高等数学不定积分讲义

合集下载

高职课件《高等数学》第四章不定积分课件

高职课件《高等数学》第四章不定积分课件

9 csc2x dx cotx C ;
10
dx arcsinx C ;
1 x2
11
dx arctanx C ; 1 x2
例4.1.2 求
x2
x
1 x2
dx

解 根据基本积分表中的公式(2)及不定积分的性质(4)得:
x2
x
1 x2
dx
x2
1
x2
1 x2
dx
例4.1.1 求 cosxdx 。
解 因为sinx' cosx,所以 cosxdx sinx C
如果忘记写常数 C,那就意味着你只找到了cosx 的一个原函数。
4.1.2不定积分的性质
根据不定积分的概念,可以推得如下性质:
(1)
d dx
f
x
dx
f x ;
(2) f ' x dx f x C
4.1.3 不定积分的几何意义
由 f x 的原函数族所确定的无穷多条曲线 y F x C 称为f x 的积 分曲线族。在 f x 的积分曲线族上,对应于同一 x 的点,所有曲线都
有相同的切线斜率,这就是不定积分的几何意义。 例如
2xdx x2 C
被积函数 2x 的积分曲线族就是 y x2 C ,即一族抛物线。对 应于同一 x 的点,这些抛物线上的切线彼此平行且具有相同的斜 率2x,如图4-1所示。
(由性质(1)和(2)可知,求导与求积是两个互逆的运算);
(3) k f x dx k f x dxk为常数
(4) f x g x dx f x dx g x dx ; (5) d f x dx f x dx ; (6) df x = f ' x dx f x C 。

高等数学第四章不定积分讲义

高等数学第四章不定积分讲义

第四章 不定积分讲义【考试要求】1.理解原函数与不定积分的概念及其关系,掌握不定积分的性质,了解原函数存在定理. 2.熟练掌握不定积分的基本公式.3.熟练掌握不定积分的第一类换元法,掌握第二类换元法(限于三角代换与简单的根式代换).4.熟练掌握不定积分的分部积分法.【考试内容】一、原函数与不定积分的概念1.原函数的定义如果在区间I上,可导函数()F x 的导函数为()f x ,即对任一x I∈,都有()()F x f x '=或()()dF x f x dx =,那么函数()F x 就称为()f x (或()f x dx )在区间I 上的原函数.例如,因(sin )cos x x '=,故sin x 是cos x 的一个原函数.2.原函数存在定理如果函数()f x 在区间I 上连续,那么在区间I 上存在可导函数()F x ,使对任一x I ∈都有()()F x f x '=.简单地说就是,连续函数一定有原函数.3.不定积分的定义在区间I 上,函数()f x 的带有任意常数项的原函数称为()f x (或()f x dx )在区间I 上的不定积分,记作()f x dx ⎰.其中记号⎰称为积分号,()f x 称为被积函数,()f x dx 称为被积表达式,x 称为积分变量.如果()F x 是()f x 在区间I 上的一个原函数,那么()F x C +就是()f x 的不定积分,即()()f x dx F x C =+⎰,因而不定积分()f x dx ⎰可以表示()f x 的任意一个原函数.函数()f x 的原函数的图形称为()f x 的积分曲线.4.不定积分的性质(1)设函数()f x 及()g x 的原函数存在,则[()()]()()f x g x dx f x dx g x dx ±=±⎰⎰⎰.(2)设函数()f x 的原函数存在,k 为非零常数,则()()k f x d x k f x d x=⎰⎰. 5.不定积分与导数的关系(1)由于()f x dx ⎰是()f x 的原函数,故()()d f x dx f x dx⎡⎤=⎣⎦⎰ 或 ()()d f x dx f x dx ⎡⎤=⎣⎦⎰ . (2)由于()F x 是()F x '的原函数,故()()F x d x F x C '=+⎰ 或()()dF x F x C =+⎰ .二、基本积分公式1.kdx kx C =+⎰ (k 是常数)2.11x x dx C μμμ+=++⎰ (1μ≠-)3.1ln dx x C x =+⎰4.21arctan 1dx x C x =++⎰5.arcsin dx x C =+⎰6.cos sin xdx x C =+⎰ 7.sin cos xdx x C =-+⎰8.221sec tan cos dx xdx x C x ==+⎰⎰9.221csc cot sin dx xdx x C x ==-+⎰⎰10.sec tan sec x xdx x C =+⎰11.csc cot csc x xdx x C =-+⎰ 12.xxe dx e C =+⎰13.ln xxa a dx C a=+⎰ *14.tan ln cos xdx x C =-+⎰ *15.cot ln sin xdx x C =+⎰*16.sec ln sec tan xdx x x C =++⎰ *17.csc ln csc cot xdx x x C =-+⎰*18.2211arctan xdx C a x a a =++⎰*19.2211ln 2x adx C x a a x a-=+-+⎰*20.arcsin xC a =+*21.ln(dx x C =++ *22.ln x C =++说明:带“*”号的公式大家可以不记住,但必须会推导.三、第一类换元法(凑微分法)1.定理若()f u ,()x ϕ及()x ϕ'都是连续函数,且()()f u du F u C =+⎰,则[()]()[()]f x x dx F x C ϕϕϕ'=+⎰.2.常用凑微分公式(1)1()()dx d x b d ax b a=+=+ (a ,b 均为常数且0a ≠)(2)11()1aa xdx d x b a +=++ (a ,b 均为常数且1a ≠-)2211()()22xdx d x d x b ==+2dx d = (3)1(ln )(ln )dx d x d x b x==+ (4)()()xx x e dx d e d e b ==+(5)11()()ln ln xxx a dx d a d a b a a==+(6)sin (cos )(cos )xdx d x d x b =-=-+ (7)cos (sin )(sin )xdx d x d x b ==+(8)2sec(tan )(tan )xdx d x d x b ==+(9)2csc(cot )(cot )xdx d x d x b ==+(10(arcsin )(arcsin )dx d x d x b ==+(11)21(arctan )(arctan )1dx d x d x b x==++ (12)22211[ln(1)][ln(1)]122x dx d x d x b x =+=+++ 四、第二类换元法定理:设()f x 连续,()x t ϕ=及()t ϕ'都是连续函数,()x t ϕ=的反函数1()t x ϕ-=存在且可导,并且[()]()()f t t dt F t C ϕϕ'=+⎰,则1()[()]f x dx F x C ϕ-=+⎰.说明:第二类换元法常见是三角代换,三角代换的目的是化掉根式,一般有如下情形: (1sin x a t =; (2tan xa t =;(3sec x a t =.五、分部积分法1.公式的推导设函数()uu x =及()v v x =具有连续导数,那么两个函数乘积的导数公式为()uv u v uv '''=+,移项,得()uv uv u v '''=-,对这个等式两边求不定积分,得u v d x u v u v d ''=-⎰⎰,为简便起见,上述公式也写为udv uv vdu =-⎰⎰ .2.注意事项(1)如果被积函数是幂函数和正(余)弦函数或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数为u ,这样用一次分部积分法就可以使幂函数的幂次降低一次(这里假定幂指数是正整数).(2)如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可以考虑用分部积分法,并设对数函数或反三角函数为u (有时也可利用变量代换). (3)根据范围I 的边界值与()f x '的情况,导出所需要证明的不等式即可.六、简单有理函数的不定积分分子分母均为x 的多项式的分式函数称为有理函数,简单有理函数可通过适当变换如加项、减项等分解为可求不定积分的简单函数.或u ,由于这样的变换具有反函数,且反函数是u 的有理函数,因此原积分即可化为有理函数的积分.【典型例题】 【例4-1】计算下列不定积分. 1.2x xedx ⎰.解:222211()22x x x xe dx e d x e C ==+⎰⎰.2.21xdx x +⎰.解:2222111(1)ln(1)1212x dx d x x C x x =+=++++⎰⎰.3.221(1)x x dx x x +++⎰.解:2222221111(1)(1)(1)1x x x x dx dx dx dx dx x x x x x x x x +++=+=+++++⎰⎰⎰⎰⎰arctan ln x x C =++.4.ln x dx x ⎰.解:2ln 1ln (ln )ln 2x dx xd x x C x ==+⎰⎰.5.1ln dx x x ⎰.解:11(ln )ln ln ln ln dx d x x C x x x ==+⎰⎰.6.sec (sec tan )x x x dx -⎰.解: 2sec (sec tan )secsec tan x x x dx xdx x xdx -=-⎰⎰⎰t a n s e c x x C=-+. 7.2sin xdx ⎰.解:21cos211sin cos2222x xdx dx dx xdx -==-⎰⎰⎰⎰11sin 224x x C =-+. 8.2cos xdx ⎰.解:21cos211cos cos2222x xdx dx dx xdx +==+⎰⎰⎰⎰11sin 224x x C =++. 9.2tan xdx ⎰.解:222tan (sec 1)sec tan xdx x dx xdx dx x x C =-=-=-+⎰⎰⎰⎰. 10.2cot xdx ⎰.解:222cot (csc 1)csc cot xdx x dx xdx dx x x C =-=-=--+⎰⎰⎰⎰.11.11x dx e +⎰.解:11(1)1111x x x xx x x x e e e e dx dx dx dx dx e e e e +-==-=-++++⎰⎰⎰⎰⎰1(1)ln(1)1x xxdx d e x e C e=-+=-+++⎰⎰. 12.21825dx x x -+⎰.解:22211114825(4)99()13dx dx dx x x x x ==--+-++⎰⎰⎰211414()arctan 43333()13x x d C x --==+-+⎰.13.25sin cos x xdx ⎰. 解: 原式2242sincos (sin )sin (1sin )(sin )x xd x x x d x ==-⎰⎰246(sin 2sin sin )(sin )x x x d x =-+⎰357121sin sin sin 357x x x C =-++. 14.cos3cos 2x xdx ⎰.解:111cos3cos2(cos cos5)sin sin52210x xdx x x dx x x C =+=++⎰⎰.【例4-2】计算下列不定积分. 1.cos x xdx ⎰.解:cos (sin )sin sin sin cos x xdx xd x x x xdx x x x C ==-=++⎰⎰⎰.2.x xe dx ⎰.解:()(1)x x x x x x x xe dx xd e xe e dx xe e C x e C ==-=-+=-+⎰⎰⎰. 3.ln x xdx ⎰.解:222221ln ln ()ln (ln )ln 22222x x x x x x xdx xd x d x x dx x==-=-⋅⎰⎰⎰⎰ 222ln ln 2224x x x x x dx x C =-=-+⎰.说明:此题也可用变量代换解,即令ln xt =,则t x e =,t dx e dt =,故原式2222111()222t t t t t t e t e dt te dt td e te e dt =⋅⋅===-⎰⎰⎰⎰ 2222221111ln ln 242424t t x xte e C x x x C x C =-+=⋅-+=-+.4.arctan x xdx ⎰.解:222arctan arctan ()arctan (arctan )222x x x x xdx xd x d x ==-⎰⎰⎰ 22222111arctan arctan (1)221221x x x x dx x dx x x =-⋅=--++⎰⎰ 211arctan arctan 222x x x x C =-++.5.ln xdx ⎰.解:1ln ln (ln )ln ln xdx x x xd x x x x dx x x x C x=-=-⋅=-+⎰⎰⎰.6.arctan xdx ⎰.解:2arctan arctan (arctan )arctan 1x xdx x x xd x x x dx x =-=-+⎰⎰⎰ 2221(1)1a r c t a n a r c t a nl n (1)212d x x x x x x C x+=-=-+++⎰. 7.cos xe xdx ⎰.解:原式(sin )sin sin sin (cos )x x x x xe d x e x x e dx e x e d x ==-⋅=+⎰⎰⎰sin cos cos x x x e x e x x e dx =+-⋅⎰,所以1cos (sin cos )2xxe xdx e x x C =++⎰.8.sin(ln )x dx ⎰.解:1sin(ln )sin(ln )cos(ln )x dx x x x x dx x=-⋅⎰⎰sin(ln )x x =- 1cos(ln )sin(ln )cos(ln )[sin(ln )]x dx x x x x x x dx x =-+-⋅⎰⎰sin(ln )cos(ln )sin(ln )x x x x x dx =--⎰,故1sin(ln )[sin(ln )cos(ln )]2x dx x x x x C =-+⎰.说明:此题也可用变量代换法求解,即令ln t x =,则t x e =,t dx e dt =,则原式sin sin ()sin cos t t t tt e dt td e e t e tdt =⋅==-⎰⎰⎰s i n c o s ()s i n c o s(s i n t t t t te t t d e e t e t e t d t=-=-+-⎰⎰, 故原式11(sin cos )[sin(ln )cos(ln )]22t t e t e t C x x x x C =-+=-+. 【例4-3】计算下列不定积分.1.2156x dx x x +-+⎰.解:被积函数的分母分解成(2)(3)x x --,故可设215632x A Bx x x x +=+-+--, 其中A 、B 为待定系数.上式两端去分母后,得 1(2)(3)x A x B x +=-+-,即1()23x A B x A B +=+--.比较此式两端同次幂的系数,即有 1A B +=,231A B +=-,从而解得4A =,3B =-,于是2143()4ln 33ln 25632x dx dx x x C x x x x +=-=---+-+--⎰⎰.2.22(21)(1)x dx x x x ++++⎰.解:设222(21)(1)211x A Bx Cx x x x x x ++=+++++++, 则 22(1)()(21)x A x x B x C x +=+++++,即22(2)(2)x A B x A B C x A C+=++++++,有 20,21,2,A B A B C A C +=⎧⎪++=⎨⎪+=⎩ 解得 2,1,0.A B C =⎧⎪=-⎨⎪=⎩于是2222()(21)(1)211x xdx dx x x x x x x +=-++++++⎰⎰22221(21)11(1)1ln 21ln 211321212()24x d x x dxx dx x x x x x x +-++=+-=+-+++++++⎰⎰⎰21ln 21ln(1)2x x x C =+-++++.3.dx x⎰.u =,于是21x u =+,2dx udu =,故22221222(1)111u u dx udu du du x u u u=⋅==-+++⎰⎰⎰⎰2(arctan )arctan u u C C =-+=-+.4..解:为了去掉根号,可以设u =,于是32x u =-,23dx u du =,故22313(1)3(ln 1)112u u du u du u u C u u ==-+=-+++++⎰⎰3ln 1C =-+++. 【例4-4】设()arcsin xf x dx x C =+⎰,求1()dx f x ⎰. 解:对等式()arcsin xf x dx x C =+⎰ 两边对 x 求导,可得()xf x =, 则()f x =故211()(1)()2dx x f x ==--⎰⎰⎰ 332222121()(1)(1)233x C x C =-⋅-+=--+.【例4-5】已知sin xx是()f x 的一个原函数,求()xf x dx '⎰.解:因为sin xx是 ()f x 的一个原函数,所以 2sin cos sin ()()x x x x f x x x -'== 且 s i n ()xf x dx C x=+⎰, 故根据不定积分的分部积分法可得2cos sin sin ()()()()x x x xxf x dx xdf x xf x f x dx x C x x-'==-=⋅-+⎰⎰⎰cos sin sin 2sin cos x x x x xC x C x x x-=-+=-+.【历年真题】一、选择题1.(2009年,1分)下列等式中,正确的一个是 (A )()()f x dx f x '⎡⎤=⎣⎦⎰ (B )()()d f x dx f x ⎡⎤=⎣⎦⎰ (C )()()F x dx f x '=⎰ (D )()()d f x dx f x C ⎡⎤=+⎣⎦⎰ 解:选项(A )正确;()()d f x dx f x dx ⎡⎤=⎣⎦⎰,故选项(B )和选项(D )均不正确;()()F x dx F x C '=+⎰,故选项(C )错误.故选(A ). 2.(2007年,3分)设21()f x x'=(0x >),则()f x =(A )2x C + (B )ln x C + (C)C + (DC + 解:令2xt =,因0x >,故x =21()f x x '= 变为()f t '=,该式两边对x取不定积分得,()f t C ==+,即()f x C =+.选(C ). 3.(2006年,2分)若11()xxf x edx e C --=+⎰,则()f x =(A )1x (B )1x - (C )21x (D )21x -解:等式11()xxf x e dx e C--=+⎰两边对x 求导得,1121()xxf x ee x --=⋅,故21()f x x =.选项(C )正确.4.(2005年,3分)ln sin tan xd x =⎰(A )tan lnsin x x x c -+(B )tan lnsin x x x c ++ (C )tan lnsin cos dx x x x -⎰ (D )tan lnsin cos dxx x x +⎰解:ln sin tan tan ln sin tan (ln sin )xd x x x xd x =-⎰⎰cos tan lnsin tan tan lnsin sin xx x x dx x x x C x=-=-+⎰.选项(A )正确.二、填空题1.(2010年,2分)不定积分()df x =⎰.解:根据不定积分与微分的关系可得,()()df x f x C =+⎰.2.(2009年,2分)设()xf x e-=,则(ln )f x dx x'=⎰.解:由题意,()x f x e -=,则()x f x e -'=-,那么ln 1(ln )x f x e x-'=-=-,于是2(ln )11f x dx dx C x x x'==-+⎰⎰. 三、计算题1.(2010年,5分)求不定积分2ln 1x dx x -⎰.解:2ln 11ln 11(ln 1)()()(ln 1)x x dx x d d x x x x x--=--=----⎰⎰⎰21ln 11ln 1ln x x x dx C C x x x x x --=+=-+=-+⎰.2.(2009年,5分)求不定积分.解:ln (ln )xd x x ==-⎰⎰x x C =-=-+⎰. 3.(2006年,4分)若2()f x dx x C =+⎰,求2(1)xf x dx -⎰.解:等式2()f x dx x C =+⎰两边对x 求导,可得 ()2f x x =,则22(1)2(1)f x x -=-,从而223241(1)2(1)(22)2xf x dx x x dx x x dx x x C -=-=-=-+⎰⎰⎰. 4.(2005年,5分)求不定积分12cos dx x +⎰.解:2222sec 2(tan )11222cos 12cos 2sec 3tan222x xd dx dx dx x x x x ===++++⎰⎰⎰⎰令tan 2xt =,则原式22222233[1]]dt dt t t ===+++⎰⎰tan x C C ⎛⎫ ⎪=+=+⎝⎭.四、应用题或综合题 1.(2008年,8分)设()f x 的一个原函数为ln x ,求()()f x f x dx '⎰.解:因ln x 是()f x 的一个原函数,故1()(ln )f x x x '==,211()()f x x x''==-,从而2321111()()()2f x f x dx dx dx C x x x x'=⋅-=-=+⎰⎰⎰.说明:此题也可用分部积分解之,步骤如下. 因2()()()()()()()f x f x dx f x df x f x f x f x dx ''==-⎰⎰⎰,故2221111()()()222f x f x dx f x C C C x x⎛⎫'=+=+=+ ⎪⎝⎭⎰.。

高等数学课件4-1不定积分的定义

高等数学课件4-1不定积分的定义

积分常数:对任 意函数f(x),有 ∫(f(x)dx)=∫(f(x )dx)+C,其中C 为积分常数
积分上限函数: 对任意函数f(x), 有 ∫(f(x)dx)=F(x) +C,其中F(x)为 积分上限函数, C为积分常数
PART THREE
直接积分法是一种常用的不定积分计算方法 直接积分法适用于求解简单、常见的不定积分 直接积分法需要掌握基本的积分公式和技巧 直接积分法需要根据积分公式和技巧进行计算,得出结果
步骤:选择合适 的辅助函数,进 行积分,然后利 用积分公式进行 求解
应用:适用于求 解含有三角函数、 指数函函数, 避免积分过程中 出现错误
积分公式:∫(P(x)/Q(x))dx = ∫P(x)dx/Q(x) + C
单击此处输入你的项正文,文字是您思想的提炼,言简意赅的阐述观点。
积分示例:∫(x^2+1)/(x^2-1)dx
单击此处输入你的项正文,文字是您思想的提炼,言简意赅的阐述观点。
注意事项: a. 确保Q(x)在积分区间内至少有一个根 b. 确保P(x)在 Q(x)的根处可导 c. 确保P(x)在Q(x)的根处的值不为0
a. 确保Q(x)在积分区间内至少有一个根 b. 确保P(x)在Q(x)的根处可导 c. 确保P(x)在Q(x)的根处的值不为0
积分步骤: a. 确定被积函数P(x)/Q(x) b. 确定Q(x)的根 c. 确定 Q(x)的根的乘积 d. 确定P(x)在Q(x)的根处的值 e. 计算积分
a. 确定被积函数P(x)/Q(x) b. 确定Q(x)的根 c. 确定Q(x)的根的乘积 d. 确定P(x)在Q(x)的根处的值 e. 计算积分
不定积分是微分方程的解
不定积分可以用来求解微 分方程

(完整版)考研高数讲义高数第四章不定积分上课资料

(完整版)考研高数讲义高数第四章不定积分上课资料
第四章 不定积分
12 四、基本积分表 (1)kdx (2)dxx (3)xdx (4)dxax ;dxex (5)21xdx (6)21xdx
持之以恒,厚积薄发
13 (7)xdxcos (8)xdxsin (9)xdxdxx22seccos1 (10)xdxdxx22cscsin1 (11)xdxxtansec (12)xdxxcotcsc
持之以恒,厚积薄发
23 (5)dxxx21; (6)xdxtan; 【答案】(5)()322113xC; (6)ln|cos|xC
第四章 不定积分
24 (7))ln21(xxdx; (8)xdxx52cossin; 【答案】(7)ln||1122xC; (8)sinsinsin357121357xxxC
第四章 不定积分
44 2211=()dxdxaxbxcaxhk公式求解 =2222(2)221ln||22mmbaxbnmxnaadxdxaxbxcaxbxcmmbaxbxcndxaaaxbxc
持之以恒,厚积薄发
45 【例1】求下列不定积分 (1)2239dxxx ; 【答案】(1)21ln|23|ln|3|99xxC
第四章 不定积分
46 (2)322xxdx Caxaxadxarctan122; 【答案】(2)11arctan22xC
持之以恒,厚积薄发
47 (3)2(31)23xdxxx; 【答案】(3)231ln|23|2arctan22xxxC
第四章 不定积分
48 (4)321xdxxx 【答案】(4)212321arctan233xxxC
持之以恒,厚积薄发
3 原函数存在定理:连续函数必有原函数——即若)(xf在I上连续,则必存在)(xF,使得当xI时,)()(xfxF。 【例1】设)(xF是)(xf在(,)ab上的一个原函数,则()()fxFx在(,)ab上( ) (A)可导 (B)连续 (C)存在原函数 (D)是初等函数 【答案】(C)

第六章不定积分 《高等数学》课件

第六章不定积分 《高等数学》课件
机动 目录 上页 下页 返回 结束
例求co2s2xdx.

cos2
x 2
dx
1c2osxdx
12(dxcoxsdx)
1(xsinx)C 2
例求tan2xd.x
解 tan2xdx(se2xc1)dx
se2x cdx dx ta x x n C
机动 目录 上页 下页 返回 结束
例 求不定积分
1 d x. x3 x
证明:
[ k f ( x ) d x ] k [ f ( x ) d x ] k f ( x ) [ k f ( x ) d x ] .
机动 目录 上页 下页 返回 结束
五、积分的应用模型实例
机动 目录 上页 下页 返回 结束
由于经济函数的边际就是经济函数的导数,所以, 由经济函数的边际通过计算不定积分,即可求出经济函数。 步骤如下:
证明: f(x )d x F (x ) C , ( F (x ) C ) f(x ) 结论性质:2 F (x )d x F (x ) C , d(F x)F (x)C .
注:微分运算与求不定积分的运算是互逆的.两个运算在一起时,
d 完全抵消, d 抵消后相差一常数。
机动 目录 上页 下页 返回 结束
(12)
dx co2sx
se2cxdxtaxn C;
(13)
dx sin2 x
cs2cxdxco x tC ;
(1)4sexc taxndxsexcC;
(1)5csxcoxtdxcsxcC.
机动 目录 上页 下页 返回 结束
四、不定积分的性质
机动 目录 上页 下页 返回 结束
由不定积分的定义知,若 F ( x ) 为 f ( x ) 在区间 I 的原函数,即

高等数学(第三版)课件:不定积分的积分方法

高等数学(第三版)课件:不定积分的积分方法

还应注意到,在换元—积分—还原的解题过程中,关 键是换元,若在被积函数中作变量代换 j(x) = u,还需要在
被积表达式中再凑出 j '(x)dx 即 dj(x),也就是 du ,这样才能
以u为积分变量作积分,也就是所求积分化为
f j(x)dj(x) f (u) du Fj(x) C
在上述解题过程中u可不必写出,从这个意义上讲,第 一换元积分法也称为“凑微分”法.
式而可能使其容易积分.当然在求出原函数后, 还要
将 t j1(x) 代回.还原成x的函数,这就是第二换元
积分法计算不定积分的基本思想.
定理2 设 x j(t) 是单调可导的函数,且
j(t) 0. 如果 f j(t)j(t) dt F(t) C,
则有
f (x) d x f j(t)j(t) d t F(t) C
3
1
2x
dx
1 u
1 2
du
=
1 2
1 du u
12 u C 2
3 2x C.
例4 求 x x2 4 dx.
解 令u x2 4,则du 2xdx,则
x
x2
4dx
1 2
udu
12 3
= 2 3u2 C
1 3
(
x2
3
4)2
C.
例5

(lnx)2
dx x
解 1 dx d(ln x), x
= sect dt
= ln | sect tant | C.
x
x2 a2
t
a
根据sec t x ,利用图所示三角形,易得 a
对边 tan t 邻边
x2 a2 , a

高等数学 课件 PPT 第四章 不定积分

高等数学 课件 PPT 第四章   不定积分
如果一个函数存在原函数,那么这些原函数之间有什 么关系呢?
一、原函数的概念
定理2
若F(x)是函数f(x)在区间I上的一个原函数,则F(x)+C(C为任意 常数)是fx在区间I上的全体原函数.
定理2说明,若一个函数有原函数,则它必有无穷多个原函数,且 它们彼此相差一个常数. 事实上,设F(x)和G(x)都是f(x)的原函数,则
g(x)=f[φ(x)]φ′(x). 作变量代换u=φ(x),并将φ′(x)dx凑微分成dφ(x),则可将关 于变量x的积分转化为关于变量u的积分,于是有
∫f[φ(x)]φ′(x)dx=∫f(u)du. 如果∫f(u)du 可以求出,那么∫g(x)dx 的问题也就解决了,这就 是第一类换元积分法,又称为凑微分法.
一、第一类换元积分法
【例1】
解 本题的关键是将2xdx凑微分得dx2,然后令u=x2,则
【例2】
解 先将被积表达式中的sec2xdx凑微分得dtanx,然后令 u=tanx,再积分,即
一、第一类换元积分法
【例3】
一、第一类换元积分法
注意
(1)求不定积分的方法不唯一,不同方法算出的 答案也不相同,但它们的导数都是被积函数,经过恒等 变形后可以互化,其结果本质上只相差一个常数.
对于给定的函数fx具备什么条件才有原函数?这个问题将 在下一章讨论,这里先介绍一个结论.
一、原函数的概念
定理1
(原函数存在定理)若函数f(x)在区间I上连续,则函数 f(x)在区间I上存在原函数F(x).
由于初等函数在其定义区间上都是连续的,所以初等函 数在其定义区间上都存在原函数. 如果一个函数存在原函数,那么它的原函数是否唯一?事 实上,函数fx的原函数不是唯一的.例如,x2是2x的一个原 函数,而(x2+1)′=2x,故x2+1也是2x的一个原函数.

数学《不定积分》讲义

数学《不定积分》讲义

第八章 不 定 积 分1 概念与基本积分公式引入 求导 (微分)运算的逆运算一、不定积分的定义 1、原函数例 1 ( )'211x =+ ( )'2cos x =- ( )'2x = (d dx )sin 2x e x -=-(d )xdx = ( )'arctan x = 21arctan ln(1)2x x x ⋅-+定义 1 设函数F 和f 在区间I 上都有定义. 若在I 上,有()()F x f x '=, 则称F 为f 在区间I 上的一个原函数.注1 若f 可导, 则f 为()f x '的一个原函数. 原函数的基本问题1) 什么样的函数存在原函数?2) 若已知原函数存在,是否唯一? 如何求? 定理 1 若f 在区间I 上连续,则f 在I 上存在原函数. 推论1 初等函数在其定义域上都有原函数.问题 定理 1的逆定理是否成立? 即若f 在I 上存在原函数, 则f 是否连续?(答案是否定的, 也就是说间断函数可能具有原函数,). 详细地说, 仅有第二类间断点的函数可能有原函数. 而具有第一类间断点的函数不可能具有原函数.定理2 1) 若()F x 是()f x 在区间I 上的一个原函数,则对任何常数c ,()F x c + 都是()f x 在区间I 上的原函数.2) 若函数()G x 也是()f x 在区间I 上的一个原函数,则必有常数c ,使得()()G x F x c =+. (任何两个原函数之间相差一个常数c )注2 若()F x 为()f x 的一个原函数, 则()f x 的所有原函数为{(); }F x c c R +∈. 2、不定积分定义 2 f 在区间I 上的全体原函数称为f 的不定积分, 记作()f x dx ⎰或 f dx ⎰, 其中⎰为积分号,f 为被积函数, x 为积分变量, ()f x dx 为被积表达式.例 2 21dxx+⎰arctan x c =+, 323x x dx c =+⎰注 3 若F 为f 在区间I 上的一个原函数,则f 的不定积分为()F x c +,即()f x dx ⎰()F x c =+,这说明求不定积分只需求一个原函数, 再加上常数c 即可. 特别地,()()f x dx f x c '=+⎰, (())()f x dx f x '=⎰或者微分形式 ()()df x f x c =+⎰, (())()d f x dx f x dx =⎰. 在忽略常数的意义下, 求积分与求导数是一对互逆运算.不定积分的几何意义 若()F x 为()f x 的一个原函数,则称曲线()y F x =为f 的一条积分曲线. 这样f 的不定积分在几何上就表示f 的某一条积分曲线沿纵轴(y 轴)方向任意平移所得的一切积分曲线组成的曲线簇.现在我们回到前面的原函数基本问题: 怎么求原函数? 即怎样求不定积分?例 3 设()f x 是有界闭区间[,]a b 上的非负连续函数. 曲线()y f x =与直线,x a x b ==及0y =所围成的平面图形ABCD 称为曲边梯形,下面讨论曲边梯形的面积S (严格论证以后给出).任取[,]x a b ∈. 记曲边梯形AMND 的面积为()S x 则()0, ()S a S b S ==. 当x 变到x x +∆时……0x ∆≈时, ()()()S S x x S x f x x ∆=+∆-≈∆ 因此 '()()S x f x =因而求导的逆问题也称为求积问题,求曲边梯形面积可归结为求原函数问题. 到底该如何求原函数? 求原函数也的确是一个比较困难的问题,即使是一些简单的函数, 如前面的arctan x ,也不能一下看出来, 这就需要引进一些积分方法. 二、不定积分的基本公式 1、设函数,f g 存在原函数, 则1) (())()f x dx f x '=⎰, (())()d f x dx f x dx =⎰; 2)()()f x dx f x c '=+⎰, ()()df x f x c =+⎰; 3) 0α≠,()()f x dx f x dx αα=⎰⎰; 4)()()()()f x g x dx f x dx g x dx ±=±⎰⎰⎰.由3)、4) 可知不定积分为线性运算,即[()()]()()f x g x dx f x dx g x dx αβαβ+=+⎰⎰⎰ 22(,, 0)R αβαβ∀∈+≠. 2、基本积分表1) 0 dx c =⎰ 2) 1 dx x c =+⎰3) 11x x dx c ααα+=++⎰ (1)α≠- 4) 1ln ||dx x c x =+⎰5) xxe dx e c =+⎰ 6) ln xxa a dx c a=+⎰ (0,1)a a >≠7) sin cos x dx x c =-+⎰ 8) cos sin xdx x c =+⎰ 9) 2sec tan xdx x c =+⎰ 10) 2csc cot xdx x c =-+⎰ 11) sec tan sec x xdx x c =+⎰ 12) csc cot csc x xdx x c =-+⎰ 13)tan ln |cos |xdx x c =-+⎰ 14) cot ln |sin |xdx x c =+⎰15) sec ln |tan sec |xdx x x c =++⎰ 16) csc ln |csc cot |xdx x x c =-+⎰ 17)arcsin arccos x c x c =+=-+ 18)2arctan arccot 1dxx c x c x =+=-++⎰19)221arctan dx xc x a a a =++⎰ 20) 221ln ||2dx x ac x a a x a -=+-+⎰21)arcsinxc a=+ 22) ln(x c =++例 4 1) ⎰; 2)⎰;3) 01nn a a x a x dx ++⋅⋅⋅+⎰(); 4) 221x dx x +⎰;5) 421x dx x +⎰;6) 2(1010)x x dx -+⎰; 7) 2312x x e dx --⎰;8) 2cos 2sin xdx x ⎰; 9) 22cos sin d θθθ⋅⎰;10) cos cos3x xdx ⋅⎰; 11) 22dx x +⎰;12)()()dxx a x b ++⎰; 13)22dx x -⎰;问题: ()f x dx ⎰与()f u du ⎰是否相同?例 5 已知()F x 为()2f x x =的一个原函数, 且(2)5F =, 求()F x .例 6 已知211dy dx x =-, 求()y y x =.例 7 考察21sin , 0;() 0, 0,x x f x xx ⎧≠⎪=⎨⎪=⎩的导函数性质.2 换元积分与分部积分法一、第一类换元法----凑微分法544sin 25sin 2(sin 2)10sin 2cos 2d x x x dx x xdx '=⋅=⋅4410sin2cos 25sin 2(sin 2)x xdx x x dx '⋅=⋅⎰⎰45sin 2sin 2xd x =⎰sin 2u x = 45u du ⎰55sin 2u c x c =+=+ 定理 1 若()()f u du F u c =+⎰,()u x ϕ=连续可导, 则(())()(())f x x dx F x c ϕϕϕ'⋅=+⎰,即若被积函数()g x 能够分解为()(())()g x f x x ϕϕ'=⋅, 则()(())()(())()g x dt f x x dt f x d x ϕϕϕϕ'=⋅=⎰⎰⎰()u x ϕ=()()(())f u dx F u c F x c ϕ=+=+⎰例 1 1) ()m ax b dx +⎰ (1,0)m a ≠-≠2) 2sec (53)x dx -⎰3) 1cos3cos 2(cos cos5)2x xdx x x dx ⋅=+⎰⎰凑法1 11()()()()f ax b dx f ax b d ax b f u du a a+=++=例 2 1) 21sin (1cos 2)2xdx x dx =-⎰⎰2)2122dx c x =+⎰ 221[arctan ]dx x c a x a a =++⎰3)22232(1)2dx dx c x x x ==+++++⎰⎰4) 211ln ||23(3)(1)43dx dx x c x x x x x -==++-+-+⎰⎰5) 223xdx x x +-⎰例 3 21xdx x +⎰凑法2 111()()()()k k k k x f x dx f x d x f u du k k-== 如 2221()()2xf x dx f x dx =2f =例 4 1) 4104x dx x+⎰2) 2sin x x dx ⋅⎰3)4) 2c ===⎰⎰或5) 2221ln (1)21dx x c x x x =+++⎰凑法3 (sin )cos (sin )sin f x xdx f x d x ⋅= (cos )sin (cos )cos f x xdx f x d x =- 2(tan )sec (tan )tan f x xdx f x d x = 例 5 1) 3sin cos x xdx ⎰2) 3sin xdx ⎰3) 2cos 11sin sec ln ||cos 21sin x xxdx dx c x x+==+-⎰⎰4) 622sec (1tan )tan xdx x d x =+⎰⎰5) 5342tan sec tan sec sec x xdx x xd x =⎰⎰凑法4 ()()x x x x f e e dx f e de = 例 6 1) 2t dte --⎰2) 2t dt e -⎰凑法5 1(ln )(ln )ln f x dx f x d x x =例 7 1) 1ln dx x x ⎰ 2)(12ln )dxx x +⎰凑法6(arcsin )(arcsin )dx f x d x =2(arctan )(arctan )arctan 1f x dx f x d x x =+例 82c =+注:第一类换元积分关键在于看被积函数的形式能否凑成(())()f x x ϕϕ'⋅的形式,或看被积函数(复合)哪一部分较复杂,先换元试试看.例 9 1) ln()x x x x x x e e dx e e c e e----=+++⎰ [()ln |()|()f x dx f x c f x '=+⎰]2) ln 1ln x dx x x+⎰ 3)2sec sec tan sec sec tan x x x xdx dx x x +=+⎰⎰4)5)6)2222x dx x x -++⎰ 7) 2223x dx x x -+-⎰8) 分析22Ax Bx C dx ax bx c ++++⎰形式积分9)2222cos sin cos sin x x dx a x b x +⎰ 10) 2222cos sin dx a x b x +⎰11)22sin dx x -⎰ 12) 22sin dx x +⎰13)2sin cos sin cos x x dx x x -+⎰二、第二类换元法----拆微分法sin x t = sin t 21cos 1cos 22tdt tdt ==+⎰⎰11sin 224t t c =++1(arcsin )2x x c =+ 定理 2 设()x t ϕ=是连续可微的,且()0t ϕ'≠. 若(())()f t t ϕϕ'⋅具有原函数()F t , 则有换元公式1()(())()()(())f x dx f t t dt F t c F x c ϕϕϕ-'=⋅=+=+⎰⎰.常见代换:三角代换、无理代换、双曲代换、倒代换、万能代换、Euler 代换等1、 三角代换1) (正) 弦代换 (0)a >的积分施行,目的是去掉根号,方法是令sin x a t =cos cos a t a tdt =⋅, arcsin x t a =. 例 10 1)arcsin x c a =+2)=2) (正) 切代换 (0)a >的积分施行,目的是去掉根号,方法是令tan x a t =sec a t =, 2sec dx a tdt =, arctan x t a =. 例 11 1)2)222()dx x a +⎰ (0)a >3) (正) 割代换 (0)a >的积分施行,目的是去掉根号,方法是令sec x a t =tan a t =, sec tan dx a t tdt =⋅, arccos a t x =.例 12 1)sec ln |sec tan |ln ||...x tdt t t c c a a ==++=++=⎰2)c =2、万能代换 常用于被积函数为三角函数的有理分式形式 令tan 2x t =,则22sin 1t x t=+, 221cos 1t x t -=+, 22tan 1t x t =-, 221dt dx t =+, 2arctan x t =. 例 13 1)2cos dx x +⎰2)1sin cos dx x x ++⎰3)2sin cos sin cos x x dx x x -+⎰4) 1sin sin (1cos )x dx x x ++⎰5)2222sin cos dx a x b x +⎰3、无理代换若被积函数中有⋅⋅⋅形式时,令n 为12,,k n n n ⋅⋅⋅的最小公倍数,作代换t =,则1, n n x t dx nt dt -==,将被积函数转化为t 的有理函数。

不定积分讲义

不定积分讲义

(10)

1 1 x
2
dx arcsin x C
1 (11) dx arctan x C 2 1 x
(14)
(15)
sec x tan xdx sec x C
csc x cot xdx csc x C
(6)
cosudu sin u C
x cos x 例 4 x cos x dx 2 1 x2 1 x x cos x x cos x d dx dx 2 2 1 x 1 x
例5
x 3 sin x x 3 sin x d x sin x 1 x 2 dx 1 x 2 dx 1 x 2 dx
2
x 1 cos x 1 cos x 1. cos dx dx dx dx 2 2 2 2 1 1 x sin x C 2 2
2
三、第一类换元法
问题
cos 2 xdx sin 2 x C ,
解决方法 利用复合函数,设置中间变量.
1 过程 令 t 2 x dx dt , 2 1 1 1 cos 2 xdx 2 cos tdt 2 sin t C 2 sin 2 x C .
那么在区间 内存在可导函数 F ( x ) , I 使x I ,都有F ( x ) f ( x ) . 简言之:连续函数一定有原函数. 3.原函数的个数
(1) 原函数是否唯一? (2) 若不唯一它们之间有什么联系? 例
sin x cos x

sin x C cos ( x
要进行适当的化简
例 4 求下列积分
1.
3

高等数学-不定积分课件

高等数学-不定积分课件


请在此添加较简洁标题内容
在区间 I 上的一个原函数 .
定义 1 . 若在区间 I 上定义的两个函数 F (x) 及 f (x)
满足
则称 F (x) 为f (x)
问题:
1. 在什么条件下, 一个函数的原函数存在 ?
2. 若原函数存在, 它如何表示 ?
定理.
01
存在原函数 .
02
初等函数在定义区间上连续

原式
例19. 求
原式
解: 原式
例20. 求
解: 原式 =
例21. 求
例22. 求
解: 令

原式
CONTENTS
思考与练习

下列积分应如何换元才使积分简便 ?
单击此处添加文本具体内容



第三节
由导数公式
积分得:
分部积分公式

1) v 容易求得 ;
容易计算 .
分部积分法
第四章
解: 令
03
4.5 1,2,3,4,
05
4.2 1(1,2,4,6,7,9,12,15,16,18) 4 5
02
4.4 1,3,5,7,9,11
04
作业 P218
得 0 = 1
下述运算错在哪里? 应如何改正?
答: 不定积分是原函数族 , 相减不应为 0 .
第四节
有理函数的积分
第四章
一、有理函数的积分
有理函数: 时, 多项式 + 真分 式 分解 若干部分分式之和
其中部分分式的形式为
A
有理函数
B
相除
C
例1. 将下列真分式分解为部分分式 : 解: 用拼凑法

高等数学第四章 第二节不定积分 课件

高等数学第四章 第二节不定积分 课件

1 x+ 1 例17 求 ∫ (1 − 2 )e x dx . x ′ 1 1 解 ∵ x + = 1− 2 , x x
1 ∴ ∫ (1 − 2 )e x = ∫e
x+ 1 x
x+
1 x
dx
1 x+ 1 d( x + ) = e x + C. x
例18 求 解
cot x dx ∫ ln sin x
同样可证
∫ csc xdx = ln csc x − cot x + C

x 1 1 − cos x = ln tan + C = ln + C. 2 1 + cos x 2
1 dx . 例12 求∫ 1 + cos x 1 1 − cos x 解法一 ∫ dx = ∫ dx 1 + cos x (1+ cos x)(1− cos x) 1 − cos x 1 1 dx = ∫ 2 dx − ∫ 2 d (sin x ) =∫ 2 sin x sin x sin x 1 = − cot x + + C. sin x
x x
1 8) ∫ f ( x ) d x = 2∫ f ( x )d x x
1 9) ∫ f (arctan x) d x = ∫ f (arctan x)darctan x 2 1+ x
例7. 求
dln x 1 d(1+ 2ln x) 解: 原式 = ∫ = ∫ 1+ 2ln x 2 1+ 2ln x
其中 ψ − 1 ( x ) 是 x = ψ ( t ) 的反函数。 的反函数。
d (( ∫ f [ψ ( t )]ψ ′( t ) dt )

《不定积分教学》课件

《不定积分教学》课件

不定积分的性质
总结词
不定积分的性质是理解不定积分的关键,它包括比较定理、积分中值定理等。
详细描述
比较定理指出,如果一个函数在某个区间上大于或小于另一个函数,那么它的不定积分在相应的区间上也大于或 小于另一个函数的不定积分。积分中值定理则指出,如果一个函数在某个区间上连续,那么在这个区间上至少存 在一点,使得函数在该点的值等于函数在该区间上的不定积分值的平均值。
在电磁学中,不定积分可以用于 求解电场、磁场、电流等物理量 的分布和变化规律。
微积分基本定理
要点一
微积分基本定理
微积分基本定理是微积分学中的核心定理之一,它建立了 不定积分和定积分之间的联系,即牛顿-莱布尼茨公式。
要点二
计算方法
通过微积分基本定理,可以计算定积分的值,从而得到原 函数或物理量的具体数值。
针对学生在使用换元法和分部积分法时存在的问 题,加强相关训练。
及时总结与反思
学生应及时总结解题经验,反思自己在解题过程 中存在的问题,以便进一步提高。
05
总结与回顾
本章重点回顾
不定积分的概念
回顾了不定积分的定义、性质和计算方法,以及不定积分与原函数 的关系。
不定积分的计算方法
总结了不定积分的多种计算方法,包括直接积分法、换元积分法、 分部积分法等,并给出了相应的例题和练习题。
C),其中 (C) 是积分常数。
换元积分法
总结词
换元积分法是通过引入新的变量来简化 不定积分计算的方法。
VS
详细描述
换元积分法的关键是选择适当的换元,将 复杂的不定积分转化为简单的不定积分或 已知的积分。通过换元,可以将不定积分 的被积函数转化为更易于处理的形式,从 而简化计算过程。

高等数学不定积分的计算教学ppt

高等数学不定积分的计算教学ppt

令u 10x
1 10
sin
udu
1 10
cos
u
C
u回代 1 cos10x C. 10
[ 1 cos10x C] sin10x 说明结果正确 10
第四章 不定积分
第一节 不定积分的计算
e3xdx 1
3
e 3 xd(3 x )
令u 3x
1 3
eudu 1 eu C 3
u回代 1 e3x C 3
x
; 6
原式
(x
1 3)( x
2)
dx
1 5
(
x
1
3
x
1
)dx 2
1 5
[
x
1
d(x 3
3)
x
1
2
d(
x
2)]
1 (ln | x 3 | ln | x 2 |) c 1 ln | x 3 | c
5
5 x2
练习

dx x2 5x 4 .
第四章 不定积分
第一节 不定积分的计算
sin xdx d(cos x);
sec x tan xdx d(sec x); csc x cot xdx d(csc x).
sec2 xdx d(tan x); csc2 xdx d(cot x);
dx d(arcsin x);
1 x2
dx 1 x2 d(arctan x);
第四章 不定积分
第四章 不定积分
第一节 不定积分的计算
例6 计算
(2 arctan x)2
1 x2
dx.
1 1 x2 dx d(arctan x)
f
(arctan

《高数不定积分》课件

《高数不定积分》课件

对求解结果进行检查,确认计算结果是否正确。
总结与复习
通过本课件的学习,您已经了解了不定积分的基本概念、公式和常见函数的积分方法,以及常见题型的解决步骤。 现在可以进行总结和复习,巩固所学内容。
部分特殊函数的不定积分需要 使用特定的公式和技巧进行求 解,如指数函数和对数函数。
解决不定积分例题的步骤与方法
1 分析与拆解
2 选择合适的方法
仔细阅读题目,分析函数的特征,并拆解成基本 的函数表达式。
根据不同的函数类型,选择换元法、分部积分法 等适合的方法进行计算。
3 化简与推导
4 检查答案
根据所选方法,化简积分表达式,并推导出结果。
基本不定积分公式
常数函数
∫kdx = kx + C
幂函数
∫x^n dx = (x^(n+1))/(n+1) + C, 其中n≠-1
指数函数
∫e^x dx = e^x + C
三角函数
∫sinx dx = -cosx + C

常见初等函数的不定积分
指数函数
求解e^x的不定积分时,结果是e^x 本身。
三角函数
不定积分涉及正弦、余弦等三角函 数时,需要根据具体的公式进行求 解。
对数函数
∫1/x dx = ln|x| + C,对数函数的 不定积分需要使用特定的公式。
换元法与分部积分法
1
分部积分法
2
将不定积分中的乘积表达式应用分部积分
公式,化简积分运算。
3
换元法
将不定积分中的自变量进行变换,通过代 换简化积分的计算。
技巧与窍门
熟练掌握换元法和分部积分法的常用技巧, 能够灵活运用于不定积分的求解。

《高数》不定积分》课件

《高数》不定积分》课件
《高数》不定积分》PPT 课件
本PPT课件详细介绍了《高数》中的不定积分,包括不定积分的定义、基本积 分公式、常用的不定积分法、分部积分法、三角函数的不定积分、倒代换法、 不定积分的应用以及综合例题。
不定积分的定义
1 什么是不定积分
不定积分是反导函数的概念,表示函数的原函数的集合。
2 符号表示
常用的符号表示为∫f(x)dx,其中f(x)为被积函数。
3
三角恒等变换
利用三角函数的基本恒等变换简化积分计算。
三角函数的不定积分
正弦函数的不定积分
正切函数的不定积分
对正弦函数积分得到负余弦函数。
对正切函数积分得到自然对数函 数的绝对值。
余切函数的不定积分
对余切函数积分得到自然对数函 数的绝对值的负数。
倒代换法
倒代换法是一种高级的积分方法,通过变量的倒代换将含有平方根或有理函数的积分转化为更容易求解的形式。
不定积分的应用
1 曲线的长度
通过对曲线方程求导然后 对导函数进行积分,可以 计算曲线的长度。
2 曲线下面积
通过不定积分计算曲线与 x轴之间的面积,可以得 到曲线下面积。
3 函数的平均值
通过对函数进行积分,可 以计算函数在一个区间上 的平均值。
综合例题
例题1
计算∫(2x^3+4x^2-6x+8)dx。
例题3
计算∫(1/x)dx,其中x不等于0。
例题2
计算∫(e^x+sinx+cosx)dx。源自基本积分公式常数积分
对常数函数积分得到一个与x无关的常数。
指数函数积分
对指数函数积分得到与指数函数相同的函数。
幂函数积分
对幂函数积分得到幂次数加一的函数。

高等数学第四章 不定积分

高等数学第四章 不定积分

积分学不定积分定积分微分与积分是一对互逆的运算第四章不定积分§1 不定积分的定义与性质1.问题的提出2.定积分的定义3.定积分的性质例, ,(sin )cos ()x x x '=∀∈-∞+∞一、原函数存在定理定义1若在I 上恒有F '(x )=f (x )(即d F (x )=f (x )d x ),称F (x ) 为f (x ) 在I 上的一个原函数。

上的一个在是原函数),( cos sin +∞-∞=∴I x x (1) 满足什么条件的函数有原函数?问题:(2) 若原函数存在,如何求出?复习:原函数存在定理:连续函数一定有原函数.(sin 1)(sin 3)(sin )cos ,x x x C x '''+=+=+=原函数F (x )不唯一,但只相差一个常数可以看出:简言之:原函数之间只相差一个常数。

⎰=xatt f x d )()(Φ例:积分常数积分号被积函数定义2:Cx F dx x f +=⎰)()(被积表达式积分变量函数f (x )在区间I 上的全体原函数称为f (x )在I 上的不定积分,记为:不定积分是全体原函数的集合。

⎰dx x f )(C 不可丢!前面两例可写作:⎰+=C x xdx sin cos , ,(sin )cos ()x x x '=∀∈-∞+∞问:不定积分的几何意义?不定积分的几何意义xyoxCx F y +=)()(x F y =是积分曲线上、下平移所得到一族积分曲线,称为积分曲线族.)(x F 在点处有相同的斜率,即这些切线互相平行.x )(x f x x f d )(⎰()F x C=+称为的积分曲线.不定积分的几何意义:的原函数的图形称为的积分曲线.的图形的所有积分曲线组成f d)xx(的积分曲线族.yxO0x每条积分曲线上,横坐标相同的点处的切线是平行的例1.设曲线通过点(1, 2), 且其上任一点处的切线斜率等于该点横坐标的两倍, 求此曲线的方程.解:所求曲线过点(1, 2) ,故有因此所求曲线为12+=x y yx)2,1(O[xd d)1(⎰x x f d )(])(x f =[d ⎰x x f d )(]x x f d )(=或C x +=⎰d )2()(x F ')(x F 或C +=⎰d )(x F )(x F 二.不定积分的性质微分运算与求不定积分的运算是互逆的:线性性质⎰=±dx x g x f )]()([)1(;)()(⎰⎰±dx x g dx x f ⎰=dx x kf )()2(.)(⎰dx x f k (k 是常数,)0≠k⎰+=k Ckx kdx ()1(是常数););1(1)2(1-≠μ++μ=+μμ⎰C x dx x ;||ln )3(⎰+=C x xdx ⎰=C dx 0⎰+=C x dx 1基本积分表⎰=xdx cos )6(;sin C x +⎰=xdx sin )7(;cos C x +-⎰=xdx 2sec ;tan C x +⎰=xdx 2csc ;cot C x +-=⎰dx e x )5(;C e x +=⎰dx a x )4(;ln 1C a a x +(8)(9)⎰=xdx x tan sec )12(;sec C x +⎰=xdx x cot csc )13(;csc C x +-=+⎰dx x211)11(C x +arctan =-⎰dx x 211)10(C x +arcsin C x arc +-=cot C x +-=arccos 注:检验积分结果正确与否的方法是积分结果求导= 被积函数。

高等数学(第三版)课件:不定积分的概念与性质

高等数学(第三版)课件:不定积分的概念与性质
解 (3x 2sin x)dx 3xdx 2 sin xdx 3x 2 (cos x) C
ln 3
3x 2cos x C.
ln 3
例8 求 x (x1)2dx.

x
(x1)2
5
x2
(
x
1)
2dx
(
x
5 2
2
x
3 2
x
1 2
)dx
5
3
1
x 2dx 2 x 2dx x 2dx
1 x 2dx arctan x C.
例3

1dx. x
解 当x 0时,有(ln x)' 1 . x
1dx x
ln
x
C
(x 0)
当x 0时,有ln(x)' 1 (x)' 1 (1) 1 ,
x
x
x

1dx x
ln(
x)
C.
ln x 当x 0,
ln x ln( x)
当x 0,
[f (x) g(x)]dx f (x)dx g(x)dx
性质2可以推广到有限多个函数的情形,即
[
f
(x)
1
f
(x)
2
f (x)]dx n
f
(x)dx
1
f
(x)dx
2
f
(x)dx
n
例6 求 (2x3 5 x2 4x 3)dx. 解 (2x3 5 x2 4x 3)dx
2 x3dx 5 x2dx 4xdx 3dx
2 x3dx 5 x2dx 4 xdx 3 dx
1 2
x4
5 3
x3
2
x2

不定积分的概念【高等数学PPT课件】

不定积分的概念【高等数学PPT课件】

1)
dx


1
dx x
2
1 x3 x arctan x C 3
例8. 设
f ( x3 )
1 x2

f (x)
解: 令 x3 t x 3 t

f (t)
1
2
t3


f
(t )dt


1 2 dt
t3
1
即 f (t) 3t 3 c
例9. 质点在距地面 处以初速 垂直上抛 , 不计阻 力, 求它的运动规律.

v0t

x0
解:
y
所求曲线过点 ( 1 , 2 ) , 故有
(1, 2)
o
x
因此所求曲线为 y x2 1
从不定积分定义可知:
(1)
d dx


f (x)d x
f (x)
或 d
f (x)dx
f (x)dx
(2) F(x) dx F (x) C 或 d F (x) F (x) C
f (x)dx ki fi (x)dx i 1
例4. 求
解: 原式 = [(2e)x 5 2x )dx
(2e)x 5 2x C ln(2e) ln 2

2
x
ln
ex 2
1

5 ln 2

C
例5. 求
解: 原式 = (sec2x 1)dx sec2xdx dx tan x x C
f ( x)dx F( x) C
积 分 号
被 积 函 数
被 积 表 达

《高等数学》(同济六版)教学课件★第4章.不定积分

《高等数学》(同济六版)教学课件★第4章.不定积分
f (u )du
u ( x )
u ( x )
第一类换元法 第二类换元法
目录
上页
下页
返回
结束
一、第一类换元法
定理1. 设 f (u ) 有原函数 , u ( x) 可导 , 则有换元
公式
f (u )du

u ( x)

f [ ( x)] ( x)dx f ( ( x))d ( x)
v(t ) ( g ) d t g t C1
由 v(0) v0 , 得 C1 v0 , 故 v(t ) g t v0
再求
由 知
O
2 g t v0t C2 x(t ) (g t v0 )d t 1 2
由 x(0) x0 , 得 C2 x0 , 于是所求运动规律为
思考与练习
1. 证明
(P193题7)
2. 若
2 x f (ln x) d x
1 2 x C 2
x
提示:
e
f (ln x) e
ln x
1 x
目录 上页 下页 返回 结束
3. 若

是 e x 的原函数 , 则 1 f (ln x) C0 ln x C d x x x
1 u2
想到公式 du
arctan u C
目录
上页
下页
返回
结束
例3. 求
解:
a
dx 1 (
x 2 a)

d( ) 1 (
x 2 a)
x a
想到

du 1 u2
arcsin u C

f [ ( x)] ( x)dx
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3、4 次课 4 学时不定积分的概念与性质1、复习13个基本导数公式.2、原函数与不定积分的概念.(1)定义1 在区间I 上,如果可导函数()F x 的导函数为()f x ,即对任一x I ,都有()'()F x f x =或()dF x =⎰dx x f )(,那么函数()F x 就称为()f x (或()f x dx )在区间I 上的原函数.(2)原函数存在定理 如果函数()f x 在区间I 上连续, 那么在区间I 上存在可导函数()F x , 使对任一x I 都有F (x )()f x .注: 1、如果函数()f x 在区间I 上有原函数()F x , 那么()f x 就有无限多个原函数.()F x C +都是()f x 的原函数. (其中C 是任意常数);2、()f x 的任意两个原函数之间只差一个常数, 即如果(x )和()F x 都是()f x 的原函数,则()()x F x C Φ-=(C 为某个常数).简单地说就是,连续函数一定有原函数.定义2 在区间I 上, 函数()f x 的带有任意常数项的原函数称为()f x (或⎰dx x f )()在区间I 上的不定积分. 记作⎰dx x f )(, 其中记号⎰称为积分号, ()f x 称为被积函数,⎰dxx f )(称为被积表达式,x 称为积分变量.3、例题讲解.例1 因为sin x 是cos x 的原函数,所以C x xdx +=⎰sin cos .因为x 是x 21的原函数, 所以C x dx x+=⎰21. 例2. 求函数xx f 1)(=的不定积分解:当0x >时,(ln x )x 1=,C x dx x+=⎰ln 1(0x >).、当0x <时,[ln(x )]xx 1)1(1=-⋅-=,C x dx x +-=⎰)ln( 1(0x <).合并上面两式,得到C x dx x +=⎰||ln 1(x0).例3. 求2.x dx ⎰解 由于'323x x ⎛⎫= ⎪⎝⎭,所以33x 是2x 的一个原函数,因此323x x dx C =+⎰. 4、变式练习5、积分曲线 函数()f x 的原函数的图形称为()f x 的积分曲线,从不定积分的定义,即可知下述关系⎰=)(])([x f dx x f dxd 或 ⎰=dx x f dx x f d )(])([.又由于()F x 是()'F x 的原函数,所以⎰+='C x F dx x F )()(或记作⎰+=C x F x dF )()(.6、基本积分表(略).例4. ⎰⎰-=dx x dx x 331C x C x +-=++-=+-21321131.$ 例5.⎰⎰=dxx dx x x 252C x ++=+1251251C x +=2772C x x +=372.7、不定积分的性质.性质1 函数的和的不定积分等各个函数的不定积分的和,即 ⎰⎰⎰+=+dx x g dx x f dx x g x f )()()]()([. 这是因为, ])([])([])()(['+'='+⎰⎰⎰⎰dx x g dx x f dx x g dx x f f (x )g (x ).性质2 求不定积分时,被积函数中不为零的常数因子可以提到积分号外面来,即 ⎰⎰=dx x f k dx x kf )()((k 是常数,0k ≠) 例6.⎰⎰-=-dx x x dx x x )5()5(21252.⎰⎰-=dxx dx x 21255⎰⎰-=dxx dx x 21255C x x +⋅-=232732572.》例7. dx x x x dx xx x x dx x x )133(133)1(222323-+-=-+-=-⎰⎰⎰C x x x x dx xdx x dx dx x +++-=-+-=⎰⎰⎰⎰1||ln 3321113322.8.变式练习(1)(2)dx ⎰ (3)22x x dx +⎰()(4)3)x dx - (5)4223311x x dx x +++⎰ (6)221x dx x+⎰ (7)x dx x x x ⎰34134(-+-)2(8)23(1dx x -+⎰(9) (10)221(1)dx x x +⎰ (11)211xx e dx e --⎰ (12)3x x e dx ⎰ (13)2cot xdx ⎰《/第 5 次课 2 学时第一类换元积分法1、回顾旧知(1)复习13个常见积分公式(2)思考:cos 2sin 2xdx x C =+⎰对吗2、第一类换元法.^设()f u 有原函数()F u ()u x ϕ= 且()x ϕ可微那么 根据复合函数微分法有''''[()]()()[()]()[()]()dF x dF u F u du F x d x F x x dx ϕϕϕϕϕ====即)(])([)()]([)()]([x u du u f x d x f dx x x f ϕϕϕϕϕ=⎰⎰⎰=='()[()C]u x F u ϕ=+[()]CF x ϕ+定理1 设()f u 具有原函数 ()u x ϕ=可导 则有换元公式⎰⎰⎰+=+==='C x F C u F du u f x d x f dx x x f )]([)()()()]([)()]([ϕϕϕϕϕ3、讲授例题.例11cos 2cos 2(2)2xdx x x dx '=⋅⎰⎰1cos 2(2)2xd x =⎰ 211cos sin 22u x udu u C ===+⎰令1sin 22x C + 例2dx x x dx x ⎰⎰'++=+)23(23121231⎰++=)23(23121x d x(32111ln ||22u xdu u C u =+==+⎰令C x ++=|23|ln 21例3 ⎰⎰⎰-==xd x dx xx xdx cos cos 1cos sin tan = ln |cos |x C -+例4求6sec d .x x ⎰解6222sec d (tan 1)sec x x x xdx =+⋅⎰⎰42(tan 2tan 1)dtan x x x =++⎰5312tan tan tan 53x x x C =+++ 4、变式练习.1)dx x ⎰-3)23( 2)⎰-332xdx3)dt tt ⎰sin 4)⎰)ln(ln ln x x x dx5)⎰x x dx sin cos 6)⎰-+x x e e dx.7)dx x x )cos(2⎰ 8)dx xx ⎰-4313·第 6 次课 2 学时&/第一类换元积分法1、复习旧知.(1)13个常见的积分公式. (2)第一类换元积分法.2、例题讲解(较难的积分).例1. ⎰⎰⋅=xdx x xdx sin sin sin 23⎰--=x d x cos )cos 1(2⎰⎰+-=x xd x d cos cos cos 2Cx x ++-=3cos 31cos例2. dx x xdx ⎰⎰+=22cos 1cos 2)2cos (21⎰⎰+=xdx dx ⎰⎰+=x xd dx 22cos 4121Cx x ++=2sin 4121例3. ⎰⎰=dx x xdx sin 1csc ⎰=dx xx 2cos 2sin 21C x x xd x x x d +===⎰⎰|2tan |ln 2tan 2tan 2cos 2tan 22 ?ln |csc xcot x | C即 ⎰xdxcsc ln |csc x cot x | C例4. ⎰⎰+=dx x xdx )2csc(sec πC x x ++-+=|)2 cot()2 csc(|ln ππln |sec x tan x |C即 ⎰xdx sec ln |sec x tan x | C3、变式练习.1)dx xx ⎰3cos sin 2)dx x x ⎰--2491 3)⎰-122x dx 4)dx x ⎰3cos5)⎰xdx x 3cos 2sin 6)⎰xdx x sec tan 37) dx x x ⎰+239 8)dx xx ⎰+22sin 4cos 31}9)dx xx ⎰-2arccos 2110 10)dx x x x ⎰+)1(arctan4、小结(1)分项积分:利用积化和差; 分式分项;221sin cos x x =+等;(2)降低幂次:利用倍角公式 , 如221122cos (1cos 2);sin (1cos 2)x x x x =+=-.(3)统一函数: 利用三角公式 ; 配元方法.(4)巧妙换元或配元~^@,第7 次课 2 学时/>第二类换元积分法1、复习第一类换元积分法.2、第二类换元法.(1)定理1 设x()t ϕ是单调的、可导的函数 并且ϕ()t 0 又设f [ϕ()t ]ϕ()t 具有原函数F ()t 则有换元公式Cx F t F dt t t f dx x f +=='=-⎰⎰)]([)()()]([)(1ϕϕϕ 本次课题:第二类换元积分法教学要求:1. 理解第二类换元积分法重 点:第二类换元积分法难 点:第二类换元积分法教学手段及教具:讲授法讲授内容及时间分配:1. ,2. 第二类换元积分法理论 (25)3. 练习 (65)课后作业参考资料其中t ϕ1-()x 是x ϕ()t 的反函数 这是因为 )()]([1)()]([)(})]([{1x f t f dt dx t t f dx dt t F x F =='='='-ϕϕϕϕ 3、例题讲解. ;例1. 求dx x a ⎰-22(a >0) 解: 设sin x a x =,2 2 ππ<<-t 那么22x a -t a t a a cos sin 222=-=cos dx a tdt= 于是⎰⎰⋅=-tdt a t a dx x a cos cos 22C t t a tdt a ++==⎰)2sin 4121(cos 222 因为a x t arcsin =, a xa a x t t t 222cos sin 22sin -⋅== 所以 dx x a ⎰-22C t t a ++=)2sin 4121(2C x a x a x a +-+=22221arcsin 2. 例2 求2.49x +解 原式2212(2)3x =+21ln 2492x x C =++. 例3 求.1x e +解 1x e t +=,则2ln(1),x t =-221t dx dt t =-.所以 2221112(1)1111x t dt dt dt t t t t t e ⎛⎫===- ⎪---+⎝⎭+⎰⎰⎰ :111ln ln 111x x t e C C t e -+-=+=++++.4、变式练习.1)dx x x ⎰+211 2)dx x ⎰sin3)dx x x ⎰-42 4)⎰>-)0(,222a dx xa x5)⎰+32)1(x dx6)⎰+x dx 21 7)⎰-+21x x dx8)⎰-+211x dx~`第 8 次课 2 学时分部积分法1、提出问题:求解x xe dx ⎰(让学生试着求解).)2、分部积分公式.设函数u u (x )及v v (x )具有连续导数.那么,两个函数乘积的导数公式为 (uv )u v uv ,移项得 uv (uv )u v. 对这个等式两边求不定积分 得⎰⎰'-='vdx u uv dx v u 或⎰⎰-=vdu uv udv 这个公式称为分部积分公式思路分析:严格按照“‘反、对、幂、三、指’顺序,越靠后的越优先纳入到微分号下凑微分。

相关文档
最新文档