海上风电风机基础设计关键技术研究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海上风电风机基础设计关键技术研究
发表时间:2018-09-12T11:37:07.247Z 来源:《基层建设》2018年第21期作者:张纯永陆南辛[导读] 摘要:海上风电技术的研发应用为我国国民生产可谓是带来了巨大效益,不仅能有效降低受化石等燃料燃烧等影响产生的环境污染,还能实现可再生清洁能源的合理开发,从而为人类的可持续发展奠定良好基础,随着历史进程的不断推进,海上风电技术也日益完善化,我国对该方面内容引起了高度重视。
中国电建集团华东勘测设计研究院有限公司杭州 311122 摘要:海上风电技术的研发应用为我国国民生产可谓是带来了巨大效益,不仅能有效降低受化石等燃料燃烧等影响产生的环境污染,还能实现可再生清洁能源的合理开发,从而为人类的可持续发展奠定良好基础,随着历史进程的不断推进,海上风电技术也日益完善化,我国对该方面内容引起了高度重视。然而总体来说因其起步较晚,所以其中涉及到的一些关键环节自主研发仍处于空白阶段,并且基础设计尚不具备规范化指导,需相关专业技术人员能够积极参与进来。本文主要对海上风电风机基础设计展开详细分析探讨,仅供相关人士参考借鉴。
关键词:海上;风电风机;基础设计;关键技术根据实践探索发现,海上风电普遍具有可利用时间较长、与负荷中心距离较近及功率密度较大等特点,在可再生能源领域应用中愈发受到国家关注重视,开始积极利用海上风能等优势对我国当前能源结构实施调整改革,借此不但能达到土地资源节省目的,还能推动社会的可持续发展前进[1]。总体来说,海床地质环境与陆地相比较而言复杂性较高,再加上海上风电风机基础设计技术广泛落后于发达国家,并且大型施工设备较为匮乏,都致使海上风电风机基础设计关键技术创新提出被列入到重要研究范围中,有利于实现能源安全可持续发展目的。
1 关于海上风电风机基础设计的简要阐述
现阶段,最常见海上风电风机基础型式无非在于以下几项:超大直径单桩基础、三脚架基础、重力式浅基础及吸力式桶形基础等,其中提到的三脚架基础、重力式浅基础及超大直径单桩基础在具体应用开展时均需具备大型打桩船舶或是海上吊运船舶,因而往往投资成本也是较高,但无论是基础设计还是施工技术要求都普遍较低。根据相关调查显示可知,风力发电技术在可再生能源中属于较为成熟一项内容,并且未来发展前景较佳,再加上我国海域辽阔拥有极其丰富风能资源,都使海上风电与普通风电相比较存在着众多优势,具体包括以下几点内容;第一,海上风力大于陆地风力规模,并且稳定性能较好;第二,据调查统计可知,陆地风电场平均可达到15MW,而海上风电场平均规模已达到300MW左右,是前者的20多倍;第三,能将海上风能转化成电力,即为风能开发利用效率达到40%,而陆地开发效率仅仅为25%,甚至海上风电存在优势远远不止这些,例如:不占用任何土地资源,不会受到周围环境等因素影响等[2]。据统计,到目前为止,我国海上风电累计装机已达到5.53MW左右,在全球海上风电发展中占据着重要地位,仅次丹麦和英国名列世界第三,然而在新时代发展背景下,海上风电风机基础设计技术仍需展开更深层次创新研发,促使我国海上风电风机能够上升到一定层次。
2 海上风电风机基础设计的关键技术应用方案 2.1海洋环境荷载
具体可从以下两方面环节展开思考分析:第一,波浪和水流荷载。据调查了解到,海上风机基础大多会使用桩式基础类型,将其截面形状设为圆形,一旦桩直径和波长相比较呈现出较小状态则表示波浪场不会受到桩柱因素影响制约,而对于波流力计算和波浪力计算最好可采取莫里森方程手段,在此过程中充分考虑到海上风电风机特点和海波浪数据等因素,确保最终计算结果真实准确性。同时在借助线性波理论展开桩基和墩柱计算时,需严格遵守《海港水文规范》中提到的相关标准规范,综合考虑到水流和波浪等因素,或者还需遵守上述规范中涉及到的波浪在水流作用下的变形情况,便于得到较为准确的波流力和波流力矩数值。除此之外,对于作用在桩基上的水流荷载需按照《港口工程荷载规范》内容落实执行,避免受到深度、桩间横向及斜向水流等因素影响制约[3]。第二,冰荷载。往往海上区域在某一特定时期都会产生不同程度冰情,其中以辽东湾最为突出严重,具体可将冰荷载分为两种类型:一是作用在结构上的最大静冰力,还有一种则是作用在结构上的交变冰荷载,往往这种荷载容易引发结构振动,因此这就需要设计人员在进行海上风电风机基础设计时能充分结合最大冰力情况,并且在展开导管架基础结构设计时最好应使用强迫振动模型和自激振动模型展开冰力分析探讨,避免导管架结构受到振动频率影响出现不利后果[4]。
2.2桩土相互作用影响
根据我国最新制定提出的《建筑桩基规范》可以了解到,通常在采用线性“m”法时需充分考虑到桩基水平荷载较大背景下的时桩应用情况,即为土间横向约束,随后还要利用较为准确摩阻力标准值和端阻力标准值来对土间的竖向约束进行考虑分析,往往该种方法主要适用于海上桩基出现较大程度位移情况下,普遍具有非线性特点,重点推荐使用《海上固定平台规范设计和工作应力设计法》中提到的“p-y”曲线方法,不仅能实现土间的互相作用影响,还能更真实反映出地基和基础二者之间的非线性横向约束关系,实现海上风电风机基础设计的最佳成效[5]。
2.3承载力变形
在进行海上风电风机基础设计时,往往承载力情况如何也是设计人员需引起高度重视的一项内容,具体可从以下两点展开详细阐述:第一,承载力计算。海上风电风机基础设计的最常见方法便是允许应力法和设计应力法,其中允许应力法需严格按照《海上固定平台规范设计和工作应力设计法》规范标准落实,确保设计计算工作的安全高效展开,并且在此期间最大特点就是可将钢材使用到最大强度状态,再除以一个安全系数就能得到结构计算的允许最大应力,即为利用一个固定安全系数来准确衡量结构是否安全可靠,虽然操作过程简洁方便但不能从定量角度对结构可靠性进行设计计算,否则结构安全性将无法满足实际要求。而设计应力法则需要严格按照《钢结构设计规范》展开设计计算工作,在考虑到可靠性基础上选择科学合理化极限设计手段,再加上对施工材料强度不确定性因素的深入掌握,便于进一步明确最终设计结果,实现海上风电风机基础设计的最佳状态[6]。第二,变形控制。通常来说,海上风电风机基础结构设计不仅仅需考虑到施工材料强度要素,更要考虑到结构自身强度情况,在确保施工材料不遭到任何破坏基础上避免风机等设备出现变形,目前国内外对于海上风电风机基础变形都尚且不具备统一化约束要求,所以沉降和倾斜率控制指标只能参考《风力发电机组塔架地基基础设计技术规定》内容落实,便于更好满足厂商提出的最小水平刚度和最小抗倾覆刚度需求,推动海上风电风机基础设计工作的顺利实施。
2.4动力特征和疲劳分析