自动控制原理课程设计位置随动系统

合集下载

《自动控制原理》课程设计位置随动系统的超前校正

《自动控制原理》课程设计位置随动系统的超前校正

位置随动系统的超前校正1 设计任务及题目要求1.1 初始条件图1.1 位置随动系统原理框图图示为一随动系统,放大器增益为Ka=59.4,电桥增益Kτ=6.5,测速电机增益Kt=4.1,Ra=8Ω,La=15mH,J=0.06kg.m/s2JL =0.08kg.m/s2,fL=0.08,Ce=1.02,Cm=37.3,f=0.2,Kb=0.1,i=11.2 设计任务要求1、求出系统各部分传递函数,画出系统结构图、信号流图,并求出闭环传递函数;2、出开环系统的截至频率、相角裕度和幅值裕度,并设计超前校正装置,使得系统的相角裕度增加10度。

3、用Matlab对校正前后的系统进行仿真分析,比较其时域相应曲线有何区别,并说明原因。

2 位置随动系统原理2.1 位置随动系统工作原理工作原理:该系统为一自整角机位置随动系统,用一对自整角机作为位置检测元件,并形成比较电路。

发送自整角机的转自与给定轴相连;接收自整角机的转子与负载轴(从动轴)相连。

TX 与TR 组成角差测量线路。

若发送自整角机的转子离开平衡位置转过一个角度1θ,则在接收自整角机转子的单相绕组上将感应出一个偏差电压e u ,它是一个振幅为em u 、频率与发送自整角机激励频率相同的交流调制电压,即sin e em u u t ω=⋅在一定范围内,em u 正比于12θθ-,即12[]em e u k θθ=-,所以可得12[]sin e e u k t θθω=-这就是随动系统中接收自整角机所产生的偏差电压的表达式,它是一个振幅随偏差(12θθ-)的改变而变化的交流电压。

因此,e u 经过交流放大器放大,放大后的交流信号作用在两相伺服电动机两端。

电动机带动负载和接收自整角机的转子旋转,实现12θθ=,以达到跟随的目的。

为了使电动机转速恒定、平稳,引入了测速负反馈。

系统的被控对象是负载轴,被控量是负载轴转角2θ,电动机施执行机构,功率放大器起信号放大作用,调制器负责将交流电调制为直流电供给直流测速发电机工作电压,测速发电机是检测反馈元件。

位置随动系统建模与分析--自控课设教材

位置随动系统建模与分析--自控课设教材

课程设计任务书学生姓名: 专业班级: 指导教师: 工作单位: 自动化学院题 目: 位置随动系统建模与分析 初始条件:图示为一位置随动系统,放大器增益为8=a k ,电桥增益2=εk ,测速电机增 益15.0=t k V.s ,Ω=5.7a R ,La=14.25mH ,J=0.0006kg .m 2, C e =Cm=0.4N.m/A, f=0.2N.m.s, 减速比i=10 。

要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、 求出系统各部分传递函数,画出系统结构图、信号流图,并求出闭环传递函数;2、 当Ka 由0到∞变化时,用Matlab 画出其根轨迹。

3、 Ka =10时,用Matlab 画出此时的单位阶跃响应曲线、求出超调量、超调时间、 调节时间及稳态误差。

4、 求出阻尼比为0.7时的Ka ,求出此时的性能指标与前面的结果进行对比分析。

时间安排:指导教师签名:年月日系主任(或责任教师)签名:年月日目录1 位置随动系统原理 (3)1.1 位置随动系统原理框图 (3)1.2 元件结构图分析 (3)1.3 位置随动系统各元件传递函数 (5)1.4 位置随动系统的结构框图 (5)1.5 位置随动系统的信号流图 (6)1.6 相关函数的计算 (6)2根轨迹曲线 (7)2.1参数根轨迹转换 (7)2.2绘制根轨迹 (7)3单位阶跃响应分析 (8)3.1单位阶跃响应曲线 (8)3.2单位阶跃响应的时域分析 (9)4系统性能对比分析 (11)4.1 新系统性能指标计算 (11)4.2 系统性能指标对比分析 (11)5 总结体会 (12)参考文献 (13)位置随动系统建模与分析1 位置随动系统原理1.1 位置随动系统原理框图图1.1位置随动系统原理框图工作原理:用一对电位器作为位置检测元件,并形成比较电路。

两个电位器分别将系统的输入和输出位置信号转换成与位置比例的电压信号,并做出比较。

自动控制原理课程设计

自动控制原理课程设计

前言一般来说,随动控制系统要求有好的跟随性能。

位置随动系统是非常典型的随动系统,是个位置闭环反馈系统,系统中具有位置给定,位置检测和位置反馈环节,这种系统的各种参数都是连续变化的模拟量,其位置检测可用电位器、自整角机、旋转变压器、感应同步器等。

位置随动系统中的给只给定量是经常变动的,是一个随机量,并要求输出量准确跟随给定量的变化,输出响应具有快速性、灵活性和准确性。

为了保证系统的稳定性,并具有良好的动态性能,必须设有校正装置,如在正向通道中设置串联校正装并联校正装置等,为了提高位置随动系统的控制精度,还需要增加系统的开环放大倍数或在系统中增加积分环节等。

坦克火控系统等控制系统归根结底主要是依赖于位置随动系统的控制问题,其根本任务就是以足够的控制精度通过执行机构实现被控目标即输出位置对给定量即输入位置的及时和准确的跟踪。

1.控制系统的设计步骤根据综述所述,坦克火炮控制系统可抽象为位置随动系统,主要解决位置跟随的控制问题,其根本任务就是通过执行机构实现被控量即输出位置对给定量即输入位置的及时和准确的跟踪,并要求具有足够的控制精度。

根据设计任务的要求,本设计采用双闭环系统,实现输出信号对输入信号的跟踪和复现。

初步设计的环节如下角差检测装置可以选择电位器组成的检测器,或者自整角机检测装置。

有两个运算放大器环节:第一个运放为角差检测装置,它可以选择可以选择电位器组成的检测器,或者自整角机检测装置。

第二个运算放大器:给定电压与反馈电压在此合成,产生偏差电压,将经过该运算放大器放大。

功率放大器:给定电压与反馈电压在此合成,产生偏差电压,经过放大器放大。

执行部件:系统中执行元件可选用电枢控制直流伺服电动机和两相伺服电动机,电枢控制的直流伺服电动机在控制系统中广泛用作执行机构,能够实现对被控对象的机械运动的快速控制。

减速器:减速器对随动系统的工作有重大影响,减速器速比的选择和分配将影响到系统的惯性矩,并影响到快速性。

自动控制原理与系统第九章 位置随动系统

自动控制原理与系统第九章 位置随动系统

2、直流伺服电动机的结构特点
由于上述的要求,因此直流伺服电动机与普通 直流电动机相比,其电枢形状较细较长(惯量小), 磁极与电枢间的气隙较小,加工精度与机械配合要 求高,铁心材料好。
直流伺服电动机按照其励磁方式的不同,又可 分为电磁式(即他励式)(型号为SZ),(见图9-7a)和 永磁式(即其磁极为永久磁钢)(型号为SY)(见图9-b) 。
位置随动系统有开环控制系统,如由单片机控 制的、步进电动机驱动的位置随动系统,开环控制 精度较低,目前已有精度达10000step/r以上的步进 随动系统。
对跟随精度要求较高而且驱动力矩较大的场合 ,多采用闭环控制系统,它们多采用交流(或直流) 伺服电动机驱动。典型位置随动系统的组成框图如 图9-1所示。
(9-2) (9-3)
四、交流伺服电动机
1、交流伺服电动机的结构特点
交流伺服电动机也是自动控制系统中一种常用 的执行元件。它实质上是一个两相感应电动机。它 的定子装有两个在空间上相差90°的绕组:励磁绕 组A和控制绕组B。运行时,励磁绕组A始终加上一 定的交流励磁电压(其频率通常有50Hz或400Hz等几 种);控制绕组B则接上交流控制电压。常用的一种
如图可见,系统有位置环、速度环和电流环三 个反馈回路。其中位置环为主环(外环),主要消 除位置偏差的作用;速度环和电流环均为副环(内 环),速度环起稳定转速的作用,电流环起稳定电 流与限制电流过大的作用。其中位置环是必需的, 位置随动系统主要依靠位置负反馈来减小并最后消 除位置偏差。
图9-1 典型位置随动系统的组成框图
由图可见,在低速时,它们近似为一簇直线,而交 流伺服电动机较少用于高速,因此有时近似作线性 特性处理。这样,交流伺服电动机的传递函数也可 近似以式(9-2)与式(9-3)表示。

自动控制原理课程设计位置随动系统

自动控制原理课程设计位置随动系统
Tm
,从而拖动负载运动。
~5~
重庆邮电大学自动化学院自动控制原理课程设计
直流电动机:微分方程式为 :
Tm
d M dt
m K mua K c M c
式中 Tm , K m , K c 及 M c 是考虑减速器和负载后,折算到电动机轴上的等效值。
测速发电机
是用于测量角速度并且将角速度转换成电压量的装置, 本设计中是永磁式直流测速 发电机。测速发电机的转子与带测量的轴相连接,在点电枢两端输出与转子角速度成正 比的直流电压,即 U T KT , 式中 K T 是测速发电机的比例系数。是测速发电机的输 出斜率,表示单位角速度的输出电压。
重庆邮电大学自动化学院自动控制原理课程设计
目录
一、设计题目 ....................................................................................................................... 2 1.1 设计目的 ............................................................................................................ 2 1.2 设计内容与任务 ............................................................................................... 2 二、报告正文 ....................................................................................................................... 3 2.1 任务一的分析与求解 ........................................................................................ 4 2.1.1 系统原理图 ..................................................................................................... 4 2.1.2 系统工作原理 ................................................................................................. 4 2.1.3 系统结构框图 ................................................................................................. 4 2.1.4 系统各环节传递函数..................................................................................... 5 2.2 任务二的分析与求解 ........................................................................................ 7 2.2.1 时域分析 ......................................................................................................... 7 2.2.2 频域分析 ....................................................................................................... 10 2.3 任务三的分析及求解 ...................................................................................... 11 2.3.1 校正要求 ...................................................................................................... 11 2.3.2 校正系统的函数的求解 ............................................................................... 12 2.3.3 通过 Matlab 仿真得到校正后传递函数的频域曲线特性 ............................ 12 三、设计总结及体会 .......................................................................................................... 15 3.1 总结 ................................................................................................................ 15 3.2 体会 ................................................................................................................. 15 四、参考文献: ................................................................................................................. 16 五、附录 ............................................................................................................................. 17 MATLAB 仿真函数 ............................................................................................... 17

位置随动系统课程设计概要

位置随动系统课程设计概要

第一章位置随动系统的概述1.1 位置随动系统的概念位置随动系统也称伺服系统,是输出量对于给定输入量的跟踪系统,它实现的是执行机构对于位置指令的准确跟踪。

位置随动系统的被控量(输出量)是负载机械空间位置的线位移和角位移,当位置给定量(输入量)作任意变化时,该系统的主要任务是使输出量快速而准确地复现给定量的变化,所以位置随动系统必定是一个反馈控制系统。

位置随动系统是应用非常广泛的一类工程控制系统。

它属于自动控制系统中的一类反馈闭环控制系统。

随着科学技术的发展,在实际中位置随动系统的应用领域非常广泛。

例如,数控机床的定位控制和加工轨迹控制,船舵的自动操纵,火炮方位的自动跟踪,宇航设备的自动驾驶,机器人的动作控制等等。

随着机电一体化技术的发展,位置随动系统已成为现代工业、国防和高科技领域中不可缺少的设备,是电力拖动自动控制系统的一个重要分支。

1.2 位置随动系统的特点及品质指标位置随动系统与拖动控制系统相比都是闭环反馈控制系统,即通过对输出量和给定量的比较,组成闭环控制,这两个系统的控制原理是相同的。

对于拖动调速系统而言,给定量是恒值,要求系统维持输出量恒定,所以抗扰动性能成为主要技术指标。

对于随动系统而言,给定量即位置指令是经常变化的,是一个随机变量,要求输出量准确跟随给定量的变化,因而跟随性能指标即系统输出响应的快速性、灵敏性与准确性成为它的主要性能指标。

位置随动系统需要实现位置反馈,所以系统结构上必定要有位置环。

位置环是随动系统重要的组成部分,位置随动系统的基本特征体现在位置环上。

根据给定信号与位置检测反馈信号综合比较的不同原理,位置随动系统分为模拟与数字式两类。

总结后可得位置随动系统的主要特征如下:1.位置随动系统的主要功能是使输出位移快速而准确地复现给定位移。

2.必须具备一定精度的位置传感器,能准确地给出反映位移误差的电信号。

3.电压和功率放大器以及拖动系统都必须是可逆的。

4.控制系统应能满足稳态精度和动态快速响应的要求,其中快速响应中,更强调快速跟随性能。

自动控制原理课程设计——位置随动系统

自动控制原理课程设计——位置随动系统

自动控制原理课程设计——位置随动系统
在工业自动化领域,位置随动系统扮演着重要的角色。

它能够使驱动装置根据指令精确地移动到指定位置,并保持稳定。

位置随动系统的核心是自动控制系统,该系统通过反馈机制实时监测和调整驱动装置的位置。

在位置随动系统中,通常采用步进电机或伺服电机作为驱动装置。

这些电机能够根据控制系统的指令精确地转动一定的角度,从而实现位置的精确控制。

为了确保系统的稳定性,通常会采用闭环控制,即通过位置传感器实时监测电机的位置,并将位置信息反馈给控制系统。

在自动控制原理课程设计中,学生需要了解并掌握位置随动系统的基本原理、组成和实现方法。

学生需要自行设计并实现一个简单的位置随动系统,通过实验验证系统的性能和稳定性。

在设计过程中,学生需要考虑系统的硬件组成、控制算法的选择和实现、传感器选择和校准、系统调试和优化等方面的问题。

学生需要通过理论分析和实验验证相结合的方法,不断优化和完善系统设计。

通过这个课程设计,学生可以深入了解自动控制原理在实际应用中的重要性,提高自己的动手能力和解决问题的能力。

同时,这个课程设计也可以为学生未来的学习和工作打下坚实的基础。

位置随动系统的分析与设计自动控制原理课程设计627036讲课教案

位置随动系统的分析与设计自动控制原理课程设计627036讲课教案

《自动控制原理》课程设计(简明)任务书引言:《自动控制原理》课程设计是该课程的一个重要教学环节,既有别于毕业设计,更不同于课堂教学。

它主要是培养学生统筹运用自动控制原理课程中所学的理论知识,掌握反馈控制系统的基本理论和基本方法,对工程实际系统进行完整的全面分析和综合。

一、设计题目:位置随动系统的分析与设计二、系统说明: 该系统结构如下图所示BSTBSR相敏电流功率放大SM负载TG减速器θ1θ2K εuaun其中:放大器增益为Ka=15,电桥增益6K ε=,测速电机增益2t k =,Ra=7Ω,La=10mH,J=0.005kg.m/s 2,J L =0.03kg.m/s 2,f L =0.08,C e =1,Cm=3,f=0.1,K b =0.2,i=0.02三、系统参量:系统输入信号:)(t 1θ 系统输出信号:)(t 2θ 四、设计指标:设定:输入为r(t)=a+bt (其中:a=10, b=5) 在保证静态指标(ess ≤0.3)的前提下,要求动态期望指标:σp ﹪≤15﹪;ts≤5sec;五、基本要求:1.建立系统数学模型——传递函数;2.利用根轨迹方法分析系统:(1)作原系统的根轨迹草图;(2)分析原系统的性能,当原系统的性能不满足设计要求时,则进行系统校正。

3.利用根轨迹方法综合系统:(1)画出串联校正结构图,分析并选择串联校正的类型(微分、积分和微分-积分校正);(2)确定校正装置传递函数的参数;(3)画出校正后的系统的根轨迹图,并校验系统性能;若不满足,则重新确定校正装置的参数。

4.完成系统综合前后的有源物理模拟电路;六、课程设计报告:1、课程设计计算说明书一份;2、原系统组成结构原理图一张(自绘);3、系统分析,综合用根轨迹图一张;4、系统综合前后的模拟图各一张;5、总结(包括课程设计过程中的学习体会与收获、对本次课程设计的认识等内容);6、提供参考资料及文献;7、排版格式完整、报告语句通顺、封面装帧成册摘要随动系统是指系统的输出以一定的精度和速度跟踪输入的自动控制系统,并且输入量是随机的,不可预知的。

8 位置随动系统解析

8 位置随动系统解析

指导教师评定成绩:审定成绩:重庆邮电大学自动化学院自动控制原理课程设计报告设计题目:位置随动系统单位(二级学院):学生姓名:专业:班级:学号:指导教师:设计时间:重庆邮电大学自动化学院制目录一、设计题目 (2)二.报告正文 (3)摘要 (3)2.1 问题一的分析与求解 (4)2.2 问题二的分析与求解 (5)2.3 问题三的分析与求解 (10)2.4 问题四的分析与求解 (14)三、设计总结 (18)四、参考文献 (19)五、附录 (20)附录一 (20)附录二 (20)一、 设计题目自动控制原理课程设计任务书1某位置随动系统原理如下图所示。

输入量为转角r θ,输出量为转角c θ,p R 为圆盘式滑动电位器,SM 为伺服电动机,TG 为测速发电机。

要求:(1)查阅相关资料,分析系统的工作原理,指出被控对象、被控量和给定量,画出系统方框图。

(2)分析系统每个环节的输入输出关系,代入相关参数求取系统传递函数。

(3)分析系统时域性能和频域性能。

(4)运用根轨迹法或频率法校正系统,使之满足给定性能指标要求。

(已知条件和性能要求待定)二、设计报告正文摘要随动系统是指系统的输出以一定的精度和速度跟踪输入的自动控制系统,并且输入量是随机的,不可预知的,主要解决有一定精度的位置跟随问题,如数控机床的刀具给进和工作台的定位控制,工业机器人的工作动作,导弹制导、火炮瞄准等。

控制技术的发展,使随动系统得到了广泛的应用。

位置随动系统是反馈控制系统,是闭环控制,其位置指令是经常变化的,要求输出量准确跟随给定量的变化,输出响应的快速性、灵活性和准确性成了位置随动系统的主要特征。

本次课程设计研究的是一类位置随动系统的滞后校正,首先通过分析原理求出传递函数,并利用主导极点进行降阶,得出一个二阶系统传递函数,并通过MATLAB分析时域和频域的各个性能,得出相角裕度太小和超调量太大,然后设计PD控制装置,改善系统的阻尼比,来使系统的各个性能达到要求。

自动控制原理与系统第6章 位置随动系统性能分析

自动控制原理与系统第6章 位置随动系统性能分析

6.1.5 执行机构 1.直流伺服电动机
直流伺服电动机的作用是将控制电压信号转换成转轴上的 角位移或角速度输出,通过改变控制电压的极性和大小,就能 改变电动机的转向和转速,实质上是一台他励式直流电动机。 优点是效率高、控制性能好(控制电压为零时,可自行停转)、 具有宽广的调速范围,功率范围较大,适用于中、大功率随动 系统。
5.系统的校正设计
(1)采用串联校正 有如下结论:降低增益,将使系统的稳定性改善, 但使系统的快速性和稳态精度变差。PD校正将使系统 的稳定性和快速性改善,但是抗高频干扰能力明显下 降。PI校正将使系统的稳态性能得到明显的改善,但 使系统的稳定性变差。PID校正兼顾了系统稳态性能 和动态性能的改善,因此在要求较高的场合多采用 PID)校正。
所以,位置单环随动系统仅适用于负载小、非 线性因素不强、扰动不大的场合。
2.位置转速负反馈双环系统
3.复合控制随动系统
利用前馈和反馈相结合的方法,构成复合 控制随动系统,可以有效地提高系统精度和 动态品质,因此也得到广泛应用。
6.2.2 位置随动系统的基本类型
1.按控制方式 (1)误差控制的随动系统——系统运动的快慢取决于误差的大小, 误差为零时,系统相对静止。 (2)复合控制系统——按输入信号微分和系统误差综合控制的系统 。特点是系统的运动取决于输入信号的变化率(速度或加速度)和系统误 差信号的综合作用。 2.按组成系统元件的物理性质 (1)电气随动系统一一除机械部件外,均为电气元件。包括直流随 动系统和交流随动系统。 (2)电气一液压随动系统——误差测量和放大部分是电气的,系统 的功率放大和执行机构则是液压系统。 3.按系统信号特点: (1)连续随动系统——系统中传递的电信号是连续的,属于模拟式 控制。 (2)数字随动系统——系统中传递的电信号有离散的脉冲数字信号 ,系统的运动靠数字量控制。系统中必须有A/D,D/A转换器。 (3)脉冲一相位随动系统——系统的输入、输出均为方波脉冲,按 输入、输出方波脉冲的相位差来控制系统的运动。

[VIP专享]位置随动系统建模与频率特性分析

[VIP专享]位置随动系统建模与频率特性分析

目录摘要 (I)1位置随动系统的分析 (1)1.1位置随动系统建模分析 (1)1.2位置随动系统总体分析 (1)1.2.1随动系统的基本原理图 (1)1.2.3 随动系统的基本原理分析 (2)2位置随动系统的原理 (3)2.1位置随动系统各部分基本工作原理 (3)2.1.1环形电桥电位器 (3)2.1.2测速电机部分 (4)2.1.3放大器部分 (5)2.1.4伺服电机部分 (5)2.1.5 减速器 (7)2.2系统结构图和信号流图 (8)2.2.1系统结构图 (8)2.2.2系统信号流图 (10)2.3 系统的传递函数 (10)3系统开环传递函数图像绘制与稳定性判断 (11)3.1开环传递函数伯德图像绘制 (11)3.2开环传递函数奈奎斯特图像绘制 (11)3.3截止频率、相角裕度和幅值裕度 (12)4 系统的闭环传递函数的单位阶跃响应 (13)4.1闭环传递函数在单位阶跃输入下响应图像绘制 (13)4.2闭环传递函数输入响应误差分析 (15)结束语 (17)参考文献 (18)摘要自动控制技术是生产过程中的关键技术,也是许多高新技术产品中的核心技术。

自动控制技术几乎渗透到国民经济的给各个领域及社会生活的各个方面,是当代发展最迅速、应用最广泛、最引人瞩目的高科技,是推动新的技术革命和新的产业革命的关键技术。

随动控制系统又名伺服控制系统。

其参考输入是变化规律未知的任意时间函数。

随动控制系统的任务是使被控量按同样规律变化并与输入信号的误差保持在规定范围内。

这种系统在军事上应用最为普遍.如导弹发射架控制系统,雷达天线控制系统等。

其特点是输入为未知。

本次设计任务是分析一个位置随动系统,本文通过开始的各个环节的数学建模,逐个推导各环节的数学传递函数,继而综合总的结构框图,计算出总的系统的传递函数。

在建立了传递函数的基础上,进一步作频率特性分析,绘制出理论分析的系统的伯德图和奈奎斯特曲线。

再由单位阶跃响应曲线可以得到相应的暂态指标和稳态指标,然后通过指标分析,总结出系统的性能,再反思得出各种指标参数的原因和相互关系。

位置随动系统课程设计

位置随动系统课程设计

位置随动系统课程设计引言:位置随动系统是一种能够根据外部环境和任务需求自动调整位置和姿态的系统。

在本文中,我将介绍一个关于位置随动系统的课程设计。

通过这个课程设计,学生们将能够深入了解位置随动系统的原理、设计和应用,并通过实践项目提升他们的实践能力和团队合作能力。

一、引入位置随动系统位置随动系统是一种智能系统,能够通过传感器和控制算法实现自动调整位置和姿态。

它可以广泛应用于工业生产、医疗器械、机器人等领域,提高生产效率和工作质量。

二、课程设计目标本课程设计的主要目标是让学生们了解位置随动系统的基本原理和设计方法,培养他们的创新思维和实践能力。

通过项目实践,学生们将能够独立设计和实现一个简单的位置随动系统,并通过团队合作完成一个应用案例。

三、课程设计内容1. 位置随动系统原理介绍:学生们将学习传感器原理、控制算法和运动规划等基础知识,了解位置随动系统的工作原理。

2. 设计与建模:学生们将学习如何设计和建模一个位置随动系统,包括选择合适的传感器、控制器和执行器,以及进行系统建模和仿真。

3. 控制算法设计:学生们将学习如何设计合适的控制算法,以实现位置和姿态的自动调整,并优化系统的性能。

4. 系统实现与调试:学生们将利用硬件平台和软件工具,实现他们设计的位置随动系统,并进行调试和优化。

5. 应用案例实践:学生们将以小组为单位,选择一个实际应用场景,设计和实现一个位置随动系统的应用案例,并进行演示和评估。

四、课程设计亮点1. 实践导向:本课程设计注重实践能力的培养,通过项目实践,学生们将能够将所学知识应用于实际问题的解决。

2. 团队合作:学生们将以小组为单位进行项目实践,培养他们的团队合作和沟通能力。

3. 创新思维:学生们将面临真实的问题和挑战,在解决问题的过程中培养创新思维和解决问题的能力。

五、总结通过本课程设计,学生们将能够全面了解位置随动系统的原理、设计和应用,并通过实践项目提升他们的实践能力和团队合作能力。

位置随动系统课程设计

位置随动系统课程设计

课程设计任务书学生姓名: 王吉彪 专业班级:自动化1007指导教师: 陈启宏 工作单位: 自动化学院题 目: 位置随动系统建模与分析初始条件:图示为一位置随动系统,放大器增益为Ka ,电桥增益2K ε=,测速电机增益0.15t k =V.s ,Ra=7.5Ω,La=14.25mH ,J=0.006kg.m 2,C e =Cm=0.4N.m/A,f=0.2N.m.s,减速比i=0.1要求完成的主要任务:1、求出系统各部分传递函数,画出系统结构图、信号流图,并求出闭环传递函数;2、当Ka 由0到∞变化时,用Matlab 画出其根轨迹。

3、Ka =10时,用Matla 画求出此时的单位阶跃响应曲线、求出超调量、超调时间、调节时间及稳态误差。

4、求出阻尼比为0.7时的Ka ,求出各种性能指标与前面的结果进行对比分析。

时间安排:任务 时间(天)审题、查阅相关资料1 分析、计算 1.5 编写程序 1 撰写报告 1 论文答辩0.5指导教师签名: 年 月 日 系主任(或责任教师)签名: 年 月 日1位置随动系统建模与分析1.1位置随动系统的原理分析1.1.1 位置随动系统原理图图1-1 位置随动系统原理图图示为一位置随动系统,放大器增益为Ka ,电桥增益2K ε=,测速电机增益0.15t k =V .s ,Ra=7.5Ω,La=14.25mH ,J=0.006kg.m2,Ce=Cm=0.4N.m/A,f=0.2N.m.s,减速比i=0.11.1.2 位置随动系统原理分析位置随动系统原理图如图1.1所示,主要由位置检测器、电压比较放大器、可逆功率放大器和执行机构几部分组成.系统中给定r θ为输入量,负载为受控量,它的转角为c θ,要求控制负载的转角位移c θ随着输入量r θ的变化变化并保持一致。

位置测量器为两个环形电位器构成的桥式电路,它测量出系统输入量个输出量的偏差角度c -r θθ并将其转换成为电信号,电信号经过放大后驱动电机旋转。

自动控制原理课程设计 武汉理工大学

自动控制原理课程设计 武汉理工大学

目录引言 (1)1 系统建模 (2)1.1系统功能分析 (2)1.2 系统各部分传递函数 (4)1.2.1桥式电路 (4)1.2.2 放大器 (4)1.2.3 测速电机TG (5)1.2.4 伺服电机SM (5)1.2.5 减速器 (7)2 系统结构整体分析 (8)2.1 系统结构图 (8)2.2 信号流图 (8)2.3 系统传递函数 (8)3开环系统频域特性求解 (9)4加入校正装置后的系统分析 (11)4.1校正要求 (11)4.2 PD校正原理 (11)4.3 PD控制改善阻尼比的实现 (11)4.4 滞后校正能否改善系统稳定性的说明 (13)5 系统校正前后比较分析 (13)总结体会 (16)参考文献 (17)引言随着现代科学技术的迅速发展,自动控制技术在实际中的应用日趋广泛。

所谓自动控制,是指在没有人直接参与的情况下,利用外加的设备或装置(称控制装置或控制器),使机器,设备或生产过程(统称被控对象)的某个工作状态或参数(即被控量)自动地按照预定的规律运行。

例如:生产过程中对压力、温度、频率等物理量的控制;雷达和计算机组成的导弹发射和制导系统,自动地将导弹引导到敌方目标;雷达跟踪系统和指挥仪控制火炮射击的高低和方位等等。

随动控制系统又名伺服控制系统。

其参考输入是变化规律未知的任意时间函数。

随动控制系统的任务是使被控量按同样规律变化并与输入信号的误差保持在规定范围内。

这种系统在军事上应用最为普遍.如导弹发射架控制系统,雷达天线控制系统等。

其特点是输入为未知。

位置随动系统是一种位置反馈控制系统,因此,一定具有位置指令和位置反馈的检测装置,通过位置指令装置将希望的位移转换成具有一定精度的电量,利用位置反馈装置随时检测出被控机械的实际位移,也把它转换成具有一定精度的电量,与指令进行比较,把比较得到的偏差信号放大以后,控制执行电机向消除偏差的方向旋转,直到达到一定的精度为止。

这样,被控制机械的实际位置就能跟随指令变化,构成一个位置随动系统。

自动控制原理课程设计_位置随动系统的分析与设计说明

自动控制原理课程设计_位置随动系统的分析与设计说明

成绩课程设计报告课程设计名称:自动控制原理课程设计题目:位置随动系统的分析与设计姓名专业学号指导教师2012年12月24日设计任务书引言:《自动控制原理》课程设计是该课程的一个重要教学环节,既有别于毕业设计,更不同于课堂教学。

它主要是培养学生统筹运用自动控制原理课程中所学的理论知识,掌握反馈控制系统的基本理论和基本方法,对工程实际系统进行完整的全面分析和综合。

一. 设计题目:位置随动系统的分析与设计二.系统说明:该系统结构如下图所示其中:放大器增益为Ka=15,电桥增益6K ε=,测速电机增益2t k =,Ra=7Ω,La=10mH,J=0.005kg.m/s 2,J L =0.03kg.m/s 2,f L =0.08,C e =1,Cm=3,f=0.1,K b =0.2,i=0.02三.系统参量系统输入信号:)(tθ1系统输出信号:)(tθ2四.设计指标e;1.在单位斜坡信号x(t)=t作用下,系统的稳态误差01.0≤ss2.开环截止频率30>w;c3.相位裕度︒γ;>40c五.基本要求:1.建立系统数学模型——传递函数;2.利用频率特性法分析系统:(1)根据要求的稳态品质指标,求系统的开环增益值;(2)根据求得的值,画出校正前系统的Bode图,并计算出幅值穿越频率、相位裕量,以检验性能指标是否满足要求。

若不满足要求,则进行系统校正。

3.利用频域特性法综合系统:(1)画出串联校正结构图,分析并选择串联校正的类型(超前、滞后和滞后-超前校正);(2)确定校正装置传递函数的参数;(3)画出校正后的系统的Bode图,并校验系统性能指标。

若不满足,则重新确定校正装置的参数。

4.完成系统综合前后的有源物理模拟电路:六、课程设计报告:1.报告内容(包括课程设计的主要内容、基本原理以及课程设计过程中参数的计算过程和分析过程);(1)课程设计计算说明书一份;(2)原系统组成结构原理图一张(自绘);(3)系统分析,综合用精确Bode图各一张;(4)系统综合前后的模拟图各一张。

《自动控制原理与应用》课件第8章

《自动控制原理与应用》课件第8章

控制式自整角机是作为转角电压变换器用的。使用时, 总是用一对相同的自整角机来检测指令轴(输入量)与执行轴 (输出量)之间的角差。与指令轴相联的自整角机称为发送器, 与执行轴相联的则称为接收器。在实际使用时,通常将发送 器定子绕组的三个出线端U1、V1、W1与接收器定子绕组的三个 对应的出线端U2、V2、W2相联,如图8-4所示。
2. 自整角机(CT) 自整角机在结构上分为接触式和无接触式两类。下面通过 如图8-3所示为接触式自整角机的结构图和示意图。
图8-3 (a) 结构图; (b) 示意图
自整角机的定子和转子铁芯均为硅钢冲片压叠而成。 定 子绕组与交流电动机三相绕组相似,也是U、V、W三相分布 绕组,它们彼此在空间上相隔120°,一般联接成Y形,定子 绕组称为整步绕组。转子绕组为单相两极绕组(通常做成隐极 式,为直观起见,图中常画成磁极式)。转子绕组称为励磁绕 组,它通过两只滑环—电刷与外电路相连,以通入交流励磁 电流。
第8章 位置随动系统
8.1 概述 8.2 位置随动系统的组成及工作原理 8.3 位置随动系统的控制特点与实例分析
8.1 概 述
电位器式的小功率位置随动系统,其原理图如图8-1所示, 它由以下五个部分组成。
图 8-1 电位器式位置随动系统原理图
1. 位置传感器
由电位器RP1和RP2组成位置(角度)传感器。RP1是给定位 置传感器,其转轴与操纵轮连接,发出转角给定信号θ*m; RP2是反馈位置传感器,其转轴通过传动机构与负载的转轴相 连,得到转角反馈信号θm。两个电位器由同一个直流电源Us供 电,使电位器输出电压U*和U,直接将位置信号转换成电压量。 偏差电压ΔU=U*-U反映了给定与反馈的转角误差Δθm =θ*m- θm,通过放大器等环节拖动负载,最终消灭误差。

自控课程设计(位置随动系统)

自控课程设计(位置随动系统)

位置随动系统建模与分析1位置随动系统的原理分析1.1位置随动系统的原理图位置随动系统的基本原理图如下所示:图1-1 位置随动系统的原理图1.2 位置随动系统工作基本原理位置随动系统工作原理:位置随动系统通常由测量元件、放大元件、伺服电动机、测速发电机、齿轮系以及绳轮等基本环节组成,它通常采用负反馈控制原理进行工作,其原理图如图1-1所示。

在图1-1中,测量元件为由电位器Rr 和Rc组成的桥式测量电路。

负载就固定在电位器Rc的滑臂上,因此电位器Rc的输出电压Uc和输出位移成正比。

当输入位移变化时,在电桥的两端得到偏差电压ΔU=Ur-Uc,经放大器放大后驱动伺服电机,并通过齿轮系带动负载移动,使偏差减小。

当偏差ΔU=0时,电动,表明输出位移与输入位移相对应。

测机停止转动,负载停止移动。

此时δ=δL速发电机反馈与电动机速度成正比,用以增加阻尼,改善系统性能。

1.3 位置随动系统的基本组成环节1.3.1 自整角机作为常用的位置检测装置,将角位移或者直线位移转换成模拟电压信号的幅值或相位。

自整角机作为角位移传感器,在位置随动系统中是成对使用的。

与指令轴相连的是发送机,与系统输出轴相连的是接收机。

u(t)=Kτ(θ1(t)−θ2(t))=Kτ∗∆θ(t) (1-1) 在零初始条件下,对上式求其拉普拉斯变换,可求得电位器的传递函数。

则其传递函数如下式所示:G(s)=U(s)/∆Θ(s)=Kτ(1-2) 根据所求得的传递函数,绘制出自整角机结构图可用图1-2表示如下:图 1-2 自整角机1.3.2 功率放大器由于运算放大器具有输入阻抗很大,输出阻抗小的特点,在工程上被广泛用来作信号放大器。

其输出电压与输入电压成正比,传递函数为:G(s)=Ua(s)/U1(s)=Ka(1-3) 式中参数Ua为输出电压,U1为输入电压,Ka为放大倍数。

功率放大器结构图可用图1-3表示:图 1-3 功率放大器1.3.3 两台伺服电动机列出其工作方程如下:T m∗[d2θ(t)/dt2]+dθ(t)/dt=K m∗u a(t) (1-4) 根据式(1-4),对两边进行拉普拉斯变换,可以求得其传递函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2-2)
系统总的闭环传递函数
0 ( s ) / c ( s ) 0 ( s ) / i ( s ) 0 ( s) / M c ( s )
~2~
重庆邮电大学自动化学院自动控制原理课程设计
二、报告正文
摘要:随动系统是指系统的输出以一定的精度和速度跟踪输入的自动控制系统,并且输 入量是随机的,不可预知的,在实际中应用广泛。本设计针对给定系统首先建立了相应 的数学模型,并画出了方框图,然后用时域和频域分析方法,统进行分析,并判定了系 统的稳定性,最后用超前校正对系统进行校正设计,以满足系统实际运行的要求。 关键词:随动系统;性能分析;校正
~3~
重庆邮电大学自动化学院自动控制原理课程设计
2.1 任务一的分析与求解 2.1.1 系统原理图
图1
位置随动系统原理图
2.1.2 系统工作原理
随动系统的控制过程:在输入量给定一个角度时,同位仪检测装置发出一个误差 信号,放大装置便有一个相应的输入信号,使直流伺服电动机带动齿轮系转动,与此同 时,反馈装置又把齿轮系转动的角度送入同位仪检测装置,如此直至反馈角度的信号与 输入角度的信号相等时,误差信号以及放大装置的输出功率均为零,电动机停止转动, 则齿轮系也就转动到了给定的角度。由于次轮系的角度是可以随时改变的,位置也就随 时改变,因此系统的给定角度必须根据实际需要角度随时调整。
2.1.3 系统结构框图
~4~
重庆邮电大学自动化学院自动控制原理课程设计
图2
系统方框图
2.1.4 系统各环节传递函数
电位器
电位器是一种把线位移或者角位移转换为电压量的装置, 在控制系统中单个电位器 用作信号变换装置,一对电位器可组成误差检测器。空载时,单个电位器的电刷角度位 移 (t ) 与输出电压 u(t) 的关系呈阶梯形状,这是由绕线此线经产生的误差,理论分析 时可以用直线近似。 输出电压为 u(t)= K 1 t ;其中 K 1 =E/ max,是电刷单位角位移对应的输出电压, 称为电位器传递函数。其中 E 是电位器电源电压。 max 是电位器最大工作角。对上式 求拉式变换可以求得电位器传递函数 G(s)=U(s)/ (s) =K 1 用一对相同的电位器组成误 差检测器时,其输出电压为 u(t)=u(t)-u2(t)=K (t ) , K 1 是单个电位器的传递函数;
忽略扰动时的闭环传递函数
0 ( s ) / i ( s ) =
K0 K1 K2 K3Cm s(La s + Ra )(Js + f)+Cm Kb s + K0 K1 K 2 K3Cm
(2-1)
扰动闭环传递函数
0 ( s) / M C ( s) =
La s + Ra s(La s + Ra )(Js + f)+Cm Kb s + K0 K1 K 2 K3Cm
1.2 设计内容与任务
位置随动系统原理图如下:
图1Leabharlann 位置随动系统原理图任务一:根据系统中各个环节的传递函数建立随动系统的传递函数,包括给定输入 和扰动作用下的传递函数; 任务二:对系统性能进行分析,时域分析和频域分析。时域中要求计算系统的性能 指标;频域中要求判断系统的稳定性和稳态误差的计算。 任务三:对随动系统进行校正。要求校正后的系统既能以所需要的精度跟踪输入信 号,又能抑制扰动信号的影响。并且随动系统侧重于快速性的要求,根据系统期望 的开环对数幅频特性的要求:可设计系统校正后的频率特性。 (1)低频段要陡且高。斜率一般要求为-40dB/dec; (2)中频段要缓而宽; a 斜率为-20dB/dec; b 具有一定的中频宽,反映系统的阻尼程度; c 高频段要陡低。 斜率要求为-40dB/dec。
指导教师评定成绩:
审定成绩:
重 庆 邮 电 大 学 自 动 化 学 院 自动控制原理课程设计报告
设计题目:位置随动系统
单位(二级学院) : 学 生 专 班 学 指 导 姓 名: 业: 级: 号: 教 师:
自动化 熊 念
自动化 0810803 08200317 谢昊飞
设计时间:2010-12-27 重庆邮电大学自动化学院制
(t ) 是两个电位器电刷角位移之差,称为误差角。因此,以误差角为输入量时,误差
检测器的传递函数与单个电位器的传递函数相同。
运算放大器
给定的电压与速度反馈电压在此合成, 产生偏差电压并经放大, 即 u1 K1 (ui u o ) 式 中 K1 R2 / R1 是运算放大器 1 的比例系数。
功率放大器
本系统采用晶闸管整流装置,它包括触发电路和晶闸管主回路。忽略晶闸管控制电 路的时间滞后,其输入输出方程为 ua K 3u2 ;式中 K 3 为比例系数。
直流电动机
电枢控制直流电动机的工作实质是将输入的电能转换为机械能, 也就是输入的电枢 电压 ua (t ) ,在电枢回路中产生电枢电流 ia ,在由电流 ia 与激磁磁通相互作用产生电磁转 矩
~1~
重庆邮电大学自动化学院自动控制原理课程设计
一、设计题目
1.1 设计目的
位置随动系统的被控制量是负载机械的线位移或角位移, 当位置给定量任意变化时, 要求输出量快速而准确地复现给定量的变化。随动系统又称“伺服系统” 。这种控制系 统的任务是首先要保持输出量的变化能够紧紧的随其输入的变化,并要求有具有一定的 跟随精度。本设计要求学生根据给定的位置随动系统,对其进行性能分析与校正。
重庆邮电大学自动化学院自动控制原理课程设计
目录
一、设计题目 ....................................................................................................................... 2 1.1 设计目的 ............................................................................................................ 2 1.2 设计内容与任务 ............................................................................................... 2 二、报告正文 ....................................................................................................................... 3 2.1 任务一的分析与求解 ........................................................................................ 4 2.1.1 系统原理图 ..................................................................................................... 4 2.1.2 系统工作原理 ................................................................................................. 4 2.1.3 系统结构框图 ................................................................................................. 4 2.1.4 系统各环节传递函数..................................................................................... 5 2.2 任务二的分析与求解 ........................................................................................ 7 2.2.1 时域分析 ......................................................................................................... 7 2.2.2 频域分析 ....................................................................................................... 10 2.3 任务三的分析及求解 ...................................................................................... 11 2.3.1 校正要求 ...................................................................................................... 11 2.3.2 校正系统的函数的求解 ............................................................................... 12 2.3.3 通过 Matlab 仿真得到校正后传递函数的频域曲线特性 ............................ 12 三、设计总结及体会 .......................................................................................................... 15 3.1 总结 ................................................................................................................ 15 3.2 体会 ................................................................................................................. 15 四、参考文献: ................................................................................................................. 16 五、附录 ............................................................................................................................. 17 MATLAB 仿真函数 ............................................................................................... 17
相关文档
最新文档