并保持稳定;而动态响应速度则是指开关电源对设定值的变化能够迅速地响应。

在设计中,需要根据具体的应用需求和制约条件,选择合适的控制算法、滤波器和补偿网络等,以使开关电源控制环路设计达到较好的稳定性和动态响应速度。

总之,开关电源控制环路设计是一个复杂而关键的任务。

它需要综合考虑前馈环节、反馈环节以及稳定性和动态响应速度等因素,以实现开关电源的稳定性和输出精度要求。

开关电源环路设计与实例详解

开关电源环路设计与实例详解

# !
/66
"
第六章
反馈环路的稳定
具有 !"#$%&" 倍频程的增益变化。
图 ’ ( ! ( )) 有 ( !"#$%&" 倍频程的增益, 如果每 &" 倍频程有 *+ 积分电路在超过 ! , - &%! !"& #& 时, 则这条直线的斜率为 ( &。这种电路被称为 ( & 斜率电路。 ( .) !"#$ 的线性衰减, *+ 微分电路有 / 增益逐渐接近于 "#$。如果每 &" 倍频有 !"#$ !"#$%&" 倍频程的增益。在 ! 0 - &%! $ +! - "!, !"! #! 处, 的线性增加, 则这条直线的斜率为 / &。这种电路称为 / & 斜率电路。 ( 1) ( "3 2+ 滤波器在临界阻尼 的条件下, 直到转折频率 & 145 - &%! 增益为 "。频率超过 & 145 后, 开始以 ( 6"#$% - !% 3 % # 3 ) ! !% 3 # 3 , 当频率每 &" 倍频增加的时候, 阻抗 $ 2 和 $ 1 分别以 &" 倍增加和 &" 倍频程的速率衰减。这是因为, 减少。如果每 &" 倍频程有 !"#$ 的衰减, 则这条直线的斜率为 ( &, 每 &" 倍频程有 6"#$ 的衰减, 则这 条直线的斜率为 ( !。这种电路称为 ( ! 斜率电路
一个典型正激变换器的闭环反馈环路

开关电源环路设计及实例详解

开关电源环路设计及实例详解

开关电源环路设计及实例详解一、开关电源的基本原理开关电源是一种将交流电转换为直流电的电源,其基本原理是通过开关管控制变压器的工作状态,从而实现对输入交流电进行变换、整流和稳压的过程。

开关电源具有输出功率大、效率高、体积小等优点,因此被广泛应用于各种电子设备中。

二、开关电源环路的组成1. 输入滤波器:用于滤除输入交流电中的高频噪声和杂波信号,保证后续环节能够正常工作。

2. 整流桥:将输入交流电转换为直流电信号。

3. 直流滤波器:用于滤除直流信号中的纹波和杂波信号,保证输出稳定。

4. 开关变换器:通过控制开关管的导通和截止状态来控制变压器的工作状态,从而实现对输入信号的变换。

5. 输出稳压器:用于对输出直流信号进行稳压处理,保证输出恒定。

三、开关电源环路设计步骤1. 确定输出功率和输出电压范围。

2. 选择合适的变压器。

3. 设计整流桥和直流滤波器。

4. 设计开关变换器,包括选择合适的开关管和控制电路。

5. 设计输出稳压器,包括选择合适的稳压芯片和反馈电路。

6. 进行整个电路的仿真和优化。

7. 进行实际电路的搭建和调试。

四、开关电源环路设计实例以12V/5A开关电源为例,进行具体设计。

1. 确定输出功率和输出电压范围:输出功率为60W,输出电压范围为11-13V。

2. 选择合适的变压器:根据需求选择带有多个二次侧绕组的变压器,其中一个二次侧用于提供控制信号,另一个二次侧用于提供输出信号。

通过计算得到变压比为1:2。

3. 设计整流桥和直流滤波器:采用全波整流桥结构,并选用大容量滤波电容进行直流滤波处理。

4. 设计开关变换器:选用MOS管作为开关管,并采用反激式结构进行设计。

控制信号通过脉冲宽度调制(PWM)技术进行控制。

同时,在输入端加入输入滤波器进行滤波处理。

5. 设计输出稳压器:选用LM2576芯片进行稳压处理,通过反馈电路控制输出电压。

同时,加入输出滤波电容进行滤波处理。

6. 进行整个电路的仿真和优化:通过仿真软件进行各个环节的仿真和优化,保证整个电路的性能符合要求。

开关电源的环路设计

开关电源的环路设计

开关电源反馈设计除了磁元件设计以外,反馈网络设计也是开关电源了解最少、且非常麻烦的工作。

它涉及到模拟电子技术、控制理论、测量和计算技术等相关问题。

开关电源环路设计的目标是要在输入电压和负载变动范围内,达到要求的输出(电压或电流)精度,同时在任何情况下应稳定工作。

当负载或输入电压突变时,快速响应和较小的过冲。

同时能够抑制低频脉动分量和开关纹波等等。

为了较好地了解反馈设计方法,首先复习模拟电路中频率特性、负反馈和运算放大器基本知识,然后以正激变换器为例,讨论反馈补偿设计基本方法。

并介绍如何通过使用惠普网络分析仪HP3562A 测试开环响应,再根据测试特性设计校正网络和验证设计结果。

最后对仿真作相应介绍。

6.1 频率响应在电子电路中,不可避免存在电抗(电感和电容)元件,对于不同的频率,它们的阻抗随着频率变化而变化。

经过它们的电信号不仅发生幅值的变化,而且还发生相位改变。

我们把电路对不同频率正弦信号的输出与输入关系称为频率响应。

6.1.1 频率响应基本概念电路的输出与输入比称为传递函数或增益。

传递函数与频率的关系-即频率响应可以用下式表示600 )()(f f G Gϕ∠=&其中G (f )表示为传递函数的模(幅值)与频率的关系,称为幅频响应;而∠ϕ(f ) 表示输出信号与输入信号的相位差与频率的关系,称为相频响应。

典型的对数幅频响应如图6.1所示,图6.1(a)为幅频特性,它是画在以对数频率f 为横坐标的单对数坐标上,纵轴增益用20log G (f )表示。

图 6.1(b)为相频特性,同样以对数频率f 为横坐标的单对数坐标上,纵轴表示相角ϕ。

两者一起称为波特图。

在幅频特性上,有一个增益基本不变的频率区间,而当频率高于某一频率或低于某一频率,增益都会下降。

当高频增高时,当达到增益比恒定部分低3dB 时的频率我们称为上限频率,或上限截止频率f H ,大于截止频率的区域称为高频区;在低频降低时,当达到增益比恒定部分低3dB 时的频率我们称为下限频率,或下限截止频率f L ,低于下限截止频率的区域称为低频区;在高频截止频率与低频截止频率之间称为中频区。

开关电源环路设计与计算

开关电源环路设计与计算

开关电源环路设计与计算开关电源是一种将输入的直流电转换为所需要的输出电压的电源。

其主要由开关元件、功率变压器、整流电路和滤波电路组成。

在进行开关电源的设计与计算时,需要考虑到输入电压范围、输出电压稳定性、功率转换效率、电磁干扰等因素。

首先,设计开关电源需要确定所需的输入电压范围和输出电压稳定性。

根据实际需求选择开关电源的输入电压范围,一般常见的输入电压为220V交流电。

对于输出电压稳定性的要求,需要根据实际应用来确定。

例如,对于电子设备来说,输出电压稳定性要求较高。

其次,需要选择开关元件和功率变压器。

开关元件一般选择功率MOSFET或IGBT,这两种开关元件都具有较高的开关速度和效率。

功率变压器则需要根据输出电压和输出功率来选择合适的型号。

然后,设计整流电路。

整流电路一般采用整流桥进行整流。

通过改变整流桥的二极管的导通方式,可以实现不同的输出电压。

最后,设计滤波电路。

滤波电路可以通过电感和电容的组合来实现对电源纹波的滤除。

通过计算电感和电容的取值,可以达到所需的滤波效果。

在进行开关电源的计算时,需要进行一系列的参数计算。

首先,需要计算开关元件的导通和关断损耗。

根据开关元件的参数,可以计算其导通状态下的功耗和关断状态下的功耗。

然后,需要进行功率变压器的设计和计算。

根据输入电压和输出电压的比值,可以计算变压器的变比。

同时,根据输出功率的大小,可以计算变压器的功率。

接下来,需要计算整流电路的输出电压和输出电流。

根据变压器的变比和整流电路的设计,可以计算输出电压和输出电流的大小。

最后,需要计算滤波电路的电感和电容的取值。

可以根据输出电压纹波的要求,选择合适的电感和电容。

除了上述的设计和计算,还需要考虑到开关电源的保护和安全性。

例如,需要添加过压保护、过流保护和短路保护等电路来保护开关电源和输出负载的安全。

总之,开关电源的设计与计算是一个复杂的过程,需要考虑到多个因素。

通过正确的设计和计算,可以实现稳定、高效、安全的开关电源。

开关电源控制环路设计

开关电源控制环路设计

开关电源控制环路设计稳压电源工作原理我们需要什么样的电源?2、与环路相关的基本概念电源系统框图Bode图(由奈奎斯特图测定稳态裕量是很麻烦的)穿越频率和相位裕量,增益裕量■ 穿越频率fc(crossover frequency):增益曲线穿越0dB线的频率点■ 相位裕量phase margin):相位曲线在穿越频率处的相位和-180度之间的相位差■ 增益裕量(Gain margin):增益曲线在相位曲线达到-180度的频率处对应的增益环路稳定性判据根据奈奎斯特稳定性判据,当系统的相位裕量大于0度时,此系统是稳定的。

■ 准则1:在穿越频率处,总开环系统要有大于30度的相位裕量;■ 准则2:为防止-2增益斜率的电路相位快速变化,系统的开环增益曲线在穿越频率附近的增益斜率应为-1( -20db/10倍频程)■ 准则3: 增益裕量是开环系统的模的度量,该变化可能导致曲线刚好通过-1 点。

一般需要6db的增益裕量。

备注:应当注意,并不是绝对要求开环增益曲线在穿越频率附近的增益斜率为必须为-1,但是由于-1增益斜率对应的相位曲线相位延迟较小,且变化相对缓慢,因此它能够保证,当某些环节的相位变化被忽略时,相位曲线仍将具有足够的相位裕量,使系统保持稳定。

要满足上述的3个准则,我们需要知道开环系统所有环节的增益和相位情况,引入传递函数,零极点的概念可以很好的分析这个问题。

传递函数零点极点如果输入和反馈支路是由不同的电阻和电容构成的,则幅频和相频曲线将会有许多种形式。

把阻抗Z1和Z2用复变量s(s=jw)表示,经过一系列的数学运算,将会得到传递函数。

由传递函数就可以绘制增益/相位曲线。

通过代数运算,把G(s)表示为G(s)=N(s)/D(s),其分子和分母都是s的函数,然后将分子和分母进行因式分解,表示成多个因式的乘积,即G(s)=N(s)/D(s)=[(1+s/2*pi*fz1)(1+s/2*pi*fz2)(1+/2*pi*fz3)]/[(s/2*pi*f0)*(1+s/2*pi*fp1)*( 1+s/2*pi*fp2)* (1+s/2*pi*fp3)],分子中对应的频率fz为零点频率,而与分母中对应的频率称fp为极点频率。

开关电源控制环路分析

开关电源控制环路分析

开关电源控制环路分析摘 要开关电源被誉为高效节能型电源,它代表着稳压电源的发展方向,现已成为稳压电源的主流产品。

同时,开关电源也是反馈回路控制系统,所谓电路反馈,就是指将放大电路的输出量(电压或电流信号)的部分或全部,通过一定方式(元件或网络)返送到输入回路的过程,完成输出量向输入端回送的电路称为反馈元件或反馈网络。

关键词 零极点 幅值裕度 相位裕度1 引言稳定的反馈环路对开关电源来说是非常重要的,如果没有足够的相位裕度和幅值裕度,电源的动态性能就会很差或者出现输出振荡。

下面先介绍三种控制方式的各种零,极点的幅频和相频特性,再对最常用的反馈调整器TL431的零、极点及特性进行分析。

Topswitch是市场上广泛应用的反激式电源的智能芯片,它的控制方式是比较复杂的电压型控制,内部集成了一部分补偿功能,最后分析一个Topswitch设计的电源,对它的环路进行解剖。

2 环路补偿方式及TL431特性2.1 单极点补偿适用于电流型控制和工作在DCM方式并且滤波电容的ESR零点频率较低的电源。

其主要作用原理是把控制带宽拉低,在功率部分或加有其他补偿的部分的相位达到180度以前使其增益降到0dB。

图12.2 双极点,单零点补偿适用于功率部分只有一个极点的补偿,例如所有电流型控制和非连续方式电压型控制。

图22.3 三极点、双零点补偿适用于输出带LC谐振的拓扑,例如所有没有用电流型控制的电感电流连续方式拓扑。

图32.4 TL431输出供电时的零极点特性TL431是开关电源次级反馈最常用的基准和误差放大器件,其供电方式不同对它的传递函数有很大的影响。

图4其中:(1)(2)将(2)代入(1)得到:从上面的公式可以看到,在输出直接给431供电的情况下,零点的位置在1/[2π(R+R1)C]处,而不是1/(2πRC)。

即使没有R,只接一个C的情况下,零点还是存在,如果R1远大于R,零点的位置主要有反馈网络的上分压电阻决定。

开关电源(Buck电路)的小信号模型及环路设计

开关电源(Buck电路)的小信号模型及环路设计

0 引言设计一个具有良好动态和静态性能的开关电源时,控制环路的设计是很重要的一个部分。

而环路的设计与主电路的拓扑和参数有极大关系。

为了进行稳定性分析,有必要建立开关电源完整的小信号数学模型。

在频域模型下,波特图提供了一种简单方便的工程分析方法,可用来进行环路增益的计算和稳定性分析。

由于开关电源本质上是一个非线性的控制对象,因此,用解析的办法建模只能近似建立其在稳态时的小信号扰动模型,而用该模型来解释大范围的扰动(例如启动过程和负载剧烈变化过程)并不完全准确。

好在开关电源一般工作在稳态,实践表明,依据小信号扰动模型设计出的控制电路,配合软启动电路、限流电路、钳位电路和其他辅助部分后,完全能使开关电源的性能满足要求。

开关电源一般采用Buck电路,工作在定频PWM控制方式,本文以此为基础进行分析。

采用其他拓扑的开关电源分析方法类似。

1 Buck电路电感电流连续时的小信号模型为理想开图1为典型的Buck电路,为了简化分析,假定功率开关管S和D1关,滤波电感L为理想电感(电阻为0),电路工作在连续电流模式(CCM)下。

R为滤波电容C的等效串联电阻,R o为负载电阻。

各状态变量的正方向定义如图e1中所示。

图1 典型Buck电路S导通时,对电感列状态方程有L=U- U o (1)in续流导通时,状态方程变为S断开,D1L=-U(2)o占空比为D时,一个开关周期过程中,式(1)及式(2)分别持续了DT s和(1-D)T s的时间(T s为开关周期),因此,一个周期内电感的平均状态方程为L=D(U-U o)+(1-D)(-U o)=DU in-U o(3)in稳态时,=0,则DU in=U o。

这说明稳态时输出电压是一个常数,其大小与占空比D和输入电压U in成正比。

由于电路各状态变量总是围绕稳态值波动,因此,由式(3)得L=(D+d)(Uin+)-(U o+) (4)式(4)由式(3)的稳态值加小信号波动值形成。

开关电源的小信号模型及环路设计

开关电源的小信号模型及环路设计

开关电源的小信号模型及环路设计文章作者:万山明 吴 芳文章类型:设计应用 文章加入时间:2004年8月31日22:9文章出处:电源技术应用摘要:建立了Buck电路在连续电流模式下的小信号数学模型,并根据稳定性原则分析了电压模式和电流模式控制下的环路设计问题。

关键词:开关电源;小信号模型;电压模式控制;电流模式控制引言设计一个具有良好动态和静态性能的开关电源时,控制环路的设计是很重要的一个部分。

而环路的设计与主电路的拓扑和参数有极大关系。

为了进行稳定性分析,有必要建立开关电源完整的小信号数学模型。

在频域模型下,波特图提供了一种简单方便的工程分析方法,可用来进行环路增益的计算和稳定性分析。

由于开关电源本质上是一个非线性的控制对象,因此,用解析的办法建模只能近似建立其在稳态时的小信号扰动模型,而用该模型来解释大范围的扰动(例如启动过程和负载剧烈变化过程)并不完全准确。

好在开关电源一般工作在稳态,实践表明,依据小信号扰动模型设计出的控制电路,配合软启动电路、限流电路、钳位电路和其他辅助部分后,完全能使开关电源的性能满足要求。

开关电源一般采用Buck电路,工作在定频PWM控制方式,本文以此为基础进行分析。

采用其他拓扑的开关电源分析方法类似。

1 Buck电路电感电流连续时的小信号模型图1为典型的Buck电路,为了简化分析,假定功率开关管S和D1为理想开关,滤波电感L为理想电感(电阻为0),电路工作在连续电流模式(CCM)下。

Re为滤波电容C的等效串联电阻,Ro为负载电阻。

各状态变量的正方向定义如图1中所示。

S导通时,对电感列状态方程有L(dil/dt)=Uin-Uo (1)S断开,D1续流导通时,状态方程变为L(dil/dt)=-Uo (2)占空比为D时,一个开关周期过程中,式(1)及式(2)分别持续了DTs和(1-D)Ts的时间(Ts为开关周期),因此,一个周期内电感的平均状态方程为L(dil/dt)=D(Uin-Uo)+(1-D)(-Uo)=DUin-Uo (3)稳态时,=0,则DUin=Uo。

开关电源环路设计

开关电源环路设计

开关电源环路设计1 功率变换部分的小信号模型1.1 电压型控制1.1.1 开关电源的控制框图:Vg M1L1检测1.1.2 电压型开关电源电路小信号模型的传递函数:控制对输出:Gvd(s)=v/dG vd s ()G d01s ωz -1s Q ω0⋅+s ω0⎛ ⎝⎫⎪⎭2+⋅1.2 电流型控制Vg M1L1补偿网络检测电1.2.1 电流型的小信号模型的简化传递函数(电流连续):BUCK Gvc(s)=R/(1+s*R*C)BOOST Gvc(s)=D’*R/2*(1-s*L/D’2/R)/(1+s*R*C/2)BUCK-BOOST Gvc(s)=-D’*R/(1+D)*(1-s*D*L/D’2*R)/[1+s*R*C/(1+D)]2 补偿网络的形式:2.1 超前补偿(PD):Gc(s)=Gco*(1+s/Wz)/(1+s/Wp)常用于包含双极点的系统中,如BUCK电路,能增加环路带宽,同时保持适当的相位裕度。

低频零点Wz使补偿网络Gc的幅值随频率+20dB/dec增加,为此,要引入一个频率高一点的极点Wp来抵消Wz 在高频段的作用。

相位补偿最大处在fphmax=sqrt(fz*fp),对应的幅值补偿是Gc*sqrt(fp/fz)。

为使补偿后,环路在fc处有最大的相位补偿,则补偿网络中的fz、fp按如下计算:fz=fc*sqrt[(1-sin(θ))/(1+sin(θ))] fp=fc*sqrt[(1+sin(θ))/(1-sin(θ))]2.2 滞后补偿(PI):Gc(s)=Gc∞*(1+WL/s)常用于增加环路的低频增益,提高电源的稳压精度。

常用于具有单个极点的补偿,如电流型的补偿。

假设希望补偿后的开环传递函数的交越频率在fc,而未补偿的开环传递函数在fc处的增益是Tuo(dB),则:Gc∞(dB)=-Tuo(dB);补偿网络的转折频率fL应远小于fc,避免其对原有开环传递函数的相位裕度的影响,可以取fL=fc/102.3 超前滞后补偿(PID):Gc(s)=Gcm*(1+WL/s)*(1+s/Wz)/(1+s/Wp1)/(1+s/Wp2)超前补偿用于增加相位裕度,滞后补偿用于提高稳压精度。

开关电源Buck电路的小信号模型及环路设计

开关电源Buck电路的小信号模型及环路设计

0 引言设计一个具有良好动态和静态性能的开关电源时,控制环路的设计是很重要的一个部分。

而环路的设计与主电路的拓扑和参数有极大关系。

为了进行稳定性分析,有必要建立开关电源完整的小信号数学模型。

在频域模型下,波特图提供了一种简单方便的工程分析方法,可用来进行环路增益的计算和稳定性分析。

由于开关电源本质上是一个非线性的控制对象,因此,用解析的办法建模只能近似建立其在稳态时的小信号扰动模型,而用该模型来解释大范围的扰动(例如启动过程和负载剧烈变化过程)并不完全准确。

好在开关电源一般工作在稳态,实践表明,依据小信号扰动模型设计出的控制电路,配合软启动电路、限流电路、钳位电路和其他辅助部分后,完全能使开关电源的性能满足要求。

开关电源一般采用Buck电路,工作在定频PWM控制方式,本文以此为基础进行分析。

采用其他拓扑的开关电源分析方法类似。

1 Buck电路电感电流连续时的小信号模型为理图1为典型的Buck电路,为了简化分析,假定功率开关管S和D1想开关,滤波电感L为理想电感(电阻为0),电路工作在连续电流模式(CCM)下。

R e为滤波电容C的等效串联电阻,R o为负载电阻。

各状态变量的正方向定义如图1中所示。

图1 典型Buck电路S导通时,对电感列状态方程有L=U- U o (1)in续流导通时,状态方程变为S断开,D1L=-U(2)o占空比为D时,一个开关周期过程中,式(1)及式(2)分别持续了DT s 和(1-D)T s的时间(T s为开关周期),因此,一个周期内电感的平均状态方程为L=D(U-U o)+(1-D)(-U o)=DU in-U o(3)in稳态时,=0,则DU in=U o。

这说明稳态时输出电压是一个常数,其大小与占空比D和输入电压U in成正比。

由于电路各状态变量总是围绕稳态值波动,因此,由式(3)得L=(D+d)(Uin+)-(U o+) (4)式(4)由式(3)的稳态值加小信号波动值形成。

开关电源的环路设计

开关电源的环路设计

开关电源的环路设计开关电源的环路设计可以分为三个基本阶段:输入滤波、稳压电路和输出滤波。

输入滤波是为了保护开关电源不受到噪音干扰而设计的。

这是通过输入电容器和电感器形成的LC滤波器来实现的。

在输入电容器的两端串联一个电感器就可以构成LC滤波器。

LC滤波器的作用是隔离输入AC 信号,并将噪声信号注入到地线。

稳压电路是为了保持开关电源的输出电压稳定而设计的。

它包括一个误差放大器、一个脉冲宽度调制器和一个电感器滤波器。

误差放大器可以检测输出电压,如果电压低于设定值,误差放大器就调整PWM信号来增加输出电压。

PWM信号使开关管的工作周期保持不变,但占空比发生变化。

电感器滤波器可以使输出电压更平滑,减少负载干扰。

输出滤波器可以消除由于PWM信号引起的高频噪声,并将噪声杂波注入地线。

输出电容器和电感器可以形成LC滤波器,并且这种滤波器和输入LC滤波器类似,使高频噪声注入地线。

在开关电源的环路设计中,需要考虑的一个重要因素是交叉互干扰。

所谓的交叉互干扰是指输入、输出和控制信号之间的相互影响。

设计师应最小化电路中不同元件之间的电感和电容,以减少交叉互干扰的影响。

另外,还要注意开关电源在额定负载下的稳定性。

如果负载电流或电压波动严重,将会导致输出电压的变化。

为了保持稳定性,可以选择适当的高功率输出管,以及适当的补偿电路。

在实际设计中,环路设计需要考虑到许多因素,如高温和高频噪声等环境因素,以保证开关电源的安全和稳定性。

总之,开关电源的环路设计关键在于实现有效的输入和输出滤波,并确保稳压电路的可靠性和稳定性。

开关电源控制环路设计(初级篇)

开关电源控制环路设计(初级篇)

开关电源控制环路设计(初级篇)电源联盟---高可靠电源行业第一自媒体在这里有电源技术干货、电源行业发展趋势分析、最新电源产品介绍、众多电源达人与您分享电源技术经验,关注我们,搜索微信公众号:Power-union,与中国电源行业共成长!开关电源控制环路设计(初级篇)1、环路和直流稳压电源的关系稳压电源工作原理我们需要什么样的电源?原文档:开关电源控制环路设计(初级篇)下载方法:请看文章底部第一条留言2、与环路相关的基本概念电源系统框图Bode图(由奈奎斯特图测定稳态裕量是很麻烦的)穿越频率和相位裕量,增益裕量■ 穿越频率fc(crossover frequency):增益曲线穿越0dB线的频率点■ 相位裕量phase margin):相位曲线在穿越频率处的相位和-180度之间的相位差■ 增益裕量(Gain margin):增益曲线在相位曲线达到-180度的频率处对应的增益环路稳定性判据根据奈奎斯特稳定性判据,当系统的相位裕量大于0度时,此系统是稳定的。

■ 准则1:在穿越频率处,总开环系统要有大于30度的相位裕量;■ 准则2:为防止-2增益斜率的电路相位快速变化,系统的开环增益曲线在穿越频率附近的增益斜率应为-1(-20db/10倍频程)■ 准则3: 增益裕量是开环系统的模的度量,该变化可能导致曲线刚好通过-1 点。

一般需要6db的增益裕量。

备注:应当注意,并不是绝对要求开环增益曲线在穿越频率附近的增益斜率为必须为-1,但是由于-1增益斜率对应的相位曲线相位延迟较小,且变化相对缓慢,因此它能够保证,当某些环节的相位变化被忽略时,相位曲线仍将具有足够的相位裕量,使系统保持稳定。

要满足上述的3个准则,我们需要知道开环系统所有环节的增益和相位情况,引入传递函数,零极点的概念可以很好的分析这个问题。

传递函数零点极点如果输入和反馈支路是由不同的电阻和电容构成的,则幅频和相频曲线将会有许多种形式。

把阻抗Z1和Z2用复变量s(s=jw)表示,经过一系列的数学运算,将会得到传递函数。

开关电源环路设计(详细)

开关电源环路设计(详细)
0 (dB) 1 -20 -2 -40 -60 5 -80 102 103 104 105 f/Hz 102 103 104 105 (a) (b) 图 6.32 临界阻尼 LC 滤波器输出电容无 ESR(a)和有 ESR(b)幅频特性 4 2 3 fc Uin Lo Co Uo Ro 0 (dB) 1 -20 -2 -40 -60 4 fesr -1 5 6 f/Hz 2 3 Uin Lo Co Resr Uo Ro
* *
22
到三角波终止时间 t2。对于这样的芯片,如果驱动 NPN 晶体管,输出晶体管导通(如果从芯片的输出 晶体管发射极输出) ,这样会随晶体管导通时间增加,使得 Uo 增加,这是正反馈,而不是负反馈。因此, TL494 一类芯片,Us 送到 EA 的同相输入端,Uo 增加使得导通时间减少,就可以采用芯片的输出晶体 管的发射极驱动。 图 6.31 电路是负反馈且低频稳定。但在环路内,存在低电平噪音电压和含有丰富连续频谱的瞬态 电压。这些分量通过输出 Lo,Co 滤波器、误差放大器和 Uea 到 Uy 的 PWM 调节器引起增益改变和相移。 在谐波分量中的一个分量,增益和相移可能导致正反馈,而不再是负反馈,在 6.2.7 节我们已讨论过闭 环振荡的机理。以下就开关电源作加体分析。 6.4.2 环路增益 还是来研究图 6.31 正激变换器。 假定反馈环在 B 点-连接到误差放大器的反相输入端断开成开环。 任何一次谐波分量的噪声从 B 经过 EA 放大到 Uea,由 Uea 传递到电压 Uy 的平均值,和从 Uy 的平均值通 过 Lo,Co 返回到 Bb(正好是先前环路断开点)都有增益变化和相移。 这就是 6.2.7 讨论的环路增益信号通路。 如果假定某个频率 f1 的信号在 B 注入到环路中,回到 B 的信号的幅值和相位被上面提到回路中的 元件改变了。如果改变后的返回的信号与注入的信号相位精确相同,而且幅值等于注入信号,即满足 GH=-1。要是现在将环闭合(B 连接到 Bb) ,并且注入信号移开,电路将以频率 f1 继续振荡。这个引起 开始振荡的 f1 是噪声频谱中的一个分量。 为达到输出电压(或电流)的静态精度,误差放大器必须有高增益。高增益就可能引起振荡。误 差放大器以外的传递函数一般无法改变, 为避免加入误差放大器以后振荡, 一般通过改变误差放大器的 频率特性(校正网络) ,使得环路频率特性以-20dB/dec 穿越,并有 45°相位裕度,以达到闭环的稳定。 以下我们研究误差放大器以外的电路传递函数的频率特性。 1. 带有 LC 滤波电路的环路增益 Gf 除了反激变换器(输出滤波仅为输出电容)外,这里讨论的所有拓扑都有输出滤波器。通常滤波 器设计时根据脉动电流为平均值(输出电流)的 20%选取滤波电感。根据允许输出电压纹波和脉动电 流值以及电容的 ESR 选取输出滤波电容。如果电解电容没有 ESR(最新产品) ,只按脉动电流和允许纹 波电压选取。由此获得输出滤波器的谐振频率,特征阻抗,ESR 零点频率。在频率特性一节图 6.7 示出 了 LC 滤波器在不同负载下的幅频和相频特性。 为简化讨论,假定滤波器为临界阻尼 Ro=1.0Zo,带有负载电阻的输出 LC 滤波器的幅频特性如图 6.32(a)中 12345 所示。此特性假定输出电容的 ESR 为零。在低频时,Xc>>XL,输入信号不衰减,增益 为 1 即 0dB。在 f0 以上,每十倍频 Co 阻抗以 20dB 减少,而 Lo 阻抗以 20dB 增加,使得增益变化斜率为 -40dB/dec。当然在 f0 增益不是突然转变为-2 斜率的。实际上在 f0 前增益曲线平滑离开 0dB 曲线,并 在 f0 后不久渐近趋向-40dB/dec 斜率。这里为讨论方便,增益曲线突然转向-40dB/dec。 如果使相应于 Ro=1.0Zo 条件下稳定,那么在其它负载也将稳定。但应研究电路在轻载(Ro>>1.0Zo) 时的特性,因为在 LC 滤波器转折频率 f= f0 增益谐振提升。

开关电源环路设计要点

开关电源环路设计要点

All rights reserved.
电源系统的基本特征
电源系统
主电路: 无论输入电压和负载如何变化,都要 得到稳定的输出电压
控制电路:检测到输出电压变化时, 调节占空比 脉宽调制电路 补偿电路
All rights reserved.
电源系统的基本特征
电源系统
主功率电路:H(s) 控制电路:G(s) 我们需要关注的部分,T(s),这个决定了我们的系统是 否稳定
ˆ ⋅V ˆ ⋅V d d in in ˆo = v = Z L (s ) L R + 1 s 2 ⋅ Lf ⋅ Cf + s ⋅ ( f + RL ⋅ Cf ) + (1 + L ) Z o (s ) R R
40 20 log( Gvd( f , 10 , 0 , 0) arg ( Gvd( f , 10 , 0 , 0) ) ⋅ 40 30 20 10 0 10
All rights reserved.
常见的三种环路补偿网络G(S)
All rights reserved.
Type-3的波特图
Type-3补偿器在实际应用广泛使用,尤其在电压模式控制中 更加多见,实际在电流模式中我们也经常使用来增加灵活性。
All rights reserved.
Type-3闭环后的特性
4
ESR增加
20 log( Gvd( f , 10 , 0.01 , 0) arg ( Gvd( f , 10 , 0.01 , 0) ) ⋅
)
180 10 ⋅ π 45
− 40 40 3 1 .10 1000
All rights reserved.
f
1 .10
5

开关电源控制环路设计(初级篇)

开关电源控制环路设计(初级篇)

开关电源控制环路设计(初级篇)电源联盟---高可靠电源行业第一自媒体在这里有电源技术干货、电源行业发展趋势分析、最新电源产品介绍、众多电源达人与您分享电源技术经验,关注我们,搜索微信公众号:Power-union,与中国电源行业共成长!开关电源控制环路设计(初级篇)1、环路和直流稳压电源的关系稳压电源工作原理我们需要什么样的电源?原文档:开关电源控制环路设计(初级篇)下载方法:请看文章底部第一条留言2、与环路相关的基本概念电源系统框图Bode图(由奈奎斯特图测定稳态裕量是很麻烦的)穿越频率和相位裕量,增益裕量■ 穿越频率fc(crossover frequency):增益曲线穿越0dB线的频率点■ 相位裕量phase margin):相位曲线在穿越频率处的相位和-180度之间的相位差■ 增益裕量(Gain margin):增益曲线在相位曲线达到-180度的频率处对应的增益环路稳定性判据根据奈奎斯特稳定性判据,当系统的相位裕量大于0度时,此系统是稳定的。

■ 准则1:在穿越频率处,总开环系统要有大于30度的相位裕量;■ 准则2:为防止-2增益斜率的电路相位快速变化,系统的开环增益曲线在穿越频率附近的增益斜率应为-1(-20db/10倍频程)■ 准则3: 增益裕量是开环系统的模的度量,该变化可能导致曲线刚好通过-1 点。

一般需要6db的增益裕量。

备注:应当注意,并不是绝对要求开环增益曲线在穿越频率附近的增益斜率为必须为-1,但是由于-1增益斜率对应的相位曲线相位延迟较小,且变化相对缓慢,因此它能够保证,当某些环节的相位变化被忽略时,相位曲线仍将具有足够的相位裕量,使系统保持稳定。

要满足上述的3个准则,我们需要知道开环系统所有环节的增益和相位情况,引入传递函数,零极点的概念可以很好的分析这个问题。

传递函数零点极点如果输入和反馈支路是由不同的电阻和电容构成的,则幅频和相频曲线将会有许多种形式。

把阻抗Z1和Z2用复变量s(s=jw)表示,经过一系列的数学运算,将会得到传递函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Powering the Future
低频增益和纹波的关系
小信号模型
Giv
Vin

Io

Vo Gvv *Vin Gvd * d Io Giv *Vin Gid * d




---(1) ---(2)
Gvv
Vo

Gvd

Gid
T
-G1
-G2
d
Fm
Vc

其中: Gvv是输出对输入的传递函数( Audio Susceptibility ), Giv是输出对输入的传递函数(输出电流对输入电压) Gvd是输出对控制的传递函数(电压环功率级) Gid是输出对控制的传递函数(电流环功率级)
Powering the Future
议程
1、环路和直流稳压电源的关系
2、与环路相关的基本概念 波特图,环路稳定性判据,传递函数,零极点 3、常用的补偿控制器 PI,Type II,Type III控制器 (s域的传递函数,波特图) 4、模拟环路设计流程 4.1 收集系统参数(输入电压,输出电压,输出电感电容,开关频率等) 4.2 确定功率级的零极点 4.3 根据4.2环节确定该选用何种补偿控制器 4.4 确定补偿控制器的参数 5、数字和模拟环路的差别 5.1 不同的设计方法,有何异同 5.2 数字控制的电源设计方法 6、相关仪器和软件的使用 6.1 环路分析仪 6.2 mathcad 6.3 仿真软件saber,psim,simplis, spice等 6.4 matlab 7、经验分享 7.1 油机电源MR48-2900环路设计经验分享 7.2 电力电源MR220-3000环路设计经验分享 8、总结
Powering the Future
模拟环路设计流程
1、收集系统参数,例如输入电压,输出电压,滤波参数等,并确定开关频率 2、确定功率级的零极点 3、确定穿越频率和补偿器的类型 4、确定所需要的补偿器的零极点 5、计算实际的电阻电容参数
Powering the Future
设计实例-一个简单的同步降压buck电路(电压型)
Powering the Future
稳压电源工作原理
Powering the Future
我们需要什么样的电源?
Powering the Future
议程
1、环路和直流稳压电源的关系
2、与环路相关的基本概念 波特图,环路稳定性判据,传递函数,零极点
3、常用的补偿控制器 PI,Type II,Type III控制器 (s域的传递函数,波特图) 4、模拟环路设计流程 4.1 收集系统参数(输入电压,输出电压,输出电感电容,开关频率等) 4.2 确定功率级的零极点 4.3 根据4.2环节确定该选用何种补偿控制器 4.4 确定补偿控制器的参数 5、数字和模拟环路的差别 5.1 不同的设计方法,有何异同 5.2 数字控制的电源设计方法 6、相关仪器和软件的使用 6.1 环路分析仪 6.2 mathcad 6.3 仿真软件saber,psim,simplis, spice等 6.4 matlab 7、经验分享 7.1 油机电源MR48-2900环路设计经验分享 7.2 电力电源MR220-3000环路设计经验分享 8、总结
开关电源控制环路设计(初级篇)
Prepared by: Chen Xiaomin Mobile: Email: Date: Address: 13699791397 cxmmeg@ December 30, 2010 Shenzhen
议程
1、环路和直流稳压电源的关系 2、与环路相关的基本概念 波特图,环路稳定性判据,传递函数,零极点 3、常用的补偿控制器 PI,Type II,Type III控制器 (s域的传递函数,波特图) 4、模拟环路设计流程 4.1 收集系统参数(输入电压,输出电压,输出电感电容,开关频率等) 4.2 确定功率级的零极点 4.3 根据4.2环节确定该选用何种补偿控制器 4.4 确定补偿控制器的参数 5、数字和模拟环路的差别 5.1 不同的设计方法,有何异同 5.2 数字控制的电源设计方法 6、相关仪器和软件的使用 6.1 环路分析仪 6.2 mathcad 6.3 仿真软件saber,psim,simplis, spice等 6.4 matlab 7、经验分享 7.1 油机电源MR48-2900环路设计经验分享 7.2 电力电源MR220-3000环路设计经验分享 8、总结
由式(1)可得出闭环时的输入扰动对输出的关系:
Vo Gvv *Vin Gvd * Vo* G1* Fm Gvv( s ) Vin 1 Gvd ( s ) * G1( s ) * Fm( s ) Vo




增大低频增益能够有效抑制低频纹波
Powering the Future
议程
1、环路和直流稳压电源的关系 2、与环路相关的基本概念 波特图,环路稳定性判据,传递函数,零极点
3、常用的补偿控制器 PI,Type II,Type III控制器 (s域的传递函数,波特图)
4、模拟环路设计流程 4.1 收集系统参数(输入电压,输出电压,输出电感电容,开关频率等) 4.2 确定功率级的零极点 4.3 根据4.2环节确定该选用何种补偿控制器 4.4 确定补偿控制器的参数 5、数字和模拟环路的差别 5.1 不同的设计方法,有何异同 5.2 数字控制的电源设计方法 6、相关仪器和软件的使用 6.1 环路分析仪 6.2 mathcad 6.3 仿真软件saber,psim,simplis, spice等 6.4 matlab 7、经验分享 7.1 油机电源MR48-2900环路设计经验分享 7.2 电力电源MR220-3000环路设计经验分享 8、总结
Powering the Future
常用的补偿控制器-Type II
传递函数为:
把c2去掉就变成了PI控制器,从bode图上看,少了 极点。
零点 极点
Powering the Future
常用的补偿控制器-Type III
传递函数为:
零点1 零点2 极点1
Powering the Future
Powering the Future
环路稳定性判据
根据奈奎斯特稳定性判据,当系统的相位裕量大于0度时,此系统是稳定的。

准则1:在穿越频率处,总开环系统要有大于30度的相位裕量; 准则2:为防止-2增益斜率的电路相位快速变化,系统的开环增益曲线在穿越频率附近 的增益斜率应为-1( -20db/10倍频程) 准则3: 增益裕量是开环系统的模的度量,该变化可能导致曲线刚好通过-1 点。一般需 要6db的增益裕量。
尝试用零点 极点来分析一个Type II补偿器
转折频率Fz和Fp的设置。 Fz和Fp相距越远,相位裕量就越大。这样会使低频增益减小,降低了抑制低频纹 波的衰减效果。同样高频增益增大,就会使高频窄噪声尖峰以更大的幅值通过。 如果Fz在Fz2而不再Fz1,则在低频F1的增益是G1而不是G2;如果Fp在Fp2而不 再Fp1,则在高频Fh的增益是G3而不是G4。
Powering the Future
零极点频率引起的增益斜率变化规则
一个零点,表示增益斜率变化了+1。 零点会引起相位超前。由Fz处的零点,引起在频率F处超前的相位是:
一个极点,表示增益斜率变化了-1。 极点会引起相位滞后。由Fp处的极点,引起在频率F处滞后的相位是:
Powering the Future
由输出滤波电感和电容引起的双极点:
fpo
1 3 1.868 10 2 L C
由输出电容RSR引起的零点
fzo
1 3 4.019 10 2 ESR C
从右边的曲线中,我们可以计算出电压环的穿越频率: 然后还可以计算出电压环的相位裕量:
问题:到目前为止开环系统已经是稳定的, 还需要设计环路吗?
极点2
议程
1、环路和直流稳压电源的关系 2、与环路相关的基本概念 波特图,环路稳定性判据,传递函数,零极点 3、常用的补偿控制器 PI,Type II,Type III控制器 (s域的传递函数,波特图)
4、模拟环路设计流程 4.1 收集系统参数(输入电压,输出电压,输出电感电容,开关频率等) 4.2 确定功率级的零极点 4.3 根据4.2环节确定该选用何种补偿控制器 4.4 确定补偿控制器的参数
5、数字和模拟环路的差别 5.1 不同的设计方法,有何异同 5.2 数字控制的电源设计方法 6、相关仪器和软件的使用 6.1 环路分析仪 6.2 mathcad 6.3 仿真软件saber,psim,simplis, spice等 6.4 matlab 7、经验分享 7.1 油机电源MR48-2900环路设计经验分享 7.2 电力电源MR220-3000环路设计经验分享 8、总结
Powering the Future
电源系统框图
Powering the Future
Bode图(由奈奎斯特图测定稳态裕量是很麻烦的 )
Powering the Future
穿越频率和相位裕量,增益裕量

穿越频率fc(crossover frequency):增益曲线穿越0dB线的频率点 相位裕量phase margin):相位曲线在穿越频率处的相位和-180度之间的相位差 增益裕量(Gain margin):增益曲线在相位曲线达到-180度的频率处对应的增益
Powering the Future
传递函数 零点 极点
阻抗用复变量s=jw=j(2*pi*f)表示: 电阻R 阻抗为R 电容C 阻抗为1/(s*C) 电感L 阻抗为s*L 传递函数 G(s)=Vo(s)/Vin(s)=Z2(s)/Z1(s) 如果输入和反馈支路是由不同的电阻和电容构成的, 则幅频和相频曲线将会有许多种形式。 把阻抗Z1和Z2用复变量s(s=jw)表示,经过一系列的数学运算,将会得到传递函数。 由传递函数就可以绘制增益/相位曲线。 通过代数运算,把G(s)表示为G(s)=N(s)/D(s),其分子和分母都是s的函数, 然后将分子和分母进行因式分解,表示成多个因式的乘积,即 G(s)=N(s)/D(s)=[(1+s/2*pi*fz1)(1+s/2*pi*fz2)(1+/2*pi*fz3)]/ [(s/2*pi*f0)*(1+s/2*pi*fp1)*( 1+s/2*pi*fp2)* (1+s/2*pi*fp3)], 分子中对应的频率fz为零点频率,而与分母中对应的频率称fp为极点频率。 f0称为初始极点。
相关文档
最新文档