高等代数作业第二章行列式答案

合集下载

高等代数__课后答案__高等教育出版社

高等代数__课后答案__高等教育出版社

高等代数习题答案(一至四章)第一章 多项式 习题解答1、(1)由带余除法,得17(),39q x x =-262()99r x =--(2)2()1q x x x =+-,()57r x x =-+2、(1)2100p m q m ⎧++=⎨-=⎩ , (2)由22(2)010m p m q p m ⎧--=⎪⎨+--=⎪⎩得01m p q =⎧⎨=+⎩或212q p m =⎧⎨+=⎩。

3、(1)432()261339109,q x x x x x =-+-+()327r x =- (2)q (x )=22(52)x ix i --+,()98r x i =--4、(1)有综合除法:2345()15(1)10(1)10(1)5(1)(1)f x x x x x x =+-+-+-+-+- (2)234()1124(2)22(2)8(2)(2)f x x x x x =-+++-+++(3)234()24(75)5()(1)()2()()f x i x i i x i i x i x i =+-++--+-+++5、(1)x+1 (2)1 (3)21x -- 6、(1)u (x )=-x-1 ,v (x )=x+2 (2)11()33u x x =-+,222()133v x x x =-- (3)u (x )=-x-1, 32()32v x x x x =+--7、02u t =⎧⎨=⎩或23u t =-⎧⎨=⎩8、思路:根具定义证明证:易见d (x )是f (x )与g (x )的公因式。

另设()x ϕ是f (x )与g (x )的任意公因式,下证()()x d x ϕ。

由于d (x )是f (x )与g (x )的一个组合,这就是说存在多项式s (x )与t (x ),使 d (x )=s (x )f (x )+t (x )g (x )。

从而()()x f x ϕ,()()x g x ϕ,可得()()x d x ϕ。

高等代数《行列式》部分习题及解答

高等代数《行列式》部分习题及解答

高等代数《行列式》部分习题及解答例1:决定以下9级排列的逆序数,从而决定它们的奇偶性: 1).134782695;2).217986354;3).987654321. 答:1). ()134782695=10τ,134782695是一个偶排列;2). ()217986354=18τ,217986354是一个偶排列; 3). ()987654321=36τ,987654321是一个偶排列. 例2:写出把排列12435变成排列25341的那些对换.答:()()()()()()()12154,312435214352543125341−−→−−→−−−→.例3:如果排列121...n n x x x x -的逆序数为k ,排列121...n n x x x x -的逆序数是多少?答:()112n n k --例4:按定义计算行列式: 000100201).0100000n n - 010000202).0001000n n -001002003).1000000n n-答:1).原行列式()()()()1,1,,2,121!1!n n n n n n τ--=-=-2).原行列式()11!.n n -=-3).原行列式()()()1221!n n n --=-.例5:由行列式定义计算()212111321111x x x f x x x-=中4x 与3x 的系数,并说明理由. 答:()f x 的展开式中x 的4次项只有一项;2,x x x x ⋅⋅⋅故4x 的系数为2;x 的3次项也只有一项()()213411,x x x τ-⋅⋅⋅故3x 的系数为-1.例6:由111111=0111,证明:奇偶排列各半.证明:由于12n j j j 为奇排列时()()121n j j j τ- 为-1,而偶排列时为1,.设有k 个奇排列和l 个偶排列,则上述行列式()()()()12121212110.n n nnj j j j j j j j j j j j l k ττ=-+-=-=∑∑ 即奇偶排列各占一半.例7:证明1111111112222222222b cc a a b a b c b c c a a b a b c b c c a a b a b c ++++++=+++. 证明:111111111111111111122222222222222222222222.2b cc a a bac aa baa b a cab c b c c a a b a c a a b a a b a c a b c b c c a a b a c a a b a a b a c a b c +++-+++++++=-++=++=+++-++++ 例8:算出行列式:121401211).00210003-;1122).321014-的全部代数余子式. 答:111213142122232431323334414243441).6,0;12,6,0;15,6,3,0;7,0,1, 2.A A A A A A A A A A A A A A A A =-====-=====-=-=====-1112132122233132332).7,12,3;6,4,1;5,5, 5.A A A A A A A A A ==-====-=-== 例9:计算下面的行列式:111121131).12254321-;11112112132).1111321112---;01214201213).135123312121035-- 答:1111111111110115011501151).= 1.011400010012012300120001---------==-=-------原式132).12-3).483-. 例10:计算下列n 级行列式: 0000001).;000000x y x y x yyx1112121222122).n nn n n na b a b a b a b a b a b a b a b a b ---------122222223).;2232222n1231110004)..02200011n n n n-----答:()()110000000000000001).11.000000000000000n n n n xy xy yx y x xy x y x y x y x yy yxxxy++=+-=+-2).当1n =时,为11a b -;当2n =时,为()()1212a a b b --;当3n ≥时,为零.()12221000222222223).22!223200102220002n n n -==-⋅--(利用第2行(列)的特点)()()11231110001!4).1.02200211n n nn n n---+=---- (从左起,依次将前一列加到后一列) 例11:用克拉默法则解线性方程组1234123412341234232633325323334x x x x x x x x x x x x x x x x -++=⎧⎪-++=⎪⎨--+=⎪⎪-+-=⎩.答:2132333270031123131d --==-≠----,所以可以用克拉默法则求解.又因16132533270;31124131d --==-----22632353270;33123431d ==---32162335270;31323141d --==----42136333570;31133134d --==----所以此线性方程组有唯一解,解为1234 1.x x x x ====例12:求12121212111222,n nnnj j j j j j j j j nj nj nj a a a a a a a a a ∑这里12nj j j ∑是对所有n 级排列求和.答:对每个排列12n j j j ,都有:()()121212121111112122221222121.n n nnj j j n j j j j j j nn n nnnj nj nj a a a a a a a a a a a a a a a a a a τ=- 因为在全部n 级排列中,奇偶排列个数相同,各有!2n 个.所以121212121112220n n nnj j j j j j j j j nj nj nj a a a a a a a a a =∑.例13:计算n 级行列式:12222122221212111.nnn n n nnn n nx x x x x x x x x x x x ---答:作范德蒙德行列式:1212222121111111211211111.n n n n n n n n n n nnn nn n x x x x x x x x D x x x x x x x x ++----++=将这个行列式按最后一列展开,展开式中11n n x -+的系数的()11n n++-倍就是所求行列式D ,因为()111,ji i j n D xx ≤<≤+=-∏所以()()()()11111111.nnn nji k ji k k k i j n i j n D xx x xx x ++==≤<≤+≤<≤+=---=-∑∑∏∏。

行列式课后练习及答案

行列式课后练习及答案



0

0 0 0 0 0 0

0 解:Dn (1)
n ( n 1) 2

0 0 0
0 0

0 0
...............................

0

(1)
n ( n 1) 2

[ n ( 1) n 1 n ]
[ n 1 (1) n 1 n 1 ] (1)
2.若
(5 ) x1 2 x2 2 x3 0, 2 x1 (6 ) x2 0, 有非零解, 则 = 2或5或8 . 2 x1 (4 ) x3 0
5
x1 x2 x3 x4 5, x 2 x2 x3 4 x4 2, 3. 1 2 x 3x x3 5 x4 2, 的解是否唯一? 3x1 x 2 1 2 2 x3 11x4 0
答案:1.行列式概念的引进课后作业
a11
1. a21
a12 a22 a32 4 3 6 1 0 0 3 5
a13 a23 a11a22a33 a12a23a31 a13a21a32 a13a22a31 a12a21a33 a11a23a32 a33
a31 1 3 1 3
2. 5 2 1 80
(1 a) x1 x2 xn 0, 2 x (2 a)x 2x 0, 2 n 4.设齐次线性方程组为 1 (n 2) , 若其有非零解, nx1 nx2 (n a)xn 0.
则 a=
n(n 1) 或a 0 2
x1 2 x2 x3 1, 5.用克莱姆法则求解 2 x1 3x2 x3 0, 4 x 7 x 2 x 2. 2 3 1

高等代数2.1-引言

高等代数2.1-引言
第二章 行列式 §2.1 引言
联合收入问题
R,S,T三公司有右 三公司有右 图股份关系。 公司 图股份关系。R公司 拥有T公司60%股份 公司60%股份, 拥有 公司60%股份, 公司掌握R公司 T公司掌握 公司 20%股份 ,R,S,T 股份…, 股份 各自营业净收入分别 10、 万元。 是10、8和6万元。求 各公司联合收入及实 际收入。 际收入。
+
15/27
例2.求 n 级排列 135 (2n 1)(2n)(2n 2) 42 . 的逆序数. 的逆序数.
方法一
解:135 (2n 1)(2n)(2n 2) 42
12
n1
n1
1
τ = 1 + 2 + + (n 1) + (n 1) + + 2 + 1 = n(n 1)
16/27
19/27
定理1 定理
对换改变排列的奇偶性.即经过一次对换, 对换改变排列的奇偶性.即经过一次对换, 奇排列变成偶排列,偶排列变成奇排列. 奇排列变成偶排列,偶排列变成奇排列. 证明 1) 特殊情形:作相邻对换 特殊情形: 设排列为
a1 al ab b1 bm ab
对换 a 与 b
a1 al ba b1 bm
两式相减消去 x2,得
(a11a22 a12a21)x1 = b1a22 a12b2 ;
4/27
类似地, 类似地,消去 x1,得 (a11a22 a12a21)x1 = b1a22 a12b2;
(a11a22 a12a21)x2 = a11b2 b1a21 ,
当 a11a22 a12a21 ≠ 0 时, 原方程组有唯一解
除 a , b 外,其它元素所成逆序不改变. 其它元素所成逆序不改变

(完整版)高等代数(北大版第三版)习题答案II

(完整版)高等代数(北大版第三版)习题答案II

证 1)作变换 ,即



因为 是正定矩阵,所以 是负定二次型。
2) 为正定矩阵,故 对应的 阶矩阵也是正定矩阵,由1)知
或 ,
从而





由于 是正定的,因此它的 级顺序主子式 ,从而 的秩为 。
即证 。
3.设

其中 是 的一次齐次式,证明: 的正惯性指数 ,负惯性指数 。
证 设 ,
的正惯性指数为 ,秩为 ,则存在非退化线性替换

使得

下面证明 。采用反证法。设 ,考虑线性方程组

该方程组含 个方程,小于未知量的个数 ,故它必有非零解 ,于是

上式要成立,必有
, ,
这就是说,对于 这组非零数,有
, ,
这与线性替换 的系数矩阵非退化的条件矛盾。所以

同理可证负惯性指数 ,即证。
4.设
是一对称矩阵,且 ,证明:存在 使 ,其中 表示一个级数与 相同的矩阵。
证 只要令 ,则 ,
注意到
, ,
则有

即证。
5.设 是反对称矩阵,证明: 合同于矩阵

设 的秩为 ,作非退化线性替换 将原二次型化为标准型

其中 为1或-1。由已知,必存在两个向量 使
和 ,
故标准型中的系数 不可能全为1,也不可能全为-1。不妨设有 个1, 个-1,
且 ,即

这时 与 存在三种可能:
, ,
下面仅讨论 的情形,其他类似可证。
令 , , ,
则由 可求得非零向量 使

即证。
证 采用归纳法。当 时, 合同于 ,结论成立。下面设 为非零反对称矩阵。

高等代数(王萼芳石生明著)课后答案高等教育出版社

高等代数(王萼芳石生明著)课后答案高等教育出版社

高等代数习题答案(一至四章)第一章 多项式 习题解答1、(1)由带余除法,得17(),39q x x =-262()99r x =--(2)2()1q x x x =+-,()57r x x =-+2、(1)2100p m q m ⎧++=⎨-=⎩ , (2)由22(2)010m p m q p m ⎧--=⎪⎨+--=⎪⎩得01m p q =⎧⎨=+⎩或212q p m =⎧⎨+=⎩。

3、(1)432()261339109,q x x x x x =-+-+()327r x =- (2)q (x )=22(52)x ix i --+,()98r x i =--4、(1)有综合除法:2345()15(1)10(1)10(1)5(1)(1)f x x x x x x =+-+-+-+-+- (2)234()1124(2)22(2)8(2)(2)f x x x x x =-+++-+++ (3)234()24(75)5()(1)()2()()f x i x i i x i i x i x i =+-++--+-+++5、(1)x+1 (2)1 (3)21x --6、(1)u (x )=-x-1 ,v (x )=x+2 (2)11()33u x x =-+,222()133v x x x =-- (3)u (x )=-x-1, 32()32v x x x x =+-- 7、02u t =⎧⎨=⎩或23u t =-⎧⎨=⎩ 8、思路:根具定义证明证:易见d (x )是f (x )与g (x )的公因式。

另设()x ϕ是f (x )与g (x )的任意公因式,下证()()x d x ϕ。

由于d (x )是f (x )与g (x )的一个组合,这就是说存在多项式s (x )与t (x ),使 d (x )=s (x )f (x )+t (x )g (x )。

从而()()x f x ϕ,()()x g x ϕ,可得()()x d x ϕ。

高等代数作业第二章行列式答案

高等代数作业第二章行列式答案

高等代数作业第二章行列式答案高等代数作业第二章行列式答案-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII高等代数第四次作业第二章行列式§1—§4一、填空题1.填上适当的数字,使72__43__1为奇排列. 6,52.四阶行列式44?=ija D 中,含24a 且带负号的项为_____. 112433421224314313243241,,a a a a a a a a a a a a3.设.212222111211d a a a a a a a a a nnn n n n =则._____122122211121=n n nn n n a a a a a a a a a(1)2(1)n n d -- 4.行列式11111111---x 的展开式中, x 的系数是_____. 2 二、判断题1. 若行列式中有两行对应元素互为相反数,则行列式的值为0 ()√2. 设d =nn n n nna a a a a a a a a 212222111211则121112222121n n n nnn a a a a a a a a a =d ()×3. 设d =nnn n n na a a a a a a a a 212222111211则d a a a a a a a a a nnn n n n-=112112122221()×4.abcd zzz dy y c x b a =000000 ( ) √ 5.abcd dcx b y x a z y x -=000000 ()× 6.0000000=yxh gf e d c b a ()√7. 如果行列式D 的元素都是整数,则D 的值也是整数。

()√ 8. 如果行列D 的元素都是自然数,则D 的值也是自然数。

()×9.n na a a a a a 2121= ()×10. 010002000010nn -=n !()×三、选择题1.行列式01110212=-k k 的充分必要条件是 ( ) D(A )2=k (B )2-=k (C )3=k (D )2-=k 或 32.方程093112=x x 根的个数是( )C (A )0 (B )1 (C )2 (D )3 3.下列构成六阶行列式展开式的各项中,取“+”的有 ( )A(A )665144322315a a a a a a (B )655344322611a a a a a a(C )346542165321a a a a a a (D )513312446526a a a aa a4. n 阶行列式的展开式中,取“–”号的项有()项 A(A )2!n (B )22n (C )2n (D )2)1(-n n5.若(145)11243455(1)k l k l a a a a a τ-是五阶行列式的一项,则l k ,的值及该项的符号为( )B (A )3,2==l k ,符号为正;(B )3,2==l k ,符号为负;(C )3,1k l ==,符号为正;(D )1,3k l ==,符号为负6.如果0333231232221131211≠==M a a a a a a a a a D ,则3332312322211312111222222222a a a a a a a a a D = = ( )C(A )2 M (B )-2 M (C )8 M (D )-8 M 7.如果1333231232221131211==a a a a a a a a a D ,3332313123222121131211111232423242324a a a a a a a a a a a a D ---= ,则=1D ( )C(A )8 (B )12- (C )24- (D )24四、计算题1.计算32142143143243213 2142143143243213 21421431432111110 =123012101 210111110------=4 40004001 210111110---=400004001 210111110---==1602. 计算311113111131 1113.解:3111131111311113=3111 1311113111116?=2 000020000201 1116?=.48263=?高等代数第五次作业第二章行列式§5—§7一、填空题1. 设ij ij A M ,分别是行列式D 中元素ij a 的余子式,代数余子式,则._____1,1,=+++i i i i A M 02. 122305403-- 中元素3的代数余子式是 .6-3. 设行列式4321630211118751=D ,设j j A M 44,分布是元素j a 4的余子式和代数余子式,则44434241A A A A +++ = ,44434241M M M M +++= .0,66- 4. 若方程组??=+-=++=+02020z y kx z ky x z kx仅有零解,则k . 2≠5. 含有n 个变量,n 个方程的齐次线性方程组,当系数行列式D 时仅有零解. 0≠ 二、判断题1. 若n 级行列试D 中等于零的元素的个数大于2n n -,则D=0 ()√2.222)(00000000a b b a a b b a ab -= ()√ 3.222)(00000000b a a b b a a b b a -= ()√4.0=d b a c d b c a b d c a b d a c ()√ 5.483111131111311113= ()√6.)(000000hx gy a yh fdx g e c b a -= ()× 7.0107310111187654321=--- ()√三、选择题1. 行列式102211321的代数余子式13A 的值是( )D(A )3 (B )1- (C )1 (D )2-2.下列n (n >2)阶行列式的值必为零的是 ( )D(A )行列式主对角线上的元素全为零(B )行列式主对角线上有一个元素为零(C )行列式零元素的个数多于n 个(D )行列式非零元素的个数小于n 个 3.若111111111111101)(-------=x x f ,则)(x f 中x 的一次项系数是( )D(A )1 (B )1- (C )4 (D )4-4.4阶行列式4433221100000000a b a b b a b a 的值等于( )D(A )43214321b b b b a a a a - (B )))((43432121b b a a bb a a -- (C )43214321b b b b a a a a + (D )))((41413232b b a a b b a a -- 5.如果122211211=a a a a ,则方程组 =+-=+-0022221211212111b x a x a b x a x a 的解是( )B(A )2221211a b a b x =,2211112b a b a x = (B )2221211a b a b x -=,2211112b a b a x =(C )2221211a b a b x ----=,2211112b a b a x ----=(D )2221211a b a b x ----=,2211112b a b a x -----=6. 三阶行列式第3行的元素为4,3,2对应的余子式分别为2,3,4,那么该行列式的值等于( )B(A )3 (B )7 (C )–3 (D )-77.如果方程组 ??=--=+=-+050403z y kx z y z ky x 有非零解,则 k =( )C (A )0 (B )1 (C )-1 (D )3 四、计算题1. 计算D=100110011001a a a a ---解:方法1:100110011001aa aa---21r r ?=a aa a 100 110001011---21 r ar +=aaa a a 1001 100100112--+- 32r r ?=aa a a a 10 101100112-+--232(1)r a r ++=aa a a a a 100 12001100112 3-++--=aa a a 11223-++=.13)1()2(2423++=+++a a a a a a 方法2:将行列式按第一行展开,有:100110011001a a a a ---=1011011010101a a a a a a-----=1]01111[2++---?a aa a a a=1])1([22++++a a a a a .1324++=a a 2. 计算12125431432321-=n n n D n解:12125431432321-n n n121)1(254)1(143)1(32)1(21212121-++++=n n n n n n n n n n121125411431321)1(21-+=n n n n11101111110321)1(21n nnn n --+=111111111)1(21n n nn n ---+= )1()1(0000111)1(121212)1(+-=---+=--n n n nn n n n n3. 计算6427811694143211111解:6427811694143211111)34)(24)(23)(14)(13)(12(------=12= 4. 计算=n D 12111111111na a a +++。

高等代数习题解答(第二章)

高等代数习题解答(第二章)

高等代数习题解答第二章 行列式1.决定以下9级排列的逆序数,从而决定它们的奇偶性: 1)134782695; 2)217986354; 3)987654321.1)解 ()134********τ=,排列134782695是偶排列. 2)解 ()21798635418τ=,排列217986354是偶排列. 3)解 ()98765432136τ=,排列987654321是偶排列. 2.选择i 与k 使1)1274569i k 成偶排列; 2)1254897i k 成奇排列.1)解 当8,3i k ==时,()12748563910τ=,排列127485639为偶排列. 2)解 当3,6i k ==时,()1325648975τ=,排列132564897为奇排列. 3.写出把排列12435变成排列25341的那些变换. 解 (1,2)(1,5)(4,3)12435214352543125341→→→.4.决定排列(1)21n n - 的逆序数,并讨论它的奇偶性. 解 ()(1)(1)21012(2)(1)2n n n n n n τ--=++++-+-=. 当4n k =或41()n k k +=+∈ 时,排列为偶排列; 当42n k =+或43()n k k +=+∈ 时,排列为奇排列.5.如果排列121n n x x x x - 的逆序数为k ,排列121n n x x x x - 的逆序数是多少?解 由于一个n 级排列中,构成逆序的数对与构成顺序的数对总数是2(1)2n n n C -=,把一个排列颠倒后,原来的逆序变成顺序,原来的顺序变成逆序,所以排列121n n x x x x - 的逆序数(1)2n n k --. 6.在6级行列式中,233142561465a a a a a a 与324314516625a a a a a a 这两项应带有什么符号?解 由于(234516)(312645)4ττ+=+=;(341562)(234165)6410ττ+=+=,故两项均应带有正号.7.写出4级行列式中所有带负号并且包括因子23a 的项. 解 所求的项为112332a a a a -;12233441a a a a -;14233142a a a a - 8.按定义计算行列式:1)000100200100000n n-; 2)010000200001000n n -;3)00100200100000n n-.1)解 原行列式(1)((1)21)2(1)!(1)!n n n n n n τ--=-=- .2)解 原行列式(231)1(1)!(1)!n n n n τ-=-=- . 3)解 原行列式(1)(2)((1)(2)21)2(1)!(1)!n n n n n n n τ----=-=- .9.由行列式的定义证明:123451234512121200000000a a a a ab b b b bc cd de e =. 证明 由定义,行列式的一般项为125125()125(1)j j j j j j a a a τ- , 其中,125j j j 是一个5级排列.在这个5级排列中,345,,j j j 至少有一个大于或等于3,则相应的元素等于0,由此可知每一项都为0,从而行列式为0.10.由行列式的定义计算212111()321111xx x f x x x-=中4x 与3x 的系数,并说明理由.解 ()f x 的展开式中x 的4次项只有一项:(1234)(1)2x x x x τ-⋅⋅⋅,故4x 项的系数为2;x 的3次项也只有一项:(2134)(1)1x x x τ-⋅⋅⋅,故3x 项的系数为1-.11.由1111110111=证明:奇偶排列各半.证明 由于行列式的每个元素都等于1,所以它的每一项的绝对值都等于1,当行标按自然顺序排列时,符号由列标排列的奇偶性确定,当列标排列为奇排列时,符号为负,当列标排列为偶排列时,符号为正.由又由于行列式等于0,说明带正号的项与带负号的项个数相等,即(列标排列中)奇排列与偶排列各占一半.12.设21211112111111()1n n n n n n x x x a a a p x a a a ------=,其中121,,,n a a a - 是互不相同的数.1)由行列式定义,说明()p x 是一个1n -次多项式;2)由行列式性质,求()p x 的根.解 1)()p x 的展开式中,含1n x -的只有一项,其系数是211112112222111111(1)1n n n n n n n a a a a a a a a a --+-----,由于121,,,n a a a - 互不相同,上述的范德蒙德行列式不等于0,故1n x -项的系数不等于0,从而()p x 是一个1n -次多项式.2)2121111111112111111()()()1n n n n i j k i i k n n n n n x x x a a a p x a x a a a a a ----=≤<≤-----==∏-⋅∏-,而111()0n j k i k n a a -≤<≤-∏-≠,于是()p x 的根是121,,,n a a a - .13.计算下面的行列式:1)2464273271014543443342721621; 2)xy x y yx y x x y xy+++;3)3111131111311113; 4)1234234134124123;5)1111111111111111xx y y+-+-; 6)2222222222222222(1)(2)(3)(1)(2)(3)(1)(2)(3)(1)(2)(3)a a a a b b b b cc c cd d d d ++++++++++++.1)解 2464273271014543443342721621123100042732720005434431000721621c c c ++=23100010032720001004431000100621c c -= 121000100511327102144311621c c ÷÷=21312511327100121100294r r r r --=--529410=-⨯.2)解 xy x y y x y x x yx y +++()()()123222c c c x y y x y x y x yx x y xy++++=+++()()121211c x y y x y x y x y x xy÷++=++()2131120r r r r y x yx y xy x yx--+=+---()2x yx y x y x-=+--()()22()()x y x y x y =+----()22332()2()x y x xy y x y =+-+-=-+.3)解311113111131111312346111631161316113c c c c +++=2131416111020000200002r r r r r r ---=622248=⨯⨯⨯=.4)解1234234134124123123410234103411041210123c c c c +++=21314110234011302220111r r r r r r ----=-----32412102340113004404r r r r -+-=--101(4)(4)160=⨯⨯-⨯-=.5)解1111111111111111xx y y +-+-123411110011110r r r r x x x y yy--+--=+--21431100001010c c c c x x x y yy--+--=+--241300(1)0x x y y+++--=---拉普拉斯定理22xy xy x y =⋅=.注1:也可以不用拉普拉斯定理;注2:另解 将第4行拆成两行.6)解2222222222222222(1)(2)(3)(1)(2)(3)(1)(2)(3)(1)(2)(3)a a a a b b b b cc c cd d d d ++++++++++++2131412222214469214469214469214469c c c c c c a a a a b b b b cc c cd d d d ---++++++=++++++324222223221262126021262126c c c c a a b b cc d d --++==++.14.证明1111111112222222222b cc a a b a b cb c c a a b a b c b c c a a b a b c ++++++=+++. 证法一 左边1231111122222222c c c a c a a b a c a a b a c a a b ---++=-++-++1(2)11111222222c a c a a b a c a a b a c a a b ÷-++=-++++ 21311112222c c c c a c b a c b a c b --=-231112222c c a b ca b c a b c ↔==右边.证法二 左边123111111122222222()2()2()c c c a b c c a a b a b c c a a b a b c c a a b ++++++=++++++++12111111122222222c a b c c a a b a b c c a a b a b c c a a b ÷++++=++++++++ 213111111222222c c c c a b c b c a b c b c a b c b c --++--=++--++--1231112222c c c a b c a b c a b c ++--=----23(1)111(1)2222c c a b ca b c a b c ⨯-⨯-==右边. 15.略16.计算下面的行列式:1)1111211312254321- 2)111121121311113211102---3)0121420121135123312121035-- 4)111122011213210211012121302--- 1)解111121*********1-21314124111101151140123r r r r r r ------=---3242111101150001012r r r r +----=--3411110115001201r r ↔---=--34111101151(1)(1)(1)1001201r r ↔---=-=-⨯-⨯-⨯-=--.2)解111121121311113211102---1243223112122211211123201c c c ⨯⨯⨯-=--131211122213112123201r r ↔--=--213141331211041310541120834r r r r r r +-+-=----231211015210541120834r r +--=----32425812110152100211112003720r r r r -+--=--- 211111(1)372012--=-⨯⨯-1(2120(11)37)12=⨯-⨯--⨯1312=-.3)解 0121420121135123312121035--31415133012142012110141030551120241r r r r r r ----=------122121114101(1)355112241+---=⨯----1232422320110191141008174141219r r r r r r +++-----=-----2111019(1)(1)8174141219+--=--⨯-----2331241101907302857r r r r ---=----1173(1)(1)2857+--=--⨯--21473069r r ---=483=-.4)解 1101122011213210211012121302---13522221022201121642108110124261r r r ⨯⨯⨯--=-3141514221022201121202788300300645r r r r r r -+---=--- 31415141222112227811(1)303080645r r r r r r -++----=⨯⨯--31211222581300080645c c -----=--313111213(1)2588645c c -+--=-⨯⨯---21312611230712801017r r r r ++--=---117123(1)(1)10178+-=-⨯-⨯--33((7)1712(10))88=-⨯-⨯-=.17.计算下列n 级行列式:1)000000000000x y x y x y yx; 2)111212122212nnn n n na b a b a b a b a b a b a b a b a b ---------;3)121212n n n x m x x x x m x x x x m---; 4)122222222232222n;5)12311100002200011n n n n-----. 1)解 000000000000x y x y x y y x111110000000000000(1)(1)00000000000000n n n x y y x y x y x y x y y x x y ++--=⋅-+⋅-按第1列展开111(1)n n n x x y y -+-=⋅+⋅-1(1)(2)n n n x y n +=+-≥.2)解 当1n =时,1111a b a b -=-; 当2n =时,11122122a b a b a b a b ----112212211212()()()()()()a b a b a b a b a a b b =-----=--;当3n ≥时,111212122212nnn n n na b a b a b a b a b a b a b a b a b ---------21311112121212131313112nr r r r n n n na b a b a b a a a a a a a a a a a a a b a b a b --------=------=0. (第2,3两行成比例)3)解121212n n n x mx x x x m x x x x m---12212121nni n i nc c c i n i ni n i x mx x x mx m x x mx x m=+++==---=--∑∑∑121(2,3,,)000i ninr r i i n x mx x m m-==--=-∑11()n n i i m x m -=⎛⎫=-- ⎪⎝⎭∑. 4)解 122222222232222n2(1,3,4,,)1000222200100002i r r i n n -=-=-2121000022200100002r r n +-=-(1)2(2)!2(2)!n n =-⨯⨯-=--.另解:1(2,3,,)i r r i n -= ,然后按第2行展开.5)解 1231110000220000011n n n n -----12(1)23120100002200011nc c c n n n n n n++++--=---10002200(1)211n n n n--+=--按第1列展开(1)(1)(2)(1)2n n n +=---11(1)(1)!(1)(1)!(1)22n n n n n n --++=--=-. 另解:第1列起,各列加到后一列,然后按第n 列展开.18.证明1)01212011111001100()100nn i ina a a a a a a a a ==-∑; 2)012111021000100010000001n n n n n x a x a x a x a x a x a xa x a ------=++++-+;3)1100010001000001n n αβαβαβαβαβαβαβαβ++++-=+-+; 4)cos 100012cos 100cos 012cos 00012cos n ααααα=;5)1231211111111111111111(1)11111nn i ina a a a a a a a =+++=++∑. 1)证法一 当1n =(2级)时,左边=0011111a a a a =-=右边;假设等式对于n 级的情形成立,则对于1n +级情形:左边=0121111001001na a a a0111(1)1(1)(1)2211111111100000(1)(1)100000100n n n n n n nna a a a a a a ++++++-=-+-按第行 展开1(1)1(121)12112101(1)(1)[()]n n n n n n n iia a a a a a a a a τ-++---=--+-∑第2个行列式根据归纳假设112112101[()]n n n n iia a a a a a a a a ---=-+-∑ 12101()nn n i ia a a a a a -=-∑=右边. 证法二 左边=012111100100100n a a a a11221(1)1033200011111111000000000000000(1)000000n n na a a a a a a a a a ++=-++-按第列 展开2(121)01223121(1)(1)n n n n n n a a a a a a a a a a τ+--=-++-- 2101223121(1)(1)n n n n n a a a a a a a a a a +--=-++--01223121n n n a a a a a a a a a a -=--- =右边.证法三提示 将第(2,3,,1)i i n =+ 行的1ia -倍加到第一行即得下三角行列式. 2)证法一 当1n =时,左边=00x a x a +=+=右边; 假设等式对于n -1级情形成立,则对于n 级情形:左边=01221000100010000001n n x a x a x a xa x a -----+0121032110001000100010001000100(1)000000100101nn n n n xa x x a x x a xa xa x x a +---------=+---+-按第1行 展开111210()(1)(1)n n n x x a x a a -+-=++++-- 第1行列式根据归纳假设2210()n x a x a x a =++++ 第1行列式根据归纳假设=右边.于是,等式成立.证法二 左边=01221000100010000001n n x a x a x a xa x a -----+120110000000010001000010000100(1)(1)000100010101n nnx x x x a a x x ++-----=-+-+----按第列 展开(1)21000000001000100001000100(1)()(1)00000000000100n nn nn n x x x x x x a x a xx x-++-------++--1122211210121(1)(1)(1)(1)(1)(1)()(1)n n n n n n n n n n a a x a x x a x +-+------=--+--++--++- 110121()n n n n a a x a x x a x ----=+++++=右边.3)将等式左边的行列式记为n D ,按第1列展开,得 12()n n n D D D αβαβ--=+-, 即 112()n n n n D D D D αβα----=-, 该等式对于一切的n 都成立,于是2123()n n n n D D D D αβα----=- 334()n n D D βα--=- =221()n D D βα-=-22[()()]n βαβαβααβ-=+--+n β=. ① 在原式中,是,αβ对称的,故同理可得1n n n D D βα--=. ②②α⨯-①β⨯,得11()n n n D αβαβ++-=-,所以 11n n n D αβαβ++-=-.另解 第二数学归纳法,按第1行展开(略).4)提示 用第二数学归纳法,按第n 行展开得122cos n n n D D D α--=⋅-. 5)提示 用数学归纳法,将第n 行拆成两行111 与00n a . 19—21略。

高等代数 习题及参考答案

高等代数 习题及参考答案
17.求 值,使 有重根。
解易知 有三重根 时, 。若令
,比较两端系数,得
由(1),(3)得 ,解得 的三个根为 ,将 的三个根分别代入(1),得 。再将它们代入(2),得 的三个根 。
当 时 有3重根 ;当 时, 有2重根 。
18.求多项式 有重根的条件。
解令 ,则 ,显然当 时,只有当 才有三重根。
3) 。
解利用剩余除法试根,可得
1)有一个有理根2。
2)有两个有理根 (即有2重有理根 )。
3)有五个有理根 (即一个单有理根3和一个4重有理根 )。
28.下列多项式在有理数域上是否可约?
1) ;
2) ;
3) ;
4) 为奇素数;
5) 为整数。
解1)因为 都不是它的根,所以 在有理数域里不可约。
2)利用艾森斯坦判别法,取 ,则此多项式在有理数域上不可约。
指数组
对应 的方幂乘积
4 2 0
4 1 1
3 3 0
3 2 1
2 2 2
原式= (1)
只要令 ,则原式左边 。另一方面,有 ,
代入(1)式,得 。再令 ,得 。
令 ,得
(2)
令 得
(3)
由(2),(3)解得 。因此
原式 。
4)原式=
指数组
对应 的方幂乘积
2 2 0 0
2 1 1 0
1 1 1 1
设原式
高等代数
第一章多项式
1.用 除 ,求商 与余式 :
1) ;
2) 。
解1)由带余除法,可得 ;
2)同理可得 。
2. 适合什么条件时,有
1) ,
2) 。
解1)由假设,所得余式为0,即 ,

高等代数作业 第二章行列式答案

高等代数作业 第二章行列式答案

高等代数第四次作业第二章 行列式 §1—§4一、填空题1.填上适当的数字,使72__43__1为奇排列、 6,52.四阶行列式44⨯=ija D 中,含24a 且带负号的项为_____、 112433421224314313243241,,a a a a a a a a a a a a3.设.212222111211d a a a a a a a a a nnn n n n =ΛΛΛΛΛΛΛ则._____122122211121=n n nnn na a a a a a a a a ΛΛΛΛΛΛΛ(1)2(1)n n d -- 4.行列式11111111---x 的展开式中, x 的系数就是_____、 2 二、判断题1、 若行列式中有两行对应元素互为相反数,则行列式的值为0 ( )√2、 设d =nnn n n n a a a a a a a a a ΛΛΛΛΛΛΛ212222111211则121112222121n n n nn n a a a a a a a a a L L L L L L L =d ( )×3、 设d =nnn n n n a a a a a a a a a ΛΛΛΛΛΛΛ212222111211则d a a a a a a a a a nnn n n n-=112112122221ΛΛΛΛΛΛΛΛ( )×4、 abcd zz z dy y c x b a =000000( ) √ 5、abcd dcx b y x a z y x-=000000 ( )× 6、0000000=yxh gf e d c b a ( )√7、 如果行列式D 的元素都就是整数,则D 的值也就是整数。

( )√ 8、 如果行列D 的元素都就是自然数,则D 的值也就是自然数。

( )×9、n na a a a a a ΛN 2121= ( )×10、 01000200010ΛΛΛΛΛΛΛΛΛnn -=n ! ( )× 三、选择题1.行列式01110212=-k k 的充分必要条件就是 ( ) D(A)2=k (B)2-=k (C)3=k (D)2-=k 或 3 2.方程093142112=x x 根的个数就是( )C (A)0 (B)1 (C)2 (D)3 3.下列构成六阶行列式展开式的各项中,取“+”的有 ( )A(A)665144322315a a a a a a (B)655344322611a a a a a a (C)346542165321a a a a a a (D)513312446526a a a a a a4、 n 阶行列式的展开式中,取“–”号的项有( )项 A(A)2!n (B)22n (C)2n (D)2)1(-n n5.若(145)11243455(1)k l k l a a a a a τ-就是五阶行列式的一项,则l k ,的值及该项的符号为( )B (A)3,2==l k ,符号为正; (B)3,2==l k ,符号为负; (C)3,1k l ==,符号为正; (D)1,3k l ==,符号为负6.如果0333231232221131211≠==M a a a a a a a a a D ,则3332312322211312111222222222a a a a a a a a a D = = ( )C(A)2 M (B)-2 M (C)8 M (D)-8 M 7.如果1333231232221131211==a a a a a a a a a D ,3332313123222121131211111232423242324a a a a a a a a a a a a D ---= ,则=1D ( )C(A)8 (B)12- (C)24- (D)24 四、计算题 1. 计算3214214314324321解:3214214314324321321421431432111110=123012101210111110------=440004001210111110---=400004001210111110---==1602、 计算3111131111311113、 解:3111131111311113=31111311113111116•=20000200002011116•=.48263=⨯高等代数第五次作业第二章 行列式 §5—§7一、填空题1、 设ij ij A M ,分别就是行列式D 中元素ij a 的余子式,代数余子式,则._____1,1,=+++i i i i A M 02、 122305403-- 中元素3的代数余子式就是 、6-3、 设行列式4321630211118751=D ,设j j A M 44,分布就是元素j a 4的余子式与代数余子式,则44434241A A A A +++ = ,44434241M M M M +++= 、0,66- 4、 若方程组⎪⎩⎪⎨⎧=+-=++=+02020z y kx z ky x z kx仅有零解,则k 、 2≠5、 含有n 个变量,n 个方程的齐次线性方程组,当系数行列式D 时仅有零解、 0≠ 二、判断题1、 若n 级行列试D 中等于零的元素的个数大于2n n -,则D=0 ( )√2、222)(00000000a b b a a b b a ab -= ( )√ 3、222)(00000000b a a b b a a b b a -= ( )√4、0=d b a c d b c a b d c a b d a c ( )√ 5、483111131111311113= ( )√ 6、)(000000hx gy a yh fdx g e c b a -= ( )× 7、0107310111187654321=--- ( )√三、选择题1、 行列式102211321的代数余子式13A 的值就是( )D(A)3 (B)1- (C)1 (D)2-2.下列n (n >2)阶行列式的值必为零的就是 ( )D(A)行列式主对角线上的元素全为零 (B)行列式主对角线上有一个元素为零 (C)行列式零元素的个数多于n 个 (D)行列式非零元素的个数小于n 个3.若111111111111101)(-------=x x f ,则)(x f 中x 的一次项系数就是( )D(A)1 (B)1- (C)4 (D)4-4.4阶行列式4433221100000000a b a b b a b a 的值等于( )D(A)43214321b b b b a a a a - (B)))((43432121b b a a b b a a -- (C)43214321b b b b a a a a + (D)))((41413232b b a a b b a a -- 5.如果122211211=a a a a ,则方程组 ⎩⎨⎧=+-=+-022221211212111b x a x a b x a x a 的解就是( )B(A)2221211a b a b x =,2211112b a b a x = (B)2221211a b a b x -=,2211112b a b a x = (C)2221211a b a b x ----=,2211112b a b a x ----=(D)2221211a b a b x ----=,2211112b a b a x -----=6、 三阶行列式第3行的元素为4,3,2对应的余子式分别为2,3,4,那么该行列式的值等于( )B(A)3 (B)7 (C)–3 (D)-77.如果方程组 ⎪⎩⎪⎨⎧=--=+=-+050403z y kx z y z ky x 有非零解,则 k =( )C(A)0 (B)1 (C)-1 (D)3 四、计算题1、 计算D=100110011001aa aa---解:方法1:100110011001aa a a ---21r r ↔=aa a a 100110001011---21r ar +=aaa a a 101100100112--+-32r r ↔=aa a a a 100101100112-+--232(1)r a r ++=aa a a a a 100120011001123-++--=aa a a 11223-++=.13)1()2(2423++=+++a a a a a a方法2:将行列式按第一行展开,有:1001101101a aa a---=1011011010101a a a aa a-----=1]01111[2++---•a aaa a a=1])1([22++++a a a a a .1324++=a a2、 计算12125431432321-=n n n D n ΛM M M M ΛΛΛ解:12125431432321-n n n ΛM M M M ΛΛΛ121)1(254)1(143)1(32)1(21212121-++++=n n n n n n n n n n ΛM M M M ΛΛΛ121125411431321)1(21-+=n n n n ΛM MM M ΛΛΛ11101111110321)1(21ΛMMM M ΛΛΛn nnn n --+=111111111)1(21ΛM M MΛΛn n n n n ---+=)1()1(0000111)1(121212)1(+-=---+=--n n n n n n n n n ΛM M MΛΛ3、 计算6427811694143211111解:6427811694143211111)34)(24)(23)(14)(13)(12(------=12=4、 计算=n D 12111111111na a a +++L L M M M L 解:=n D 12111111111na a a +++LL M M M Lna a a ΛM M M ΛΛ1101101121++=12111111+111a a ++LLM M ML1211--+=n n n a a a D a Λ).11(121∑=+=ni in a a a a Λ 5、 解方程:22x 9132513232x 213211--=0、解:22x 9132513232x 213211--=223310131000103211x x -----=223310131000103211)1(x x ----•-=223300130000103211)1(x x ----•-=224000130000103211)1(x x ---•-=223(1)(4)x x ---.2,1±±=∴x五、证明题1.证明:0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c cb b b b a a a a 证明:()()()()()()()()()()()()43433232212222222222222222222222221232123252122123212325212221232521221232123252122123c c c c c c c c c c a a a a a a a a a a bb b b b b b b b bc c c c c c c c c cd d d d d d d d d d -----++++++++++++++++++++++++++++ 40推论2.设111,12,11,111211ΛΛM M M Λn n n n n a a a a a a D ---=,求证:n D D D D +++=Λ21,其中k D ()1,2,,k n =L 为将D 中第k 列元素换成121,,,,1n x x x -L 后所得的新行列式。

(完整版)行列式练习题及答案

(完整版)行列式练习题及答案

(完整版)行列式练习题及答案一、填空题1.设自然数从小到大为标准次序,则排列1 3 … )12(-n 2 4 … )2(n 的逆序数为,排列1 3 … )12(-n )2(n )22(-n …2的逆序数为 . 2.在6阶行列式中,651456314223a a a a a a 这项的符号为 . 3.所有n 元排列中,奇排列的个数共个. 二、选择题1.由定义计算行列式nn 00000010020001000ΛΛΛΛΛΛΛΛΛΛ-= (). (A )!n(B )!)1(2)1(n n n --(C )!)1(2)2)(1(n n n --- (D )!)1()1(n n n --2.在函数xx x x xx f 21123232101)(=中,3x 的系数是().(A )1 (B )-1 (C )2 (D )33.四阶行列式的展开式中含有因子32a 的项,共有()个. (A )4;(B )2;(C )6;(D )8.三、请按下列不同要求准确写出n 阶行列式)det(ij a D =定义式:1.各项以行标为标准顺序排列;2.各项以列标为标准顺序排列;3.各项行列标均以任意顺序排列.四、若n 阶行列式中,等于零的元素个数大于n n -2,则此行列式的值等于多少?说明理由.一、填空题1.若D=._____324324324,13332313123222121131211111333231232221131211=---==a a a a a a a a a a a a D a a a a a a a a a 则2.方程229132513232213211x x --=0的根为___________ .二、计算题 1. 8171160451530169144312----- 2.dc b a100110011001---3.abbb a b b b a D n ΛΛΛΛΛΛΛ=4.111113213211211211211nn n n n a a a a x a a a a x a a a a x a a a a x D ΛΛΛΛΛΛΛΛΛΛΛ---+=5.计算n 阶行列式)2(212121222111≥+++++++++=n nx x x n x x x n x x x D n n n n ΛΛΛΛΛΛΛ。

高等代数第二章课后习题

高等代数第二章课后习题
1
第 章 行列式 2
第二章 行列式
6.由行列式定义计算
2x x 1 2
f(x)= 1 3
x 1 -1 2x 1
1 11 x
中 x4 与 x3 的系数,并说明理由.
3
第二章 行列式
证明奇偶排列各半.
8.设
1
P(x)=
1 .
.
.
1
x
x2...xn-1
a1 a12 ...a1n-1 . .. . .. . ..
x4+5x5=1
2
第 章 行列式 3
1.如果排列 x1 x2...xn-1xn 的逆序数为 k 排列 xnxn-1...x2x1 的逆序数是多少? 2.在 6 级行列式的展开式中,a23 a31 a a 42 56 a14 a65,a32 a43 a14 a51 a66 a25 这两项应带有什么符号? 3. 写出 4 级行列式中所有带负号,并且包含因子 a23 的项 .
1)134782695; 2)217986354;
3)987654321.
2.选择 i 与 k 使 1)1274i56k9 成偶排列; 2)1i25k4897 成奇排列.
3.写出把排列 12435 变成排列 25341 的那些对换.
4.决定排列 n(n-1)…21 的逆序数,并讨论它的奇偶性 .
1
第二章 行列式
2由行列式性质求第二章行列式2464273271014543443342721621第二章行列式b1c1c1a1a1b1b2c2c2a2a2b2a1b1c1a2b2c21y第二章行列式第二章行列式第二章行列式第二章行列式第二章行列式第二章行列式第二章行列式第二章行列式5x
第二章 行列式
1. 决定以下九级排列的逆序数,从而决定他们的奇偶性。

高等代数__课后答案__高等教育出版社

高等代数__课后答案__高等教育出版社

高等代数习题答案(一至四章)第一章 多项式 习题解答1、(1)由带余除法,得17(),39q x x =-262()99r x =--(2)2()1q x x x =+-,()57r x x =-+2、(1)2100p m q m ⎧++=⎨-=⎩ , (2)由22(2)010m p m q p m ⎧--=⎪⎨+--=⎪⎩得01m p q =⎧⎨=+⎩或212q p m =⎧⎨+=⎩。

3、(1)432()261339109,q x x x x x =-+-+()327r x =- (2)q (x )=22(52)x ix i --+,()98r x i =--4、(1)有综合除法:2345()15(1)10(1)10(1)5(1)(1)f x x x x x x =+-+-+-+-+- (2)234()1124(2)22(2)8(2)(2)f x x x x x =-+++-+++(3)234()24(75)5()(1)()2()()f x i x i i x i i x i x i =+-++--+-+++5、(1)x+1 (2)1 (3)21x -- 6、(1)u (x )=-x-1 ,v (x )=x+2 (2)11()33u x x =-+,222()133v x x x =-- (3)u (x )=-x-1, 32()32v x x x x =+--7、02u t =⎧⎨=⎩或23u t =-⎧⎨=⎩8、思路:根具定义证明证:易见d (x )是f (x )与g (x )的公因式。

另设()x ϕ是f (x )与g (x )的任意公因式,下证()()x d x ϕ。

由于d (x )是f (x )与g (x )的一个组合,这就是说存在多项式s (x )与t (x ),使 d (x )=s (x )f (x )+t (x )g (x )。

从而()()x f x ϕ,()()x g x ϕ,可得()()x d x ϕ。

上海财经大学《线性代数》分章节习题及答案

上海财经大学《线性代数》分章节习题及答案

第一章行列式1.1计算以下排列的逆序数,判别其奇偶性。

(1) 365247; (2) 5216743; (3) 7654321; (4) 12)1(⋅−⋅L n n ; (5) 24)22()2()12(531⋅−⋅⋅−⋅⋅L L n n n 。

1.2选择 与 ,使下列排列(1)成为奇排列;使(2)成为偶排列。

i k (1) 75132⋅⋅⋅⋅⋅⋅k i ; (2) 76532⋅⋅⋅⋅⋅⋅k i 。

1.3 写出把排列 1356742 变换成排列 4132567 的对换。

1.4 分别写出4级行列式和5级行列式中所有带有负号且包含因子的项。

2312a a 1.5 按定义计算下列行列式的值。

(1)121051103−−, (2) 430021001011002−, (3) 000100002000010L L L L L L L L L n n −。

1.6 按定义写出行列式xx x x x 111123111212−中 与 的系数。

4x 3x 1.7 按定义说明 级行列式n λλλ−−−nn n nan n a a a a a a a a a L L L L L L L 22222111211是一个关于λ 的 次多项式。

n1.8 计算下列行列式的值。

(1)3621−; (2) |2|−;(3)bia i bbi a −+;上海财经大学《线性代数》分章节习题及答案(4)λλ−−−1132; (5)θθθθsin cos cos sin −; (6) θθθθsin 0cos 010cos 0sin −;(7)691051203−; (8) 142151322−−−−; (9) 5142022000120003−−−;(10)2000130021403121; (11) 5142122000120023−−; (12)3242402052121303−−−;(13)101200211052014−−−−; (14) dc b a 000000000000。

高等代数第二章课后习题

高等代数第二章课后习题

第二章 行列式
第二章 行列式
第二章 行列式
第二章 行列式
第二章 行列式
x1-m
x2

xn
x1
x2-m … xn
3)
.
.
.
.
. .
.
.
.
x1
x2

xn-m
第二章 行列式
第 章 行列式
2
1
第二章 行列式
5x1+6x2=1 x1+5x2+6x3=0 4) x2+5x3+6x4=0 x3+5x4+6x5=0
x4+5x5=1
2
第 章 行列式 3
ห้องสมุดไป่ตู้
a a ...a 2
n-1
n-1
n-1 n-1
其中 a1,a2,...,an-1 是互不相同的数. 1) 由行列式定义说明,p(x)是一个 n-1 次多项式;
2)由行列式性质,求 p(x)的根 .
4
1.计算下面的行列式:
第二章 行列式
246 427 327
1)
1014 543 443 ;
-342 721 621
1
第 章 行列式 2
第二章 行列式
6.由行列式定义计算
2x x 1 2
f(x)= 1 3
x 1 -1 2x 1
1 11 x
中 x4 与 x3 的系数,并说明理由.
3
第二章 行列式
证明奇偶排列各半.
8.设
1
P(x)=
1 .
.
.
1
x
x2...xn-1
a1 a12 ...a1n-1 . .. . .. . ..

线性代数第二章练习册详细答案

线性代数第二章练习册详细答案

第二章2-1 二阶、三阶行列式一、填空题1.1- 2 . ()ab b a - 3. 6 4. 22x - 二、计算题1. 82. 13. 6-4. 332()-+x y 三、2,3=x2-2 n阶行列式的定义一、填空题1. 102. (1)2-n n 3. 负 二、解答题(1)3,1==i j (2)3,5==i j三、1. 1 2. 1(1)2(1)!--n n n2-3行列式的性质一.利用行列式的性质计算下列各行列式:1. 21357571001(1)12323+-=-⨯-= 2. 4abcdef3.13214150621232123203121312150625062r r +=-- 12322102100204210042144.1992003971200310012330130060013000130c c c c--=--=--13232054541000531005005313r r r r -+--=-==--5.按第一列展开得11110000000000000000000(1)00000000000000000000000000000(1)n n n n n nx y x y y x y x y xy x y x x x y x y x y x y y x x xy x y +--+=+-=+- 二.(1)略(2)证:111111111111111122222222222222223333333333333333b c a c b a b a c b a c a c b a b c a c b a b a c b a c a c b a b c a c b a b a c b a c a c b a ++++++++++=++++++++++++111111111111112222222222222233333333333333b a c a c a b a b c a c a b b a c a c a b a b c a c a b b a c a c a b a b c a c a b ++=+++=+++1112223332a b c a b c a b c = 2-4行列式的计算一、试将下列式化为三角形行列式求值:43211331413224422512152215223714173402161.25927295701134612164201201522152215220120012001209011300330033202163603----+-----↔------------+---↔==-+-r r r r c c r r r rr r c c r r253113132.01151423------2114411423142313130110011520115253101375r r r r r r ------+--↔---+----3242142301100025130065r r r r ---+------4314230110340002500020r r ----+-=--二、用降阶法计算下列行列式:213122402000355413543551.248323123348321120512211c c c c ----+--=--------1323710527102105322701051c c c c --------=-=---251237142.59274612-----21133141251212612062 1.(1)11311032102100r r r r r r +-+---=----三、计算下列行列式: 当3n ≥时,11121111212121222212121112111111212212111.............................................()11...1()()()n nn n n n n n n n n nn n n a b a b a b a b a b a b r r a b a b a b a a a a a a r r a b a b a b a a a a a a a b a b a b r a a a a a a r a a -----------------------÷---÷-0 (1)1...1=11112212211203a b n a b a b a b a b n n -=⎧⎪∴+--=⎨⎪≥⎩2.120...(1)...1...0...(1)0...10...(1)0...(1)0...10...................................................0(1) 01 0n x x x n x x x x x x xx x x n x x x x x c c c n x xxx n xxx xx x x x n x x x x x --+++=---2131126393992312312r r r r -+=-=-+21311,,n r r r r r r --- 11...00 0(1)(1)()00...0 0...n x x xx n x n x x x x---=----=1(1)(1)n n n x ---习题2-5 Cramer 法则一、123411202==-==x x x x ;;; 二、2,5,8k k k ≠≠≠ 三、λ=1或μ=0 第二章 自测题一、选择题1. D2. A3. C4. B 二、填空题1. 122460002. 13k =或3. 54. 0 三、计算下列行列式3222214250425042542542112111211.1(1)5410014120504123223211112032r r r r r r ++--=-----+ 232154(1)723r r +--=- 2.21312141111211120531141005322432461024315012420150r r r r r r r r --+------=--+----31053292903(1)3195715150+---=⋅-=⨯=212112111......111......122......212......23.23!()!(1)!2!1!33......313......3....................................1......n n n n i j nnn n n j i n n n n n n n --≤<≤-=⨯⨯⨯=-=-∏四、证:22222212222231222224122222(1)(2)(3)214469(1)(2)(3)214469(1)(2)(3)214469(1)(2)(3)214469a a a a a a a a c cb b b b b b b bc c cc c c cc c c c cd d d d d d d d ++++++-++++++-++++++-++++++223224222126221260321262126a a c cb bc c c cd d +-+=-++第二章 复习题一、填空题1. 0; 02. (1)n a -3. 0 ; 04. 2008! 二、选择题1.D2.A3.B 三、计算题12341123410234123423411034113411.101034121041214124123101231123c c c c c +++÷21323142411234123420113011310101600222004801110004r r r r r r r r r r -----=----+-----2.112233111111111111111110111111111101111111111011011111111110nnn a a a a a a a a ++++++=+++各行将去第一行得行列式:1112122313111111111111100001000000000111000000000100000001000ni in nnna a a a c c c a a a a a a a =+--=+++--∑111(1)nni i i i a a ===+∑∏3.110001100011000000000000000000000001000100010001nn a a a a a a a r r c c aaaaaa ----++()2221(1)(1)n n a a a a a --=-+=-四、121311213112232122321231230000(1)00n n n n nnn n nnna a a a a a a a a a a a D a a a a a a ------==----转置后得121311223212300(1)(1)0n n nn nnn a a a a a a D a a a --=----,所以当n 为奇数时,0D D D =-⇒=。

高等代数与解析几何1~4章习题答案

高等代数与解析几何1~4章习题答案

高代与解几第二章自测题(一)——行列式一、 判断题1. 一个排列施行一次对换后,其逆序数改变1.( × )2. 一个排列施行一次对换后,其奇偶性改变.( √ )3. 2≥n 时,n 级的奇排列共2!n 个. ( √ ) 二、填空题1. 排列)15342( 的逆序数是 5 ,它是一个 奇 排列. 排列 2)22)(2)(12(13 --n n n 的逆序数是 n (n -1) .2. 设行列式ijn nD a ⨯=,则n n A a A a A a 1112121111...+++= D ,n n A a A a A a 5152125111...+++= 0 .3. 行列式D =xxx xx x 2213321232321--的展开式中4x 的系数是 -4 ,常数项是 -18 .4. 排列821j j j 的逆序数是9,则排列 178j j j 的逆序数是 19 .5. 设82718491423123267----=D ,则14131211M M M M -+-= 240 .二、证明题3. nn D n 20012000302202002210002----=(提示:逐行向下叠加得上三角形行列式) 4. nD n 222232222222221=(提示:爪型行列式)高代与解几第二章自测题(二)——矩阵,线性方程组一、 判断题1. 如果矩阵A 有r 阶子式大于零,那么r A rank >)(.( ×)2. 如果矩阵A 没有非零子式,那么0)(=A rank .(√ )3. 如果矩阵A 的r 阶子式都等于零,那么r A rank <)(.( √)4. 初等变换不改变矩阵的秩.(√ )5. 若n 元线性方程组有2个解,则其增广矩阵的秩小于n .(√ ) 三、填空题1. 54⨯矩阵A 的秩为2, 则A 的标准形为___⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00000000000001000001____________.2 若n 元线性齐次方程组仅有零解,则其系数矩阵的秩为 n .三、计算与证明题1. 求齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=++++=-++=++++04523,05734,03,02543254321543154321x x x x x x x x x x x x x x x x x x 的一般解. 解:对这个齐次线性方程组的系数矩阵施行行初等变换,得A =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-45230573411110312111→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----45230452304523012111→⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎪⎪⎭⎫⎝⎛0000000343532103131310100000000004523012111 取543,,x x x 为自由未知量,得其一般解为:……2. 解线性方程组12341234123421,4222,2 1.x x x x x x x x x x x x +-+=⎧⎪+-+=⎨⎪+--=⎩解 方程组的增广矩阵为:B = ⎢⎢⎢⎣⎡112224112--- 111- 121⎥⎥⎥⎦⎤,….……………………………….. 2分 对B 做行初等变换:B =⎢⎢⎢⎣⎡211000010000- 100⎥⎥⎥⎦⎤,…………………………….....…… 6分 从而得方程组的解为……3. 设n a a a ,,,21 是数域K 中互不相同的数,n b b b ,,,21 是数域K 中任一组给定的数,证明:有唯一的数域K 上的多项式()112210--++++=n n x c x c x c c x f 使()i i b a f =,.,...,2,1n i =证明:要证有唯一的数域K 上的多项式()112210--++++=n n x c x c x c c x f 使()i i b a f =()n i ,,2,1 =,即要证有唯的一组数1210,...,,,-n c c c c ,使得⎪⎪⎩⎪⎪⎨⎧=++++==++++==++++=------n n n n n n n n n n n b a c a c a c c a f b a c a c a c c a f b a c a c a c c a f 112210212122221021111221101...)(......)(...)(1 …… (2分)即证方程组⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++------n n n n n n n n n n b x a x a x a x b x a x a x a x b x a x a x a x 1122102112222120111122110............1 …… (4分) 有唯一一组解.而此方程组的方程个数与未知数个数相等.其系数行列式121323312222112111111----=n nnnn n n a a a a a a a a a a a a D……(5分) T D 是范德蒙德行列式,由范德蒙德行列式的结论知,∑≤<≤-==nj i i jT a aD D 1)( ……(7分)又n a a a ,,,21 是数域K 中互不相同的数,故0≠D ,由克莱姆法则知,上述方程组有唯一一组解.得证. …… (10分)4. 设n a a a ,...,,21是互不相同的数,b 是任意数,证明线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++----11212111221121......1...n n n n n n nn n bx a x a x a b x a x a x a x x x 只有唯一解,并求出这个解.证明:观察知此方程组的未知量个数与方程个数相等,其系数行列式D =1121121111---n nn n na a a a a a 是n 阶范德蒙德行列式 …… (4分)因此,D =∏≤<≤-ni j j ia a1)(,由于n a a a ,...,,21是互不相同的数,所以0≠D ,根据克莱姆法则知此线性方程组只有唯一解, n k DD x kk ,...,2,1,==,其中k D 是将系数行列式D 的第k 列换成 T n b b b ),...,,,1(12-, …… (7分)显然k D 依然是n 阶范德蒙德行列式,且k D 的值只是将D 的值中k a 的地方换成b ,因此n k a a a a a a a a a b a b b a b a x k k k k k k n k k n k ,...,2,1,))...()()...(())...()()...((111111=--------=-+-+ (10分)5. 假设有齐次线性方程组⎪⎩⎪⎨⎧=++=++=++,0,02,0321321321 x x x p x x x x x x当p 为何值时,方程组仅有零解?又在何时有非零解?在有非零解时,求出其一般解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 行列式 §1—§4一、填空题1.填上适当的数字,使72__43__1为奇排列. 6,52.四阶行列式44⨯=ija D 中,含24a 且带负号的项为_____. 112433421224314313243241,,a a a a a a a a a a a a3.设.212222111211d a a a a a a a a a nnn n n n =ΛΛΛΛΛΛΛ则._____122122211121=n n nnn na a a a a a a a a ΛΛΛΛΛΛΛ(1)2(1)n n d -- 4.行列式11111111---x 的展开式中, x 的系数是_____. 2 二、判断题1. 若行列式中有两行对应元素互为相反数,则行列式的值为0 ( )√2. 设d =nnn n n n a a a a a a a a a ΛΛΛΛΛΛΛ212222111211则121112222121n n n nn n a a a a a a a a a L L L L L L L =d ( )×3. 设d =nnn n n n a a a a a a a a a ΛΛΛΛΛΛΛ212222111211则d a a a a a a a a a nnn n n n-=112112122221ΛΛΛΛΛΛΛΛ( )×4.abcd zzz dy y c x b a =000000 ( ) √ 5.abcd dcx b y x a z y x-=000000 ( )× 6.0000000=yxh gf e d c b a ( )√7. 如果行列式D 的元素都是整数,则D 的值也是整数。

( )√ 8. 如果行列D 的元素都是自然数,则D 的值也是自然数。

( )×9.n na a a a a a ΛN 2121= ( )× 10. 0100002000010ΛΛΛΛΛΛΛΛΛnn -=n ! ( )× 三、选择题1.行列式01110212=-k k 的充分必要条件是 ( ) D(A )2=k (B )2-=k (C )3=k (D )2-=k 或 32.方程093142112=x x 根的个数是( )C (A )0 (B )1 (C )2 (D )3 3.下列构成六阶行列式展开式的各项中,取“+”的有 ( )A(A )665144322315a a a a a a (B )655344322611a a a a a a (C )346542165321a a a a a a (D )513312446526a a a a a a 4. n 阶行列式的展开式中,取“–”号的项有( )项 A(A )2!n (B )22n (C )2n (D )2)1(-n n5.若(145)11243455(1)k l k l a a a a a τ-是五阶行列式的一项,则l k ,的值及该项的符号为( )B (A )3,2==l k ,符号为正; (B )3,2==l k ,符号为负; (C )3,1k l ==,符号为正; (D )1,3k l ==,符号为负6.如果0333231232221131211≠==M a a a a a a a a a D ,则3332312322211312111222222222a a a a a a a a a D = = ( )C(A )2 M (B )-2 M (C )8 M (D )-8 M 7.如果1333231232221131211==a a a a a a a a a D ,3332313123222121131211111232423242324a a a a a a a a a a a a D ---= ,则=1D ( )C(A )8 (B )12- (C )24- (D )24四、计算题1. 计算3214214314324321解:3214214314324321321421431432111110=123012101210111110------=440004001210111110---=400004001210111110---==1602. 计算3111131111311113. 解:3111131111311113=31111311113111116•=20000200002011116•=.48263=⨯高等代数第五次作业第二章 行列式 §5—§7一、填空题1. 设ij ij A M ,分别是行列式D 中元素ij a 的余子式,代数余子式,则._____1,1,=+++i i i i A M 02. 122305403-- 中元素3的代数余子式是 .6-3. 设行列式4321630211118751=D ,设j j A M 44,分布是元素j a 4的余子式和代数余子式,则44434241A A A A +++ = ,44434241M M M M +++= .0,66- 4. 若方程组⎪⎩⎪⎨⎧=+-=++=+02020z y kx z ky x z kx仅有零解,则k . 2≠5. 含有n 个变量,n 个方程的齐次线性方程组,当系数行列式D 时仅有零解. 0≠ 二、判断题1. 若n 级行列试D 中等于零的元素的个数大于2n n -,则D=0 ( )√2.222)(00000000a b b a a b b a ab -= ( )√ 3.222)(00000000b a a b b a a b b a -= ( )√4.0=d b a c d b c a b d c a b d a c ( )√ 5.483111131111311113= ( )√ 6.)(000000hx gy a yh fdx g e c b a -= ( )× 7.0107310111187654321=--- ( )√三、选择题1. 行列式102211321的代数余子式13A 的值是( )D(A )3 (B )1- (C )1 (D )2- 2.下列n (n >2)阶行列式的值必为零的是 ( )D(A )行列式主对角线上的元素全为零 (B )行列式主对角线上有一个元素为零 (C )行列式零元素的个数多于n 个 (D )行列式非零元素的个数小于n 个3.若111111111111101)(-------=x x f ,则)(x f 中x 的一次项系数是( )D(A )1 (B )1- (C )4 (D )4-4.4阶行列式4433221100000000a b a b b a b a 的值等于( )D(A )43214321b b b b a a a a - (B )))((43432121b b a a b b a a -- (C )43214321b b b b a a a a + (D )))((41413232b b a a b b a a -- 5.如果122211211=a a a a ,则方程组 ⎩⎨⎧=+-=+-0022221211212111b x a x a b x a x a 的解是( )B (A )2221211a b a b x =,2211112b a b a x =(B )2221211a b a b x -=,2211112b a b a x = (C )2221211a b a b x ----=,2211112b a b a x ----=(D )2221211a b a b x ----=,2211112b a b a x -----=6. 三阶行列式第3行的元素为4,3,2对应的余子式分别为2,3,4,那么该行列式的值等于( )B(A )3 (B )7 (C )–3 (D )-77.如果方程组 ⎪⎩⎪⎨⎧=--=+=-+050403z y kx z y z ky x 有非零解,则 k =( )C(A )0 (B )1 (C )-1 (D )3 四、计算题1. 计算D=10011001101aa aa ---解:方法1:100110011001aa a a ---21r r ↔=a aa a 100110001011---21r ar +=aaa a a 1001100100112--+-32r r ↔=aaa a a10101100112-+--232(1)r a r ++=aa a a a a 100120011001123-++--=aa a a 11223-++=.13)1()2(2423++=+++a a a a a a方法2:将行列式按第一行展开,有:1001101101a aa a---=1011011010101a a a aa a-----=1]01111[2++---•a aaa a a=1])1([22++++a a a a a .1324++=a a2. 计算12125431432321-=n n n D n ΛM M M M ΛΛΛ解:12125431432321-n n n ΛM M M M ΛΛΛ121)1(254)1(143)1(32)1(21212121-++++=n n n n n n n n n n ΛM M M M ΛΛΛ121125411431321)1(21-+=n n n n ΛM MM M ΛΛΛ11101111110321)1(21ΛMMM M ΛΛΛn nnn n --+=111111111)1(21ΛM M MΛΛn n n n n ---+=)1()1(0000111)1(121212)1(+-=---+=--n n n n n n n n n ΛM M MΛΛ3. 计算6427811694143211111解:6427811694143211111)34)(24)(23)(14)(13)(12(------=12=4. 计算=n D 12111111111n a a a +++L L M M M L解:=n D 12111111111na a a +++LL M M MLna a a ΛM M M ΛΛ1101101121++=12111111+111a a ++LLM M ML1211--+=n n n a a a D a Λ).11(121∑=+=ni in a a a a Λ 5. 解方程:22x 9132513232x 213211--=0.解:22x9132513232x 213211--=223310131000103211x x -----=223310131000103211)1(x x ----•-=223300130000103211)1(x x ----•-=22400130000103211)1(x x ---•-=223(1)(4)x x ---.2,1±±=∴x五、证明题1.证明:0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c cb b b b a a a a 证明:2.设111,12,11,111211ΛΛM M M Λn n n n n a a a a a a D ---=,求证:n D D D D +++=Λ21,其中k D ()1,2,,k n =L 为将D 中第k 列元素换成121,,,,1n x x x -L 后所得的新行列式。

相关文档
最新文档