过三点的圆PPT课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年10月2日
2
圆的有关性质 B
试根据圆的定义填空:
1、圆上各点到 定点(圆心)的距离都等 于 定长(半径的长)。
O
A
C
2、到定点的距离等于定长的点都在 圆上 。
定义二:
圆是到定点的距离等于定长的点的集合。
圆的内部可以看作是到圆心的距离小于半径的点的集合。
圆的外部可以看作是到圆心的距离大于半径的点的集合。
设⊙O的半径为r,则点P与⊙O的位置关系有:
(1)点P在⊙O上 OP=r
(2)点P在⊙O内 OP<r
(3)点P在⊙O外 2020年10月2日
OP>r
3
矩形ABCD的边AB=6cm,BC=8cm,AC、
BD交于O点。
(1)若以A为圆心,6cm为半径作圆,则点B 在⊙A _上__,点C在⊙A_外__,点D在⊙A__外__, 点O在⊙A__内_。
请同学们来解决一个问题:
已知: A、B、C三个村庄位置如 图,现要修建一个水塔, 使三个 村到水塔的距离相等。请画出水塔 的位置.
A
B
C
如图,O为△ABC的外心,∠BAC=700, 求∠BOC的度数。
注意:把“隐藏”的图画出后,可以将圆心角与 圆周角联系起来,这是三角形外心的一个非常典 型的一种计算题。
圆的有关性质
定义一:在同一平面内,线段OA绕它
O A 固定的一个端点O旋转一周,另一个端 点A随之旋转所形成的图形叫做圆。
固定的端点O叫做圆心,线段OA叫做半径。
注意:1、从圆的定义可知:圆是指圆周而不是圆面。
2、确定圆的要素是:圆心、半径。 圆心确定圆的位置,半径确定圆的大小,确 定一个圆,两者缺一不可。
(2)若作⊙A,使B、C、O三点中至少有一点 在⊙A内,且至少有一点在⊙A外,则⊙A的半径r 的取值范围是_______。
设⊙O的半径为r,则点P与⊙O的位置关系有:
(1)点P在⊙O上 OP=r
(2)点P在⊙O内 (3)点P在⊙O外
OP<r OP>r
易错题:一个点到圆上的最小距离为4cm,
最大距离为9cm ,求该圆的半径。
2020年10月2日
5
画一画: 经过A点画圆
任选一点为
圆心(除A外),
以这点到A
A
的距离为半
径,这些圆有
无个.
画一画: 经过 A . B两点画圆
过两点可以作
无数个圆,这些
圆的圆心都在
线段AB 的垂直
A
B 平分线上.
画一画:经过三点A、B、C画圆
C
作法:
1.连结AB、AC
这样的圆 我们能作 多少个?
的弦1与、B已C知和:B圆⌒C内分接别△相A交B于C中点,DA和B=点AEC,,经过点A
(1)求证: AB2=AE·AD (2)当D为BC延长线上一点时,第(1)题的结论 还成立吗?如果成立,请证明,若不成立,请说
明理由。
例1 A、B、C、D为圆上任意四点, 求证:∠ADC+∠ABC=1800
DE
A
O
B
C
连结OA、OB、 OC,会得出什么
结论?
A
三角形的外心是三角形三
O B
条边的垂直平分线的交点,故 三角形的外心到三角形的三个 C 顶点的距离相等。
推理形式:
∵O为△ABC的外心 ∴OA=OB=OC
经过三角形三个顶点可以作一个圆。
经过三角形各顶点的圆叫做三角形的外接圆,外接圆
的圆心叫做三角形的外心,这个三角形叫做这个圆的内接
2.作AB的垂线 3.作AC的垂线两垂线相
O
交于点O
4.以O为圆心OB长为半
A
径作圆
B ๏O为所求图形
结论:1、不同在一直线上的三个点确定一个圆。 2、三角形的三个顶点必在同一个圆上。
注意:过同一直线上的三点不能作圆 经过三角形三个顶点可以作一个圆。
A
B AC
O
B
C
2020年10月2日
9
经过三角形各顶点的圆叫做三角形的外接圆, 外接圆的圆心叫做三角形的外心,这个三角形叫 做这个圆的内接三角形.如图,△ABC是⊙O的内 接三角形,点O为△ABC的外心,⊙O是△ABC的 外接圆。
下列判断中,错误的是( )
A 任何一个三角形都有一个外接圆 B 等腰三角形的外心必在顶角的平 分线所在的直线上 C 直角三角形的外心必在其斜边上 D 三角形的外心不会在三角形的外部
注意:三角形的外心是三边垂直平分线的 交点。锐角三角形的外心在三角形内; 直角三角形的外心在其斜边的中点;钝 角三角形的外心在三角形的外部。
汇报人:XXX 汇报日期:20XX年10月10日
18
三角形.如图,△ABC是⊙O的内接三角形,点O为△ABC 的外心,⊙O是△ABC的外接圆。
一 判断题:
1. 经过三个点一定可以做圆;
2. 任意一个三角形一定有一个外接圆, 并且只有一个外接圆;
3. 任意一个圆一定有一个内接三角形, 并且只有一个内接三角形;
4. 三角形的外心到三角形各顶点的距 离相等;
A
C 延长AD,你有什么发现?
定理:圆内接四边形的对角互补, 并且任何一个外角等于内对角。
B
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!