建筑结构抗震设计.ppt
合集下载
建筑结构抗震设计课件第3章第4节
X ni
i2
m1
i振型上的惯性力在
j振型上作的虚功
X1i
m2
mn
X X
2i ni
i2
m
X
i
Wij m1i2 X1i X1j m2i2 X2i X2 j L
i2
X
T j
m
X
i
2.主振型的正交性
i振型上的惯性力在 j振型上作的虚功:
Wij
i2
X
2k m2 k12
0
k k m2
m2
EI1
k2 m1
EI1
k1
X
1
1 1.618
X 2
1 0.618
(2k 2m) k 2m k2 0
1.618
0.618
1 0.618 k / m 2 1.618 k / m
X11 1 ; X12 1 X 21 1.618 X 22 0.618
y1 y2
X1 sin(t ) X2 sin(t )
k11 X1 k21 X1
k12 X 2 k22 X 2
m12 X1 0 m22 X 2 0
(
k11 k21
k12
k22
m1 0 0 m2
2
)
X1 X2
=
0 0
(k2 m)X 0...366
k2 m 0...(3 69)
i) i)
质点上的惯性力为:
X 21
m2
X
2i
2 i
I1(t) I2 (t)
m1 y1 m2 y2
m1
X
1i
2 i
sin(
i
t
i
m2
i2
m1
i振型上的惯性力在
j振型上作的虚功
X1i
m2
mn
X X
2i ni
i2
m
X
i
Wij m1i2 X1i X1j m2i2 X2i X2 j L
i2
X
T j
m
X
i
2.主振型的正交性
i振型上的惯性力在 j振型上作的虚功:
Wij
i2
X
2k m2 k12
0
k k m2
m2
EI1
k2 m1
EI1
k1
X
1
1 1.618
X 2
1 0.618
(2k 2m) k 2m k2 0
1.618
0.618
1 0.618 k / m 2 1.618 k / m
X11 1 ; X12 1 X 21 1.618 X 22 0.618
y1 y2
X1 sin(t ) X2 sin(t )
k11 X1 k21 X1
k12 X 2 k22 X 2
m12 X1 0 m22 X 2 0
(
k11 k21
k12
k22
m1 0 0 m2
2
)
X1 X2
=
0 0
(k2 m)X 0...366
k2 m 0...(3 69)
i) i)
质点上的惯性力为:
X 21
m2
X
2i
2 i
I1(t) I2 (t)
m1 y1 m2 y2
m1
X
1i
2 i
sin(
i
t
i
m2
建筑结构减震隔震设计方案PPT教案
(2)隔震层以上结构的隔震措施 ①隔震层以上结构应采取不阻碍隔震层在罕遇地震下发生大变形; ②隔震层顶部应设置梁板式楼盖,隔震层与上部结构的连接,隔震 层顶部梁板的刚度和承载力,宜大于一般楼面梁板的刚度和承载力
;
③隔震墙下隔震支座的间距不宜大于2.0m; ④外露的预埋件应有可靠的防锈措施。预埋件的锚固钢筋应与钢板 牢固连接,锚固钢筋的锚固长度宜大于20倍锚固钢筋直径,且不应 小于250mm等。
由于目前的橡胶隔震支座对竖向地震几乎没有减震效果,因此 ,须在隔震建筑设计时考虑这一因素。主要是在隔震层以上结构和 隔震层设计中考虑这一因素。
第14页/共25页
8.2.4 隔震结构构造要求
(1) 隔震层应提供必要的竖向承载力、侧向刚度和阻尼;穿过隔震 层的设备配管、配线,应采用柔性连接或其他有效措施适应隔 震层的罕遇地震水平位移。
第22页/共25页
8.4背景知识 工程结构减震控制包括隔震、消能减震和各种被动控制、主动
控制、混合控制等内容。传统的抗震结构体系是通过“加强结构” 的途径来提高结构的抗震能力,但结构减震控制体系则是通过调整 结构动力特性的途径,大大减小了结构在地震(或强风)中的振动 反应,从而保护结构以及结构内部的设备、仪器、网络和装饰物等 不受任何损害。这是一种采用新概念、新机理的新结构体系、新理 论和新技术方法。在很多情况下,它更加安全和经济,它为工程结 构的地震防护、减振抗风提供了一条崭新的途径,日益引起国内外 学术界、工程界的兴趣和重视。目前,这个新领域仍处于不断发展 和完善的阶段,随着技术的成熟和现代化社会的发展,工程结构减 震控制技术将会越来越广泛地被应用,将取得显著的社会效益和经 济效益。
U型软钢板
滚珠或滚轴
第10页/共25页
8.2.3 基础隔震结构设计
;
③隔震墙下隔震支座的间距不宜大于2.0m; ④外露的预埋件应有可靠的防锈措施。预埋件的锚固钢筋应与钢板 牢固连接,锚固钢筋的锚固长度宜大于20倍锚固钢筋直径,且不应 小于250mm等。
由于目前的橡胶隔震支座对竖向地震几乎没有减震效果,因此 ,须在隔震建筑设计时考虑这一因素。主要是在隔震层以上结构和 隔震层设计中考虑这一因素。
第14页/共25页
8.2.4 隔震结构构造要求
(1) 隔震层应提供必要的竖向承载力、侧向刚度和阻尼;穿过隔震 层的设备配管、配线,应采用柔性连接或其他有效措施适应隔 震层的罕遇地震水平位移。
第22页/共25页
8.4背景知识 工程结构减震控制包括隔震、消能减震和各种被动控制、主动
控制、混合控制等内容。传统的抗震结构体系是通过“加强结构” 的途径来提高结构的抗震能力,但结构减震控制体系则是通过调整 结构动力特性的途径,大大减小了结构在地震(或强风)中的振动 反应,从而保护结构以及结构内部的设备、仪器、网络和装饰物等 不受任何损害。这是一种采用新概念、新机理的新结构体系、新理 论和新技术方法。在很多情况下,它更加安全和经济,它为工程结 构的地震防护、减振抗风提供了一条崭新的途径,日益引起国内外 学术界、工程界的兴趣和重视。目前,这个新领域仍处于不断发展 和完善的阶段,随着技术的成熟和现代化社会的发展,工程结构减 震控制技术将会越来越广泛地被应用,将取得显著的社会效益和经 济效益。
U型软钢板
滚珠或滚轴
第10页/共25页
8.2.3 基础隔震结构设计
建筑结构抗震设计课件第3章(下)
1)引起结构产生扭转的原因主要有哪些? 2)规则结构如何考虑扭转效应的影响? 3)需要进行扭转计算的结构: j振型时第i层质心处的水平地震作用标准值计算公式Fxji(Fyji、Ftji); 考虑单向水平地震作用时,结构的地震作用效应(扭转效应)Sx(Sy)的计算方 法;
考虑双向水平地震作用效应时,结构地震作用效应的计算方法,0.85的物理意 义。
竖向地震作用的影响是显著的:
根据地震计算分析,对于高层建筑、高耸及大跨结构,竖向 地震影响显著。结构竖向地震内力NE/与重力荷载产生的内力NG 的比值沿高度自下向上逐渐增大,烈度为8度时为50%至90%,9 度时可达到或超过1;335m高的电视塔上部,8度时为138%;高 层建筑上部,8度时为50%至110%。
2、考虑扭转影响的水平地震作用
M D&& CD& K D M D&&g (t)
1
M
cos
D
1n1
1
D&&g (t)
d&&g (t)
M
sin
D
1n1Leabharlann 0M0n1
d&&g (t) ---地面运动加速度 D ---地面运动方向与x轴夹角
3n
设 D(t) X i qi (t) Aq(t) i 1 D&(t) Aq&(t)
Ftji j tj ri2 jiGi
Fx ji
Ftji x
分别为j振型i层的x方向、y方向和
Fy ji
转角方向的地震作用标准值
j振型i层质心处地震作用
思考题
1、底部剪力法的计算步骤是怎样的? 1)底部总剪力计算 2)高阶振型影响如何考虑? 3)屋顶突出屋面附属建筑鞭梢效应的考虑及计算
考虑双向水平地震作用效应时,结构地震作用效应的计算方法,0.85的物理意 义。
竖向地震作用的影响是显著的:
根据地震计算分析,对于高层建筑、高耸及大跨结构,竖向 地震影响显著。结构竖向地震内力NE/与重力荷载产生的内力NG 的比值沿高度自下向上逐渐增大,烈度为8度时为50%至90%,9 度时可达到或超过1;335m高的电视塔上部,8度时为138%;高 层建筑上部,8度时为50%至110%。
2、考虑扭转影响的水平地震作用
M D&& CD& K D M D&&g (t)
1
M
cos
D
1n1
1
D&&g (t)
d&&g (t)
M
sin
D
1n1Leabharlann 0M0n1
d&&g (t) ---地面运动加速度 D ---地面运动方向与x轴夹角
3n
设 D(t) X i qi (t) Aq(t) i 1 D&(t) Aq&(t)
Ftji j tj ri2 jiGi
Fx ji
Ftji x
分别为j振型i层的x方向、y方向和
Fy ji
转角方向的地震作用标准值
j振型i层质心处地震作用
思考题
1、底部剪力法的计算步骤是怎样的? 1)底部总剪力计算 2)高阶振型影响如何考虑? 3)屋顶突出屋面附属建筑鞭梢效应的考虑及计算
建筑结构抗震设计ppt课件
b. 9度地区,可采用下沉式天窗;
c. 突出屋面的钢筋砼天窗,侧板与柱宜采用螺栓连接。
(5) 支撑系统
(6) 柱 单层砖柱房屋:
6、7度地区可采用十字形无筋砖柱; 8度地区Ⅰ、Ⅱ类场地采用竖向配筋组合砖柱; 8度地区(Ⅲ、Ⅳ类场地)和9度地区的中柱采用钢 筋砼柱。 单层钢筋砼柱厂房:
厂房中的各种柱采用钢筋砼柱。 a. 截面形式和尺寸:矩形、工字形、双肢形、管柱形等。
排架的侧向柔度d11按下式计算:
11
F
a 11
11
F
(1
-
x1
)
a 11
11
F=1
x1
11
11
F=1
x1
11
x2
11
a11
F=1
⑵ 两跨不等高厂房
采用能量法计算并考虑KT影响,计算自振周期:
T1 2kT
Gi ui2
K i ui2
式中
u1、u2-将结构简图转动900,将G1、G2视为垂直于 杆件的荷载,在G1、G2处产生的水
e. 在满足有关抗震构造措施时,规范规定下列建筑 可不进行抗震计算:
(a) . 7度地区Ⅰ、Ⅱ类场地内的柱高不超过4.5m且 两端均有
均有 2.
(b). 7度地区Ⅰ、Ⅱ类场地内的柱高不超过10m且两端
山墙的单跨及等高多跨钢筋砼柱厂房。 设计计算内容 自振周期的计算; 内力计算; 强度计算。
3. 厂房质量集中系数的确定
平位u移1 。 11G1 12G2 u2 21G1 22G2
⑶ 三跨不对称带升高中跨的厂房结构:
T1 2KT
G1u12 G2u22 G3u32 G1u1 G2u2 G3u3
建筑结构抗震ppt课件
第一章 绪论
建筑结构抗震设计
烈度表
分为1-12度(不同的国家的分度方法不同)
中国地震烈度表
分项:人的感觉,大多数房屋震害程度,其他现象, 加速度(水平向)厘米/秒² ,速度(水平向)厘米/秒
I度:为无感觉,损坏一个别砖瓦掉落墙体微细裂缝; 河岸和松软土上出现裂缝。
第一章 绪论
建筑结构抗震设计
VI (6)度:惊慌失措,仓惶逃出;饱和砂层出现喷砂冒 水。地面上有的砖烟囱轻度裂缝、掉头;加 速度63厘米/秒² 。
第一章 绪论
建筑结构抗震设计
(多遇烈度)
.55度
(设防烈度)
度左右
(罕遇烈度)
第一章 绪论
设计地震分组
6度近震
设计地震分组是新规范新提 出的概念,用以代替旧规范设计 近震、设计远震的概念。 6度远震
在宏观烈度大体相同 条件下,处于大震级远离 震中的高耸建筑物的震害 比中小级震级近震中距的 情况严重的多。
第一章 绪论
建筑结构抗震设计
板块说:
大陆漂移假说:它是德国气象学家魏格纳(Wegener) (1880~1930年)在讲课中提出来的。
这一假说在约10年时间内没有受到地质界的重视。在 1922年2月16日有一篇评述魏格纳的书的一无人署名的短文, 发表于著名的科学杂志《自然》上,说“该书直接应用了物 理学原理,但遭到许多地质学家的强烈反对”。
建筑结构抗震设计
震级是一次地震强弱的等级。
现国际上的通用震级表示为
里氏震级。(Richter)
查尔斯·里 克特(1900~
用标准的地震仪在距震中100km19处85年记) 录 最大水平位移A(以µm=10-6 m计)。
震级M=logA
建筑结构抗震设计(PPT,共81页)
提供了较大的侧向刚度,位移得到控制。
3.1
结构抗震概念设计
五、合理的结构材料
• 延性系数(表示极限变形与相应屈服变形之比)高; • “强度/重力”比值大(轻质高强); • 匀质性好; • 正交各向同性; • 构件的连接具有整体性、连续性和较好的延性,并
图 断层和断裂带 “有地震必有断层,有断层必有地震”
3.1
结构抗震概念设计
断裂及其工程影响
地质调查结果: •沿龙门山中央主断裂 带的地表破裂从映秀镇 至北川长200km; • 沿龙门山山前断裂带 的地表破裂从都江堰至 汉旺镇长40km 。
(图源:张培震, 2008)
汶川地震的 启示和教训
位于地震 断层的建筑, 由于地震断错 和地面强大振 动,带来房屋 毁灭性坍塌。
填充墙。
4层以上平面图
2)竖向不规则:塔楼上部(4层
楼面以上),北、东、西三面布
置了密集的小柱子,共64根,支
承在过渡大梁上,大梁又支承在
其下面的10根柱子上。上下两部
分严重不均匀,不连续。
3)主要破坏:第4层与第5层之 间(竖向刚度和承载力突变),周围
4层以下平面图
剖面图
柱子严重开裂,柱钢筋压屈;塔楼西立面、其他立面窗下和电梯井处的空心砖填充墙
• 这里的“规则”包含了对建筑平面、立面外形尺寸,抗 侧力构件的布置、质量分布,直至承载力分布等诸多因 素的综合要求。
• “规则”的具体界限随结构类型的不同而异,需要建筑 师和结构师相互配合,才能设计出抗震性能良好的建筑。
3.1
结构抗震概念设计
• 建筑抗震设计应符合抗震概念设计的要求,不应采用严 重不规则的设计方案;
①竖向抗侧力构件不连续时,该构件传递给水平转换
3.1
结构抗震概念设计
五、合理的结构材料
• 延性系数(表示极限变形与相应屈服变形之比)高; • “强度/重力”比值大(轻质高强); • 匀质性好; • 正交各向同性; • 构件的连接具有整体性、连续性和较好的延性,并
图 断层和断裂带 “有地震必有断层,有断层必有地震”
3.1
结构抗震概念设计
断裂及其工程影响
地质调查结果: •沿龙门山中央主断裂 带的地表破裂从映秀镇 至北川长200km; • 沿龙门山山前断裂带 的地表破裂从都江堰至 汉旺镇长40km 。
(图源:张培震, 2008)
汶川地震的 启示和教训
位于地震 断层的建筑, 由于地震断错 和地面强大振 动,带来房屋 毁灭性坍塌。
填充墙。
4层以上平面图
2)竖向不规则:塔楼上部(4层
楼面以上),北、东、西三面布
置了密集的小柱子,共64根,支
承在过渡大梁上,大梁又支承在
其下面的10根柱子上。上下两部
分严重不均匀,不连续。
3)主要破坏:第4层与第5层之 间(竖向刚度和承载力突变),周围
4层以下平面图
剖面图
柱子严重开裂,柱钢筋压屈;塔楼西立面、其他立面窗下和电梯井处的空心砖填充墙
• 这里的“规则”包含了对建筑平面、立面外形尺寸,抗 侧力构件的布置、质量分布,直至承载力分布等诸多因 素的综合要求。
• “规则”的具体界限随结构类型的不同而异,需要建筑 师和结构师相互配合,才能设计出抗震性能良好的建筑。
3.1
结构抗震概念设计
• 建筑抗震设计应符合抗震概念设计的要求,不应采用严 重不规则的设计方案;
①竖向抗侧力构件不连续时,该构件传递给水平转换
建筑结构抗震设计课件第5章第5节
f yv Asvj
hb0 as s
9度一级时
Vj
1
RE
0.9
j
ftbjhj
f yv Asvj
hb0 as s
f t ---混凝土抗拉强度设计值;
N ---对应与组合剪力设计值的上柱组合轴向压力较小值;
f yv ---箍筋抗拉强度设计值; Asvj ---核心区有效验算宽度范围内同一截面验算方向箍筋的总截面面积;
2.梁、柱截面的剪压比不宜过大(6.2.9条)
剪压比:截面内平均剪应力与混凝土抗压强度设计值之
比,即:
Vb / bh0 fc
剪压比过大,混凝土会过早发生斜压破坏,箍筋不能充分
发挥作用,它对构件的变形能力也有显著影响。因此应控制。
跨高比大于2.5时: 跨高比等于或小于2.5时:
VbΒιβλιοθήκη 1RE(0.2
fcbh0 )
截面中配置受压钢筋可以改善构件的弯曲延性。
2、受剪构件的剪跨比及破坏特征
构件在弯矩和剪力共同作用下,受剪破坏与剪跨比有关.
剪跨比:
M / Vh0
h0为截面有效高度。
当 1 ~ 1.5或构件为超配箍时,发生斜压型破坏; 当 2 ~ 3 且构件为低配箍时,发生斜拉型破坏;
脆性破坏
当 1 ~ 1.5 2 ~ 3且配筋箍适量时,发生剪压破坏; 延性破坏
高构件的延性、防止混凝土过早地压溃及防止纵向钢筋的压 曲失稳。
加密位置、箍筋直径、箍筋间距等应符合规范规定。
四、框架的节点设计
框架节点破坏的主要形式是节点核心区剪切破坏和钢 筋锚固破坏。
节点主要受剪力和压力的组合作用,节点核心区未开 裂前,箍筋应力很小,基本上是混凝土承受剪力。约当剪 力达到核心区极限抗剪能力60~70%时,混凝土突然发生 对角贯通裂缝,节点刚度明显降低,箍筋应力也突然增大, 个别甚至屈服,此后斜裂缝增多赠宽,箍筋陆续达到屈服。
建筑结构抗震设计ppt53页
1.0.1 课程简介
建筑结构抗震设计是综合了地震成因,强烈地面运动,结构物的动力特性和地震反应等方面的研究成果而发展起来的一门多科性的学科,它涉及地球物理学、地质学、地震学、工程力学(结构动力学、材料力学、结构静力学)、工程结构学(钢筋混凝土结构、钢结构、地基与基础)、施工技术等多方面的知识。
1.0.2 课程性质和目的
1.1.1 地震类型与成因
什么是地震?地震是指因地球内部缓慢积累的能量突然释放而引起的地球表层的振动 。地震是一种自然现象,地球上每天都在发生地震,一年约有500万次。其中约5万次人们可以感觉到;能造成破坏的约有1000次; 7级以上的大地震平均一年有十几次。目前记录到的世界上最大地震是8.9级,发生于1960年5月22日的智利地震。
抗震设防烈度
6度
7度
8度
9度
设计设计基本地震加速度值
0.05g
0.1g(0.15g)
0.2g(0.3g)
0.4g
1.2.3 基本烈度与地震区划
设计地震分组:是新规范新提出的概念,用以代替旧规范设计近震、设计远震的概念。
在宏观烈度大体相同条件下,处于大震级远离震中的高耸建筑物的震害比中小级震级近震中距的情况严重的多。 设计地震分三组,对于Ⅱ类场地,第一、二、三组的设计特征周期分别为:0.35s、0.40s、0.45s.
1.1.2 地震波
地震波:地震产生的地壳运动(振动)以波的形式从震源向各个方向传播并释放能量,这种波称为地震波。 地震波包含:体波和面波。1、体波:在地球内部传播的波。纵波:在传播过程中,介质质点的振动方向与波的前进方向一致,又称为压缩波或疏密波。特点:周期短,振幅小,波速快, 引起地面竖向颠簸。纵波也叫初波横波:在传播过程中,介质质点的振动方向与波的前进方向垂直,故又称为剪切波。特点:周期较长,振幅较大,波速慢, 引起地面水平摇晃。横波也叫次波。
建筑结构抗震设计是综合了地震成因,强烈地面运动,结构物的动力特性和地震反应等方面的研究成果而发展起来的一门多科性的学科,它涉及地球物理学、地质学、地震学、工程力学(结构动力学、材料力学、结构静力学)、工程结构学(钢筋混凝土结构、钢结构、地基与基础)、施工技术等多方面的知识。
1.0.2 课程性质和目的
1.1.1 地震类型与成因
什么是地震?地震是指因地球内部缓慢积累的能量突然释放而引起的地球表层的振动 。地震是一种自然现象,地球上每天都在发生地震,一年约有500万次。其中约5万次人们可以感觉到;能造成破坏的约有1000次; 7级以上的大地震平均一年有十几次。目前记录到的世界上最大地震是8.9级,发生于1960年5月22日的智利地震。
抗震设防烈度
6度
7度
8度
9度
设计设计基本地震加速度值
0.05g
0.1g(0.15g)
0.2g(0.3g)
0.4g
1.2.3 基本烈度与地震区划
设计地震分组:是新规范新提出的概念,用以代替旧规范设计近震、设计远震的概念。
在宏观烈度大体相同条件下,处于大震级远离震中的高耸建筑物的震害比中小级震级近震中距的情况严重的多。 设计地震分三组,对于Ⅱ类场地,第一、二、三组的设计特征周期分别为:0.35s、0.40s、0.45s.
1.1.2 地震波
地震波:地震产生的地壳运动(振动)以波的形式从震源向各个方向传播并释放能量,这种波称为地震波。 地震波包含:体波和面波。1、体波:在地球内部传播的波。纵波:在传播过程中,介质质点的振动方向与波的前进方向一致,又称为压缩波或疏密波。特点:周期短,振幅小,波速快, 引起地面竖向颠簸。纵波也叫初波横波:在传播过程中,介质质点的振动方向与波的前进方向垂直,故又称为剪切波。特点:周期较长,振幅较大,波速慢, 引起地面水平摇晃。横波也叫次波。
建筑结构抗震设计第11章 地下建筑抗震设计PPT
3) 地震作用的方向 水平地震作用:
长条形地下构造:按平面应变问题分析时,一般可仅考虑沿构 造横向的水平地震作用;
体型复杂的地下建筑构造:同时计算构造横向和纵向的水平地 震作用。
竖向地震作用:8、9度时宜计及竖向地震作用。必要时,设防 烈度为7度,也可考虑竖向地震作用效应的综合作用。
采用土层-构造时程分析法或等效水平地震加速度法时,土、岩 石的动力特性参数可由试验确定。
地下建筑随地震入射播大小及较大变化地 下结构各点的变形和应力可能发生较大
4 结构各点相 十分明显 影响不大 位差
5 与地震加速 不明显 度大小关系
衡量地震动反应 地下建筑地震反应与岩土介质在地震作用
的重要因素
下的变形或应变大小的关系密切
6 埋深变化 不明显
影响地震反应
7 土-结相互作 地基地震 自振特性影响大
震害形式:主体构造与吸排气塔、楼梯间等部位的连 接处出现了混凝土的剥落和裂缝。
震害原因:主要是由于连接部位的主体构造与吸排气 塔、楼梯间的刚度差异造成了不同的动态反响,从而在连 接处发生了相对位移。
2)过街通道
震害形式:破坏主要是与电气、空调、给水排水和防灾设备 有关的破坏。主体结构罕有破坏。
3) 城市地下空间综合体 震害形式:主要为中柱破坏(地铁车站),结构主体受损相
造抗震稳定性的影响,采取相应措施。 3〕位于岩石中的地下建筑,其出入口通道两侧的边坡和洞口仰坡,
应依据地形、地质条件选用合理的口部构造类型,提高其抗震稳 定性。
§11.4 地下建筑的抗震计算
〔一〕可不进展抗震计算分析的范围 采取了抗震措施的以下地下建筑,可不进展地震作用计算:
1) 7度Ⅰ、Ⅱ类场地的丙类地下建筑。 2) 8度(0.20g)Ⅰ、Ⅱ类场地时,不超过2层、体型规那么的中小跨 度丙类地下建筑。 〔二〕 计算模型和设计参数的选取 1) 周围土层的模拟 应能较准确地反映周围挡土构造和内部各构件的实际受力状况; 与周围挡土构造完全别离的内部构造,那么可采用与地上建筑同样 的计算模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1-2 震源、震中和地震波
震源:地震发生的部位。不是一个点。
震中:震源正上方的地面位置。附近地面运动最强烈,极震区。
震中距:场地上某一点到震中的距离。
等震线:将地面上破坏程度相近的点连成的曲线。
震源深度(h):震源到地表的垂直距离。
h <70km
浅源地震
h=70-300km 中源地震
h>300km 深源地震
欧亚地震带,西起大西洋的亚速岛,经意大利、土尔其、伊朗、印 度北部、我国西部和西南地区,过缅甸、印度尼西亚。
我国处于以上两大地震带之间 台湾属环太平洋地震带 西藏属欧亚地震带
北冰洋、大西洋、印度洋地震活动带 东非洲地震活动带
我国的地震活动呈带形分布,主要地震带有两条: 南北地震带:北起贺兰山,向南延伸至六盘山,穿越秦岭,沿川西至
岩层断裂发生时,一般不只是一个断裂,而是由一系列断裂组成 的破碎带。一个部位发生断裂,能量释放,达到平衡状态,其它部位 还没有达到平衡状态,还要释放能量。所以一次地震的发生一般都不 是孤立的,伴随着一系列小震。 主震
一系列地震中,释放能量最多一次地震。 前震
主震之前发生的地震。 余震
主震之后发生的地震。 1976年唐山地震 主震7.8级
地震给我国和世界人民造成了巨大的灾难。世界各国的科学家非 常重视抗震研究工作,已经逐步形成为一个独立的学科--地震工程 学。与地震工程学密切相关的几个学科
地震工程学与土木工程学的联系
地震工程学与地震学的联系 地震工程学与经济学的联系
1-1 地震的类型和成因
地震按其成因可划分为3类: 构造地震、火山地震、陷落地震
单发型地震
10%
活动性大断裂带的两端、转弯部位。
重力、磁力异常部位、莫霍面陡峭部位等。
世界范围内,地震分布也有一定的规律。带形分布
两组主要地震带
环太平洋地震带(80--90)%,沿南北美洲西海岸、阿留申群岛, 转向西南到日本列岛,再经我国台湾岛,到菲律宾、新几内亚、新 西兰。
构造地震 地球的内部结构 地壳:30-40km,上部是花岗岩,下部是玄武岩 地幔:2900km,橄榄岩 地核:3500km,主要是镍和铁
• 地球 内部的放射性物质不断放射能量,地球内部温度随深度而升 高,200km—700km范围内,温度6000C —20000C.地球内部的压 力也很大,地幔上部约900MPa,中部约370000MPa.地球内部的压 力是不均匀的,地幔中的软流层有缓慢的对流,引起地壳运动。在 运动过程中有的地区上升,有的地区下降,地球内部积累了大量的 应变能,产生了地应力。当地应力达到岩层的强度时,岩层产生断 裂或错动(脆性破坏),岩层内部的能量被释放,以波的形式传致 地表,引起地面震动。称构造地震。
火山地震 火山爆发,岩浆猛烈喷出,引起地面震动。
陷落地震 地下石灰岩产生溶洞,突然产生大规模陷落引起的地面震动。 这两类地震震级小,在我国危害小。构造地震造成地面建筑物破
坏严重,对人类的危害大,所以我们这门课所说的地震主要是构造地 震。
构造地震的成因的另一种解释--板块学说 地球表面岩层由六大板块组成 欧亚板块、美州板块、非洲板块、太平洋板块、澳洲板块、南 极洲板块 由于地幔的对流,这些板块也在不停运动,板块之间相互挤压、冲 撞引起地应力。能较好地解释地震呈带形分布现象。
什么是地震?
由于某种原因引起的地面剧烈颠簸和摇晃。
据统计,全世界每年大约发生地震500万次,其中约有5万次人 能感觉到。我国平均每年发生6级以上的破坏性地震5.4次,曾经给 人民的生命和财产造成过巨大损失。
1556年,陕西关中8.6级地震,83万人死亡 1668年,山东郯城发生8.5级地震 5万余人死亡 1920年,宁夏海原8.6级地震,20多万人死亡 1976年,河北唐山7.8级地震,24万人死亡
建筑结构抗震设计
课程性质:专业课
教材:丰定国主编 «工程结构抗震» 地震出版社,2002年10月
定价:28.00元
学时: 32学时
主讲人:屈铁军(教授、工学博士)
所在单位 北方工业大学建筑学院
研究方向 结构抗震
课程目的:掌握结构抗震设计方法,未来强地震发生时, 所设计的
建筑物符合国家规定的标准,不至于造成太大的损失。 第一章的几个重要概念
地震类型(按成因分)、两大地震带、6个地震区、震源、震中、 震中距、体波、面波、各种波速之间量的关系及引起地面运动的强弱、 震级、烈度、基本烈度的定义、远震和近震、“三水准,两阶段”、 多遇地震烈度、罕遇地震烈度、设防地震烈度、建筑物的分类及设防 标准、概念设计的主要内容
第一章 抗震设计的基本知识
7级以上余震2次 6.0--6.9级余震2次 5.0--5.9级余震71次 4.0--4.9级余震668次
1999年台湾大地震(9.21) 主震 7.6级 4级以上余震 21 100-120次/天 22 80-100 次/天 23 60-80 次/天
根据能量释放的特点
主震型地震
60%
震群型地震
30%
地震波:由震源释放的能量以波的形式向四周传播,这种波叫地震 波。弹性波。
体波:在地球内部传播的波
面波:只在地表面传播的波。是体波经多次反射、折射后在地表 形成的次生波。
体波包括纵波和横波 纵波:波的传播方向与介质质点运动方向一致。 压缩波(P波) 周期短、振幅小。 在固体中、液体中、气体中传播 横波:波的传播方向与介质质点运动方向垂直。 剪切波(S波) 周期较长、振幅较大。 只能在固体中传播
根据弹性理论 纵波波速和横波波速
vp
云南省,地质构造复杂,有一系列大断裂带、断陷盆地。 东西地震带:主要有东西向两大构造带 北方的一条:沿陕西、山西、河北北部、辽宁 南方的一条:自帕米尔高原起,经昆仑山、秦岭,到大别山 我国的地震活动相当频繁,除个别省份(浙江、江西)外,大部分地
区发生过强烈地震。如台湾、新疆、西藏、西南、西北、华北和东 南沿海地区曾经发生过较多的破坏性地震。 我国的6个地震活动区 1。台湾及其附近海域地震区2。喜马拉雅山脉地震活动区3。南北地 震带4。天山地震活动区5。华北地震活动区6。东南沿海地震活动 区