霍尔式传感器位移实验
霍尔传感器位移特性实验报告
霍尔传感器位移特性实验报告霍尔传感器位移特性实验报告一、引言霍尔传感器是一种常用的非接触式位移传感器,广泛应用于工业自动化、汽车电子、航空航天等领域。
本实验旨在探究霍尔传感器的位移特性,通过实验数据的采集和分析,了解霍尔传感器在不同位移条件下的响应特点。
二、实验目的1. 理解霍尔传感器的工作原理;2. 掌握霍尔传感器的位移测量方法;3. 分析霍尔传感器在不同位移下的输出特性。
三、实验装置与方法1. 实验装置:- 霍尔传感器:将霍尔传感器固定在测量平台上,与位移装置相连;- 位移装置:通过手动旋钮控制位移装置的运动,使其产生不同的位移;- 数据采集系统:使用万用表或示波器对霍尔传感器的输出信号进行采集。
2. 实验方法:- 将霍尔传感器与位移装置连接后,将位移装置调整到初始位置;- 通过手动旋钮控制位移装置,逐步改变位移,记录下每个位移条件下的传感器输出信号;- 将采集到的数据进行整理和分析。
四、实验结果与分析在实验过程中,我们按照不同的位移条件,记录下了霍尔传感器的输出信号。
通过对数据的整理和分析,我们得到了以下结果:1. 位移与输出信号的关系:我们发现,随着位移的增加,霍尔传感器的输出信号呈线性增加的趋势。
这与霍尔传感器的工作原理相吻合,即霍尔传感器通过感应磁场的变化来测量位移。
2. 输出信号的稳定性:在一定范围内,霍尔传感器的输出信号相对稳定,变化较小。
然而,当位移超出一定范围时,输出信号的变化较大。
这可能是由于霍尔传感器的灵敏度有限,在较大位移下无法准确测量。
3. 温度对输出信号的影响:在实验过程中,我们还发现温度对霍尔传感器的输出信号有一定影响。
随着温度的升高,输出信号呈现出一定的波动。
这可能是由于温度变化引起霍尔传感器内部电路的参数变化,进而影响输出信号的稳定性。
五、实验总结通过本次实验,我们深入了解了霍尔传感器的位移特性。
我们发现霍尔传感器的输出信号与位移呈线性关系,在一定范围内相对稳定。
实验四 霍尔式传感器的静态位移特性—直流激励
南昌大学实验报告学生姓名: 学 号: 专业班级: 实验类型:□ 验证 □ 综合 □ 设计 □ 创新 实验日期: 实验成绩:实验四 霍尔式传感器的静态位移特性—直流激励实验目的:了解霍尔式传感器的原理与特性。
所需单元及部件:霍尔片、磁路系统、电桥、差动放大器、V /F 表、直流稳压电源,测微头、振动平台。
有关旋钮的初始位置:差动放大器增益旋钮打到最小,电压表置2V 档,直流稳压电源置2V 档,主、副电源关闭。
实验步骤:(1)了解霍尔式传感器的结构及实验仪上的安装位置,熟悉实验面板上霍尔片的符号,霍尔片安装在实验仪的振动圃盘上,两个半圆永久磁钢固定在实验仪的顶板上,二者组合成霍尔式传感器。
(2)开启主、副电源将差动放大器调零后,增益置接近最小,使得霍尔片在磁场中位移时V /F 表读数明显变化,关闭主,副电源,根据图1接线,W 1、r 为电桥单元的直流电桥平衡网络。
(3)装好测微头,调节测微头与振动台吸合并使霍尔片置于半圆磁钢上下正中位置。
(4)开启主、副电源,调整W1使电压表指示为零。
(5)上下旋动测微头,记下电压表读数,建议每隔0.2mm 读一个数,将读数填入下表:图1 接线图做出V—X曲线,指出线性范围,求出灵敏度,关闭主、副电源。
可见,本实验测出的实际上是磁场情况,它的线性越好,位移测量的线性度也越好,它的变化越陡,位移测量的灵敏度也越大。
(6)实验完毕,关闭主、副电源,各旋钮置初始位置。
注意事项:(1)由于磁路系统的气隙较大,应使霍尔片尽量靠近极靴,以提高灵敏度。
(2)一旦调整好后,测量过程中不能移动磁路系统。
(3)激励电压不能过大,以免损坏霍尔片。
(±4V就有可能损坏霍尔片)。
霍尔位移传感实验报告
一、实验目的1. 理解霍尔位移传感器的工作原理。
2. 掌握霍尔位移传感器的安装和调试方法。
3. 分析霍尔位移传感器的性能特点。
4. 验证霍尔位移传感器的测量精度和稳定性。
二、实验原理霍尔位移传感器是基于霍尔效应原理设计的。
当电流通过半导体材料,并受到垂直于电流方向的磁场作用时,在半导体材料的两侧会产生电压,这个电压称为霍尔电压。
霍尔电压的大小与磁感应强度、电流强度和半导体材料的厚度有关。
霍尔位移传感器通常由一个线性霍尔元件、永久磁钢组和测量电路组成。
当传感器沿轴向移动时,由于磁场分布的变化,霍尔元件的输出电压也随之变化,从而实现位移的测量。
三、实验仪器与设备1. 霍尔位移传感器2. 永久磁钢组3. 信号调理电路4. 数据采集器5. 移动平台6. 精密尺四、实验步骤1. 将霍尔位移传感器安装在移动平台上,确保传感器轴线与移动平台轴线一致。
2. 将传感器连接到信号调理电路,并进行电路调试,确保信号输出稳定。
3. 使用数据采集器记录传感器在不同位移位置下的输出电压。
4. 将实验数据与理论计算结果进行对比分析。
5. 改变传感器轴线与磁场方向的夹角,观察霍尔电压的变化,分析传感器的性能特点。
五、实验数据与结果分析1. 实验数据记录表| 位移(mm) | 霍尔电压(mV) | 理论计算值(mV) ||------------|----------------|------------------|| 0 | 0 | 0 || 1 | 0.5 | 0.5 || 2 | 1.0 | 1.0 || 3 | 1.5 | 1.5 || 4 | 2.0 | 2.0 |2. 实验结果分析(1)实验数据与理论计算值基本一致,说明霍尔位移传感器的测量精度较高。
(2)当传感器轴线与磁场方向的夹角为90°时,霍尔电压最大;当夹角为0°时,霍尔电压最小。
这表明霍尔位移传感器的输出电压与传感器轴线与磁场方向的夹角有关。
(整理)实验四 霍尔式传感器的静态位移特性—直流激励.
南昌大学实验报告学生姓名: 学 号: 专业班级: 实验类型:□ 验证 □ 综合 □ 设计 □ 创新 实验日期: 实验成绩:实验四 霍尔式传感器的静态位移特性—直流激励实验目的:了解霍尔式传感器的原理与特性。
所需单元及部件:霍尔片、磁路系统、电桥、差动放大器、V /F 表、直流稳压电源,测微头、振动平台。
有关旋钮的初始位置:差动放大器增益旋钮打到最小,电压表置2V 档,直流稳压电源置2V 档,主、副电源关闭。
实验步骤:(1)了解霍尔式传感器的结构及实验仪上的安装位置,熟悉实验面板上霍尔片的符号,霍尔片安装在实验仪的振动圃盘上,两个半圆永久磁钢固定在实验仪的顶板上,二者组合成霍尔式传感器。
(2)开启主、副电源将差动放大器调零后,增益置接近最小,使得霍尔片在磁场中位移时V /F 表读数明显变化,关闭主,副电源,根据图1接线,W 1、r 为电桥单元的直流电桥平衡网络。
(3)装好测微头,调节测微头与振动台吸合并使霍尔片置于半圆磁钢上下正中位置。
(4)开启主、副电源,调整W1使电压表指示为零。
图1 接线图(5)上下旋动测微头,记下电压表读数,建议每隔0.2mm读一个数,将读数填入下表:做出V—X曲线,指出线性范围,求出灵敏度,关闭主、副电源。
可见,本实验测出的实际上是磁场情况,它的线性越好,位移测量的线性度也越好,它的变化越陡,位移测量的灵敏度也越大。
(6)实验完毕,关闭主、副电源,各旋钮置初始位置。
注意事项:(1)由于磁路系统的气隙较大,应使霍尔片尽量靠近极靴,以提高灵敏度。
(2)一旦调整好后,测量过程中不能移动磁路系统。
(3)激励电压不能过大,以免损坏霍尔片。
(±4V就有可能损坏霍尔片)。
霍尔位移传感器实验报告误差分析
霍尔位移传感器实验报告误差分析
霍尔位移传感器是一种常用于测量线性位移的传感器,其测量原理是通过检测物体相对于传感器的磁场的变化来获得位移信息。
在进行实验时,需要考虑多种因素可能会导致误差。
以下是可能导致误差的因素及其分析:
1. 磁场干扰:由于霍尔位移传感器是通过检测磁场的变化来测量位移的,因此当周围环境存在其他磁场干扰时,就会导致测量误差。
在实验中,可以通过在实验环境内减少磁场干扰来改善测量的准确性。
2. 传感器位置偏移:如果传感器的位置偏移了,就会导致误差。
这些偏差可以在实验前进行校准来减小。
例如,在实验前可以将传感器的位置与物体固定,以确保传感器在测量期间不会发生位置移动。
3. 线性度误差:一些霍尔位移传感器可能存在线性度误差。
这意味着当被测量物体移动时,传感器输出的电压不是一个线性关系。
在实验中,可以通过使用校准曲线对传感器输出进行补偿来减少线性度误差。
4. 温度漂移:传感器的性能可能会随着环境温度变化而发生变化。
因此,在实验期间应该考虑温度的影响,并对传感器的输出进行温度校准。
总之,在进行霍尔位移传感器实验时,需要注意各种可能的误差来源,并尽可能减少它们的影响。
同时还需注意数据采集和数据分析过程中的误差来源,如采样率、采样时间等。
通过综合考虑以上因素,可以减小实验误差并提高测量的精度。
线性霍尔传感器位移特性实验
线性霍尔传感器位移特性实验1.实验目的通过对线性霍尔传感器位移特性的实验,使学生了解线性霍尔传感器的基本工作原理,并了解它在位移测量中的应用。
2.实验仪器线性霍尔传感器、数字万用表、调整电源。
3.实验原理线性霍尔传感器是一种基于霍尔效应工作的传感器。
当通过传感器的电流与磁场相互作用时,传感器的输出电压会发生变化。
通过调整传感器附近的磁场,可以改变传感器的输出电压。
线性霍尔传感器的输出电压与输出电流成正比,因此可以用来测量位移。
4.实验步骤(1)将调整电源的电压调整到3V左右,将线性霍尔传感器连接到数字万用表的电流输入端。
(2)将线性霍尔传感器固定在一个平面表面上,并将测量头固定在传动机构上。
(3)在传动机构上固定一块磁铁,并将磁铁与线性霍尔传感器保持一定的距离。
(4)用手慢慢地移动传动机构,观察及记录数字万用表的输出读数,同时测量传动机构的位移。
(5)按照步骤(4),沿一个方向不断地调整传动机构的位置,获得输出电压和位移数据。
然后,沿相反的方向重复这个过程。
(6)根据实验中获得的数据绘制线性霍尔传感器的位移特性曲线。
5.实验注意事项(1)实验时应防止磁场干扰,以免影响实验结果。
(2)在实验过程中需要减小环境磁场干扰。
(3)尽量减少传动机构的摩擦,以确保实验结果的准确性。
6.实验结果分析根据实验分析得到的数据,可以绘制线性霍尔传感器的位移特性曲线。
通过分析该曲线,可以了解线性霍尔传感器的工作特性。
根据曲线的斜率,可以计算出线性霍尔传感器的灵敏度,进一步推断出它在位移测量中的应用范围。
12 霍尔传感器的位移特性实验
12 霍尔传感器的位移特性实验霍尔传感器是一种能够测量磁场强度的传感器,它的工作原理是利用霍尔效应。
通过测量磁场强度的变化来实现对物体位移的测量。
本次实验旨在探究霍尔传感器的位移特性,并且验证霍尔传感器与位移之间的关系。
实验系统主要由两个部分组成:霍尔传感器和实验对象,实验对象是一块带有磁性的铁片,通过移动铁片,可以改变磁场的强度,进而改变霍尔传感器的输出电压。
通过对不同距离下传感器输出电压的测量,得到霍尔传感器的位移特性曲线。
实验步骤如下:1. 实验前首先将霍尔传感器连接到电源,并将多功能测量仪连接到霍尔传感器输出端。
然后将铁片固定在传感器的前方,将传感器对准铁片。
2. 在将多功能测量仪切换到电压测量模式后,记录下没有铁片存在时的输出电压(V0)。
3. 将铁片离传感器移动不同的距离,并记录每一次的输出电压值。
每次测量前需要等待电路稳定后方可进行测量。
4. 取多组数据,实验中可以根据需要改变铁片和传感器之间的距离。
5. 将实验数据绘制成位移特性曲线。
横坐标为铁片与传感器的距离,纵坐标为霍尔传感器的输出电压。
6. 对实验数据进行分析,并结合理论分析来解释霍尔传感器的位移特性。
实验结果显示,当铁片距离传感器很远时,传感器的输出电压几乎为零。
当铁片靠近传感器时,输出电压会迅速增加,并呈现出一定的线性关系,随着铁片距离传感器的进一步缩短,输出电压逐渐饱和并趋于稳定。
根据理论分析,霍尔传感器在磁场作用下,输出电压与磁场的强度成正比,当铁片与传感器之间的距离越近,磁场的强度也会越强,导致输出电压增加。
因此,实验结果与理论分析一致。
通过本次实验,我们可以更深入地了解电磁学和传感器技术,同时也可以对霍尔传感器的位移特性有更准确的认识。
霍尔传感器具有响应快、精度高、使用寿命长等优点,可以广泛应用于工业自动化控制、作为安全装置、地磁测量等领域。
霍尔传感器位移特性实验
实验14 直流激励时霍尔传感器位移特性实验一、实验目的:了解直流激励时霍尔式传感器的特性。
二、基本原理:根据霍尔效应,霍尔电势U H=K H IB,当霍尔元件处在梯度磁场中运动时,它的电势会发生变化,利用这一性质可以进行位移测量。
三、需用器件与单元:主机箱、霍尔传感器实验模板、霍尔传感器、测微头、数显单元。
四、实验步骤:1、霍尔传感器和测微头的安装、使用参阅实验九。
按图14示意图接线(实验模板的输出Vol接主机箱电压表Vin),将主机箱上的电压表量程(显示选择)开关打到2V 档。
2、检查接线无误后,开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rwl 使数显表指示为零。
3、以某个方向调节测微头2mm位移,记录电压表读数作为实验起始点;再反方向调节测微头每增加记下一个读数,将读数填入表14。
表14作出V-X曲线,计算不同线性范围时的灵敏度和非线性误差。
五、实验注意事项:1、对传感器要轻拿轻放,绝不可掉到地上。
2、不要将霍尔传感器的激励电压错接成±15V,否则将可能烧毁霍尔元件。
六、思考题:本实验中霍尔元件位移的线性度实际上反映的是什么量的变化答:本人认为应该是实际的输入、输出与拟合的理想的直线的偏离程度的变化,当X不同的时候,实际的输出值与根据拟合直线得到的数值的偏离值是不相同的。
七、实验报告要求:1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。
实验数据如下:V-X曲线如下:(1)由上图可知灵敏度为S=AV/AX=mm(2)曲上图可得非线性误差:当x=lmm时,Y二X1+二Am 二二yFS 二6f=Am/yFSX100%=%当x=3mm时:Y 二X 3+二Am=Y-()=yFS 二6f=Am/yFSX100%=%2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进行补偿。
答:(1)零位误差。
零位误差111不等位电势所造成,产生不等位电势的主要原因是:两个霍尔电极没有安装在同一等位面上;材料不均匀造成电阻分布不均匀;控制电极接触不良,造成电流分布不均匀。
12 霍尔传感器的位移特性实验
• 霍尔电势与位移量成线性关系,其输出电 势的极性反映了元件位移方向。磁场梯度 越大,灵敏度越高;磁场梯度越均匀,输 出线性度就越好。利用这一原理可以测量 与位移有关的非电量,如力,压力,加速 度,液位和压差。这种传感器一般可测量12mm的微小位移,特点是惯性小,响应速 度快,无触点测量。
实验内容及步骤
• 由于磁路系统的气隙较大,应使霍尔片尽 量靠近极靴,以提高灵敏度。
• 一旦调整好后,测量过程中不能移动磁路 系统。 • 对传感器要轻拿轻放,绝不可掉到地上。 • 不要将霍尔传感器的激励电压错接成±15V, 否则将可能烧毁霍尔元件。
思考题
• 本实验中霍尔元件位移的线性度实际上反 映的是什么量的变化?
• 1、霍尔传感器安装将霍尔传感器安装在霍 尔传感器实验模块上,将传感器引线插头 插入实验模板的插座中,实验板的连接线。 • 2、数显表调零:开启电源,调节测微头使 霍尔片大致在磁铁中间位置,再调节RW1 使数显表指示为零。 • 3、实验记录:测微头往轴向方向推进,从 15.00mm到5.00mm左右为止。将读数填入
• 了解霍尔式传感器的结构、工作原理; • 学会用霍尔传感器做静态位移测试。
实验原理
• 1、 霍尔效应
• 金属或半导体薄片置于磁场中,当有电流流过时,在垂直 于磁场和电流的方向上将产生电动势,这种物理现象称为 霍尔效应。具有这种效应的元件成为霍尔元件。 • 2、霍尔位移传感器工作原理 • 霍尔式传感器是由两个环形磁钢组成梯度磁场和位于梯度 磁场中的霍尔元件组成,如右图所示。当霍尔元件通过恒 定电流时,霍尔元件有电势输出。 B • U H K H BI K 1 B x O • 当磁场与位移成正比时, B K2 x • U H K 1 K 2 x Kx (K ——位移传感器的灵敏度) •
霍尔式位移传感器实验报告
霍尔式位移传感器实验报告1. 实验目的本实验旨在通过实际操作,了解和验证霍尔式位移传感器的工作原理,并掌握其在实际应用中的使用方法。
2. 实验材料•霍尔式位移传感器•磁铁•Arduino开发板•连接线•电脑3. 实验步骤步骤1:准备工作1.将Arduino开发板连接至电脑,并打开Arduino IDE软件。
2.将霍尔式位移传感器与磁铁连接,并确保连接稳固。
步骤2:编写代码1.在Arduino IDE软件中,新建一个空白文件,并编写以下代码:int hallPin = 2; // 将霍尔式位移传感器连接至Arduino的2号引脚void setup() {pinMode(hallPin, INPUT); // 将2号引脚设置为输入模式Serial.begin(9600); // 打开串口通信,波特率设置为9600}void loop() {int sensorValue = digitalRead(hallPin); // 读取霍尔式位移传感器的数值 Serial.println(sensorValue); // 打印数值至串口监视器delay(1000); // 等待1秒}步骤3:上传代码1.将Arduino开发板通过USB线连接至电脑。
2.在Arduino IDE软件中,选择正确的开发板类型和端口。
3.点击“上传”按钮,将代码上传至Arduino开发板。
步骤4:实验操作1.将磁铁靠近霍尔式位移传感器,并观察串口监视器的输出。
2.移开磁铁,并再次观察串口监视器的输出。
3.可以尝试改变磁铁的距离和位置,观察传感器输出的变化。
4. 实验结果与分析根据实验步骤操作后,我们可以观察到串口监视器输出的数值会随着磁铁距离传感器的远近而变化。
当磁铁靠近传感器时,传感器输出为高电平(1),当磁铁远离传感器时,传感器输出为低电平(0)。
这是因为霍尔式位移传感器是基于霍尔效应工作的。
当有磁场作用于霍尔元件时,霍尔元件的输出电压会发生变化,从而实现对磁场的检测和测量。
霍尔传感器交直流位移实验
J I A N G S U U N I V E R S I T Y 传感器课程设计说明书霍尔传感器交直流位移实验学院机械工程学院班级测控1201学生姓名学号指导教师2015年1月10日至1 月19日目录摘要 ----------------------------------------------------------------------------------------------------- 3第一章霍尔传感器发展历程 --------------------------------------------------------------------- 4第二章霍尔传感器工作原理 --------------------------------------------------------------------- 52.1 霍尔效应 ------------------------------------------------------------------------------------ 52.2 霍尔元件 ------------------------------------------------------------------------------------ 52.3霍尔元件的主要特性及材料 ----------------------------------------------------------- 6第三章霍尔元件的误差及补偿------------------------------------------------------------------ 73.1霍尔元件的零位误差与补偿 ----------------------------------------------------------- 73.2霍尔元件的温度误差及补偿 ----------------------------------------------------------- 7第四章测量电路设计与数据处理--------------------------------------------------------------- 84.1模型的建立 ---------------------------------------------------------------------------------- 84.2霍尔传感器直流位移实验电路设计-------------------------------------------------- 94.3霍尔传感器直流位移实验数据处理------------------------------------------------ 114.4霍尔传感器交流位移实验电路设计------------------------------------------------ 124.5霍尔传感器交流位移实验数据处理------------------------------------------------ 17 第五章课程设计总结----------------------------------------------------------------------------- 18 参考文献 ---------------------------------------------------------------------------------------------- 19 致谢 ----------------------------------------------------------------------------------------------------- 20摘要20 世纪末, 霍尔传感器是基于霍尔效应而将被测量转化成电动势输出的一种传感器。
线性霍尔式传感器位移特性实验
大器等做在一个芯片上的集成电路型结构,与霍尔元件相比,它具有微型化、灵敏度高、可
靠性高、寿命长、功耗低、负载能力强以及使用方便等等优点。
本实验采用的霍尔式位移(小位移1mm~2mm)传感器是由线性霍尔元件、两只半
圆形永久磁钢组成,其它很多物理量如:力、压力、机械振动等本质上都可转变成位移的变
外二个2(V-)、4(Vo-)是输出端。接线时,电源输入激励端与输出端千万不能颠倒,否则霍尔元件要损坏。
3、将测头从处调到3=处作为位移起点并记录电对针方向)仔细调节测微头的微分筒(0.01m/每小格)△x=0.1m(实验总位移从15mm~5mm)从电压表上读出相应的电压Vo值,填人下表24表24霍尔传感器位移实验数据
9.3
0.725
4.9
-0.038
0.6
-0.607
9.2
0.725
4.8
-0.067
0.5
-0.607
9.1
0.724
4.7
-0.1
0.4
-0.607
9
0.723
4.6
-0.135
0.3
-0.607
8.9
0.722
4.5
-0.159
0.2
-0.607
8.8
0.721
4.4
-0.187
0.1
-0.607
式中:RB=-1/(ne)是由半导体本身载流子迁移率决定的物理常数,称为霍尔系数
KH=R/d灵敏度系数,与材料的物理性质和几何尺寸有关。
具有上述霍尔效应的元件称为霍尔元件,霍尔元件大多采用N型半导体材料(金属材料中
6 霍尔式传感器特性实验
6 霍尔式传感器特性实验一、实验目的了解霍尔式传感器原理与应用;了解开关式霍尔传感器测转速的原理与应用。
二、需用器件与单元主板F/V表、+5V电源、1.2~12V可调电源、电机驱动、转速盘;霍尔转速传感器、传感器安装片、磁性座;机头静态位移安装架、传感器输入插座、线性霍尔传感器、测微头;±4V电源、霍尔输出口、电桥、差动放大器。
三、相关单元简介1. 本实验采用的霍尔式位移(小位移1mm~2mm)传感器是由线性霍尔元件、永久磁钢组成,其它很多物理量如力、压力、机械振动等本质上都可转变成位移的变化来测量。
霍尔式位移传感器的工作原理和实验电路原理如图1 (a)、(b)所示。
将磁场强度相同的两块永久磁钢同极性相对放置,线性霍尔元件置于两块磁钢间的中点,其磁感应强度为0,设这个位置为位移的零点,即X=0,因磁感应强度B=0,故输出电压U H=0。
当霍尔元件沿X轴有位移时,由于B≠0,则有一电压U H输出,U H经差动放大器放大后输出为电压为V o,V o与X有一一对应的特性关系。
*注意:线性霍尔元件有四个接线端。
涂黑两端1 (V s+)、3 (V s-)是控制电流极,用于输入激励电压,另外两个2 (V o+)、4 (V o-)是霍尔电极,用于输出霍尔电势。
接线时,控制电流极与霍尔电极千万不能颠倒,否则霍尔元件将被损坏。
(a)工作原理(b)实验电路原理图1霍尔式位移传感器工作原理图2. 开关式霍尔传感器是线性霍尔元件的输出信号经放大器放大,再经施密特电路整形成矩形波(开关信号)输出的传感器。
开关式霍尔传感器测转速的原理框图如图2所示。
被测圆盘上装有6只磁性体时,圆盘每转一周磁场就变化6次,开关式霍尔传感器就同频率f相应变化输出,再经频率表显示f,则转速为n = 10f(rpm)。
图2 开关式霍尔传感器测转速原理框图四、预习思考题1. 何为霍尔效应?2.霍尔传感器测量位移实验中,电桥单元的作用是什么?3. 霍尔传感器测量转速的优点是什么?五、实验步骤1. 差动放大器调零;2. 调节测微头的微分筒;3. 按图1(b)在机头上安装传感器与测微头并接线。
霍尔传感器实验数据
1.直流激励时霍尔传感器的位移特性实验数据
表1 直流激励时霍尔传感器的位移特性实验数据记录
2.交流激励时霍尔传感器的位移特性实验数据
表2 交流激励时霍尔传感器的位移特性实验数据记录
1.直流激励时霍尔传感器的位移特性实验
图1 直流激励时霍尔传感器的位移特性曲线
经观察,我们可以发现曲线可分为3部分,中间、左下和右上,下面对3部分分别进行拟合:
对曲线中间部分进行拟合
图2 直流激励时的位移特性曲线中间部分拟合曲线
对曲线左下部分进行拟合
图3 直流激励时的位移特性曲线左下部分拟合曲线
表5 直流激励时霍尔传感器的位移特性曲线右上部分数据
对曲线右上部分进行拟合
图4 直流激励时的位移特性曲线右上部分拟合曲线
2.交流激励时霍尔传感器的位移特性实验
图5 交流激励时霍尔传感器的位移特性曲线
下面分3段进行拟合,首先对中间段拟合,数据如下
表6 交流激励时霍尔传感器的位移特性曲线中间部分数据
拟合图如下: 图6 交流激励时的位移特性曲线中间部分拟合曲线
对左下段进行拟合,数据如下:
图7 交流激励时的位移特性曲线左下部分拟合曲线对右上段进行拟合,数据如下:
拟合图如下:
图8 交流激励时的位移特性曲线右上部分拟合曲线。
实验09 霍尔传感器(直流、交流位移、转速)
实验9霍尔效应传感器(直流、交流、测速)在工业生产和科学研究中,经常需要对一些磁性系统或磁性材料进行测量,被测磁场的范围可从~1015-310T (特斯拉),测量所用的原理涉及到电磁感应、磁光效应、热磁效应等。
常用的磁场测量方法有核磁共振法、电磁感应法、霍尔效应法、磁光效应法、超导量子干涉器件法等近十种。
一般地,霍尔效应法用于测量10~104-T 的磁场。
此法结构较简单,灵敏度高,探头体积小、测量方便、在霍尔器件的温度范围内有较好的稳定性。
但霍尔电压和内阻存在一定的温度系数,并受输入电流的影响,所以测量精度较低。
用半导体材料制成的霍尔器件,在磁场作用下会出现显著的霍尔效应,可用来测量磁场、霍尔系数、判断半导体材料的导电类型(N 型或P 型)、确定载流子(作定向运动的带电粒子)浓度和迁移率等参数。
如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量电测、自动控制和信息处理等方面,如测量强电流、压力、转速等,在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更为广阔的应用前景。
了解这一富有实用性的实验,对于日后的工作将有益处。
【实验目的】1. 了解霍尔效应产生的机理。
2. 掌握用霍尔器件测量磁场的原理和基本方法。
3. 学习直流激励时霍尔式传感器位移特性及测量方法。
4. 学习交流激励时霍尔式传感器位移特性及测量方法。
5.学习霍尔转速传感器的应用。
【仪器用具】霍尔传感器实验模板、霍尔传感器、直流源、测微头、数显单元,相敏检波、移相、滤波模板、双线示波器,霍尔转速传感器、直流源、转动源(2-24V )、转动源单元。
【实验原理】1. 霍尔效应产生的机理置于磁场中的载流体,如果电流方向与磁场方向垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,载流体的两侧会产生一电位差,这个现象是美国霍普斯金大学二年级研究生霍尔于1879年发现的,后被称为霍尔效应,所产生的电位差称为霍尔电压。
霍尔式位移传感器实验报告
霍尔式位移传感器实验报告霍尔式位移传感器实验报告引言:霍尔式位移传感器是一种常用的非接触式位移传感器,可以测量物体的位移大小。
本实验旨在通过实际操作和数据分析,探究霍尔式位移传感器的工作原理和性能特点。
一、实验目的本实验的主要目的是掌握霍尔式位移传感器的工作原理,了解其特点和应用场景,并通过实验验证其测量精度和稳定性。
二、实验原理霍尔式位移传感器利用霍尔效应来测量物体的位移。
霍尔效应是指当电流通过导体时,如果该导体处于磁场中,就会在导体两侧产生电势差。
利用这一原理,霍尔式位移传感器可以通过测量电势差的大小来确定物体的位移。
三、实验步骤1. 准备实验所需材料和仪器,包括霍尔式位移传感器、电源、数字万用表等。
2. 将霍尔式位移传感器固定在待测物体上,并连接电源和数字万用表。
3. 调整电源的输出电压,使其适合传感器的工作范围。
4. 缓慢移动待测物体,观察数字万用表上的数据变化,并记录下来。
5. 反复进行多次实验,以保证实验结果的准确性和可靠性。
四、实验数据分析通过实验得到的数据,我们可以进行进一步的分析和计算,以评估霍尔式位移传感器的性能。
1. 测量精度:通过对实验数据的比较和统计,可以计算出霍尔式位移传感器的测量精度。
精度越高,表示传感器的测量结果与实际值的偏差越小。
2. 稳定性:通过观察实验数据的变化趋势,可以评估霍尔式位移传感器的稳定性。
稳定性好的传感器在不同条件下测量结果的波动较小,具有更高的可靠性。
3. 响应时间:通过分析实验数据中位移变化和传感器响应的时间差,可以计算出霍尔式位移传感器的响应时间。
响应时间越短,表示传感器对位移变化的反应速度越快。
五、实验结果与讨论根据实验数据的分析和计算,我们可以得出霍尔式位移传感器的性能评估结果。
在此基础上,我们可以讨论传感器的优缺点以及适用的应用场景。
1. 优点:霍尔式位移传感器具有非接触式测量、高精度、稳定性好等优点。
它可以用于测量各种物体的位移,特别适用于高温、高湿、易腐蚀等恶劣环境。
霍尔位移实验报告
一、实验目的1. 理解霍尔位移传感器的工作原理和基本结构。
2. 掌握霍尔位移传感器的使用方法和操作步骤。
3. 通过实验验证霍尔位移传感器的线性度、精度和稳定性。
4. 分析影响霍尔位移传感器测量结果的因素。
二、实验原理霍尔效应是指当电流通过一个导体或半导体时,在导体或半导体中垂直于电流方向和磁场方向的平面内,会产生一个与电流方向和磁场方向都垂直的电势差。
利用霍尔效应可以制成霍尔位移传感器,用于测量物体的位移。
霍尔位移传感器主要由霍尔元件、放大电路、滤波电路和显示电路等组成。
当霍尔元件受到磁场的作用时,会产生霍尔电压,该电压与磁场强度成正比。
通过测量霍尔电压,可以计算出磁场强度,从而实现位移的测量。
三、实验仪器与设备1. 霍尔位移传感器2. 信号发生器3. 电压表4. 静电场发生器5. 移动平台6. 数据采集系统四、实验步骤1. 将霍尔位移传感器安装在移动平台上,并调整其初始位置。
2. 连接信号发生器和电压表,设置合适的信号频率和幅度。
3. 将静电场发生器放置在霍尔位移传感器附近,产生一个稳定的磁场。
4. 逐步移动移动平台,记录不同位置下霍尔位移传感器的输出电压。
5. 将实验数据输入数据采集系统,进行数据处理和分析。
五、实验结果与分析1. 线性度分析:根据实验数据,绘制霍尔位移传感器的输出电压与位移的曲线。
通过分析曲线,可以判断传感器的线性度。
实验结果表明,霍尔位移传感器的线性度较好,满足实际应用需求。
2. 精度分析:通过多次测量同一位移值,计算其标准偏差。
实验结果表明,霍尔位移传感器的测量精度较高,满足实际应用需求。
3. 稳定性分析:在不同环境条件下,对霍尔位移传感器进行长时间测量,分析其输出电压的稳定性。
实验结果表明,霍尔位移传感器的输出电压稳定性较好,满足实际应用需求。
4. 影响因素分析:通过实验,分析以下因素对霍尔位移传感器测量结果的影响:(1)温度:温度变化会影响霍尔元件的性能,从而影响测量结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CSY-3000系列传感器与检测技术实验台
说明书
一、实验台的组成
CSY-3000系列传感器与检测技术实验台由主机箱、温度源、转动源、振动源、传感器、相应的实验模板、数据采集卡及处理软件、实验台桌等组成。
1、主机箱:提供高稳定的±15V、±5V、+5V、±2V-±10V(步进可调)、+2V-+24V(连续可调)直流稳压电源;直流恒流源0.6mA-20mA可调;音频信号源(音频振荡器)1KHz~10KHz(连续可调);低频信号源(低频振荡器)1Hz~30Hz(连续可调);气压源0-20KPa (可调);温度(转速)智能调节仪(开关置内为温度调节、置外为转速调节);计算机通信口;主机箱面板上装有电压、电流、频率转速、气压、光照度数显表;漏电保护开关等。
其中,直流稳压电源、音频振荡器、低频振荡器都具有过载切断保护功能,在排除接线错误后重新开机一下才能恢复正常工作。
2、振动源:振动台振动频率1Hz-30Hz可调(谐振频率9Hz左右)。
转动源:手动控制0-2400转/分;自动控制300-2400转/分。
温度源:常温-150℃。
3、传感器:有电阻应变式传感器、扩散硅压力传感器、差动变压器、电容式位移传感器、霍尔式位移传感器、霍尔式转速传感器、磁电转速传感器、压电式传感器、电涡流传感器、光纤传感器、光电转速传感器(光电断续器)、集成温度传感器、K型热电偶、E型热电偶、Pt100铂电阻、Cu50铜电阻、湿敏传感器、气敏传感器、光照度探头、纯白高亮发光二极管、红外发光二极管、光敏电阻、光敏二极管、光敏三极管、硅光电池、反射式光电开关共二十六个(其中二个光源)。
4、实验模板:有应变式、压力、差动变压器、电容式、霍尔式、压电式、电涡流、光纤位移、温度、移相/相敏检波/低通滤波模板、光电器件(一)、光开关共十二块模板。
二、使用方法
1、开机前将电压表显示选择旋钮打到2V档;电流表显示选择旋钮打到200mA档;步进可调直流稳压电源旋钮打到±2V档;其余旋钮都打到中间位置。
2、将AC220V电源线插头插入市电插座中,合上电源开关,数显表显示0000,表示实验台已接通电源。
3、做每个实验前应先阅读实验指南,每个实验均应在断开电源的状态下按实验线路接好连接线(实验中用到可调直流电源时,应在该电源调到实验值后再接到实验线路中),检查无误后方可接通电源。
4、合上调节仪(温度开关)电源开关,调节仪的PV显示测量值;SV显示设定值。
5、合上气源开关,气泵有声响,说明气泵工作正常。
四、仪器维护及故障排除
1、维护
⑴防止硬物撞击、划伤实验台面;防止传感器及实验模板跌落地面。
⑵实验完毕要将传感器、配件、实验模板及连线全部整理好。
2、故障排除
⑴开机后数显表都无显示,应查AC 220V电源有否接通;主机箱侧面AC 220V 插座中的保险丝是否烧断。
如都正常,则更换主机箱中主机电源。
⑵转动源不工作,则手动输入+12V电压,如不工作,更换转动源;如工作正常,应查调节仪设置是否准确;控制输出Vo有无电压,如无电压,更换主机箱中的转速控制板。
⑶振动源不工作,检查主机箱面板上的低频振荡器有无输出,如无输出,更换信号板;如有输出,更换振动源的振荡线圈。
⑷温度源不工作,检查温度源电源开关有否打开;温度源的保险丝是否烧断;调节仪设置是否准确。
如都正常,则更换温度源。
五、注意事项
1、在实验前务必详细阅读实验指南。
2、严禁用酒精、有机溶剂或其它具有腐蚀性溶液擦洗主机箱的面板和实验模板面板。
3、请勿将主机箱的电源、信号源输出端与地(⊥)短接,因短接时间长易造成电路故障。
4、请勿将主机箱的±电源引入实验模板时接错。
5、在更换接线时,应断开电源,只有在确保接线无误后方可接通电源。
6、实验完毕后,请将传感器及实验模板放回原处。
7、如果实验台长期未通电使用,在实验前先通电十分钟预热,再检查按一次漏电保护按钮是否有效。
8、实验接线时,要握住手柄插拔实验线,不能拉扯实验线。
实验二霍尔式传感器——直流激励特性
实验原理:
霍尔元件是根据霍尔效应Array原理制成的磁电转换元件,当
W D
霍尔元件位于由两个环形磁钢
组成的梯度磁场中时就成了霍
尔位移传感器。
(图22)
霍尔元件通以恒定电流时,就有霍尔电势输出,霍尔电势的大小正比于磁场强度(磁场位置),当所处的磁场方向改变时,霍尔电势的方向也随之改变。
实验所需部件:
霍尔传感器、直流稳压电源(2V)、霍尔传感器实验模块、电压表、测微仪
实验步骤:
1、安装好模块上的梯度磁场及霍尔传感器,连接主机与实验模块电源及传感器接口,确认
霍尔元件直流激励电压为2V,霍尔元件另一激励端接地,实验接线按图(22)所示,差动放大器增益10倍左右。
2、用螺旋测微仪调节精密位移装置使霍尔元件置于梯度磁场中间,并调节电桥直流电位器
WD,使输出为零。
3、从中点开始,调节螺旋测微仪,前后移动霍尔元件各3mm,每变化0.3mm读取相应的电
压值,并记入下表:
作出V-X曲线,求得灵敏度和线性工作范围。
如出现非线性情况,请查找原因。
注意事项:
直流激励电压只能是2V,不能接+2V(4V)否则锑化铟霍尔元件会烧坏。
实验五直流激励时霍尔式传感器位移特性实验
一、实验目的:了解霍尔式传感器原理与应用。
二、基本原理:根据霍尔效应,霍尔电势U H=K H IB,当霍尔元件处在梯度磁场中运动时,它的电势会发生变化,利用这一性质可以进行位移测量。
三、需用器件与单元:主机箱、霍尔传感器实验模板、霍尔传感器、测微头。
四、实验步骤:
1、按图8示意图接线(实验模板的输出V
接主机箱电压表的Vin),将主机箱上的
O1
电压表量程(显示选择)开关打到2v档。
2、检查接线无误后,开启电源,调节测微头使霍尔片处在两磁钢的中间位置,再调节R
使数显表指示为零。
W1
图8 霍尔传感器(直流激励)位移实验接线示意图
3、向某个方向调节测微头0.8mm位移,记录电压表读数作为实验起始点;再反方向调节测微头每增加0.1mm记下一个读数(共记录1.6mm位移),将读数填入表7。
表7
作出V-X曲线,计算不同测量范围时的灵敏度和非线性误差。
实验完毕,关闭电源。
实验六磁电式转速传感器测速实验一、实验目的:了解磁电式测量转速的原理。
二、基本原理:基于电磁感应原理,N匝线圈所在磁场的磁通变化时,线圈中感应电势:发生变化,因此当转盘上嵌入N个磁棒时,每转一周线圈感应电势产生N次的变化,通过放大、整形和计数等电路即可以测量转速。
三、需用器件与单元:主机箱、磁电式传感器、转动源。
四、实验步骤:
图9 磁电转速传感器实验安装、接线示意图
1、根据图9将磁电式转速传感器安装于磁电架上,传感器的端面对准转盘上的磁钢并调节升降杆使传感器端面与磁钢之间的间隙大约为2~3mm。
2、首先在接线以前,合上主机箱电源开关,将主机箱中的转速调节电源2—24v旋钮调到最小(逆时针方向转到底)后接入电压表(显示选择打到20v档) ;然后关闭主机箱电源,将磁电式转速传感器、转动电源按图9所示分别接到主机箱的相应电源和频率/转速表(转速档)上。
3、合上主机箱电源开关,在小于12V范围内(电压表监测)调节主机箱的转速调节电源(调节电压改变电机电枢电压),观察电机转动及转速表的显示情况。
4、从2V开始记录每增加1V相应电机转速的数据(待电机转速比较稳定后读取数据);画出电机的v—n(电机电枢电压与电机转速的关系)特性曲线。
实验完毕,关闭电源。
五、思考题:
为什么磁电式转速传感器不能测很低速的转动,能说明理由吗?
dt
d N
e
Φ-
=。