微量元素地球化学期末作业培训课件
高等微量元素地球化学课件:绪论 微量元素的分类
微量元素的分類
• 常量元素(>0.1%)——能形成獨立礦物相,
其分配受相律的控制,遵循相率和化學計量 法則。
• 微量元素(<0.1%)——在自然體系中濃度
極低,往往不能形成以本身為主要成分的獨 立礦物或者只能形成岩石中的副礦物,因此, 微量元素的分配不受相律和化學計量的限制。
微量元素地球化學
Trace Element Geochemistry
緒論
• 微量元素地球化學是地球化學的重要分支 學科之一,是研究微量元素在地球 ( 包括 部分天體)形成、演化中分布、賦存狀態 、 行為方式、分析技術和各類應用的分支學 科
• 人們常常相對於地殼中的主量元素而言, 人為地把地球化學體系中,其元素豐度 (克拉克值)低於0.1%的元素,通常稱為 微量元素
• 低場強元素或離子(Low field strength element) : 形成大半徑小電荷的離子的元素 ,離子勢<2,它們 又稱為大離子親石元素—LILEs(large ion lithophile elements),包括 Cs、Rb、K、Ba、Sr、Eu和Pb(1-2 價)。
• 相容元素(compatible elements):趨於在固相中富集的 微量元素。儘管其濃度低,不能形成獨立礦物相,但因 離子半徑、電荷、晶體場等晶體化學性質與構成結晶 礦物的主要元素相近,而易於呈類質同像置換形式進入 有關礦物相。相容元素的固相/液相分配係數顯著大於 1。
微量元素的分類
親氣元素 atmophile
組成地球大氣圈的主要元素,惰性氣體元 素,以及主要呈易揮發化合物存在的元素,如 氫、氮、碳、氧等
微量元素地球化学模板.ppt
1.1 微量元素的定义
❖ Gast(1968)不作为体系中任何相的组分存在的元素
❖ 伯恩斯(晶体场理论的矿物学应用)只要某元素在体系中的 含量低到可以用稀溶液定律来描述其行为,即可称微量元素
❖ 微量元素的概念是相对的
K:花岗岩中常量元素,超基性岩中微量元素 Ni:地壳岩石中微量元素,陨石中常量元素 Li,B:伟晶岩中常量元素
K或D1,倾向于富集在熔体相 0.2
▪ 相容元素(compatible) :
K或D 1,倾向于富集在结晶相 Ni、Cr、Co
12 34 56 离子电价
1.4 支配微量元素地球化学行为的主要物理化学定律
1.4a Goldschmidt三定律
Goldschmidt定律一
两个离子,如果他们具有相同的电价和离子半径,则易于交 换,并以与他们在整个体系中相同的比例进入固熔体
正因为如此,许多微量元素,会以类质同像替代的方式,和与各自电价
和离子半径相近的常量元素(主元素)一起进入固体相。例如:
Sr、Eu
→ Ca
Rb、Pb、Ba → K
Ni
→ Mg
Goldschmidt定律二
两个离子,如果他们具有相同的电价,和相似的离子半径, 则较小的离子倾向于进入固体相
Mg2+ 比Fe2+ 的离子半径小,因此,在橄榄石与熔体的平衡体系 中,橄榄石中Mg的含量高于熔体 Nb, Ta Zr, Hf
▪ 独立矿物
U、Hf → ZrSiO4
▪ 类质同像替代 !!!!!
Sr、Eu → Ca Pb、Ba → K
▪ 晶格缺陷
▪ 吸附(如胶体)
1.3 微量元素分类
❖ 基本的化学分类 ❖ Goldschmidt分类 ❖ 一般的地球化学分类 ❖ 常用分类 ❖ 对元素分类的说明
微量元素地球化学教学课件PPT
微量元素可作为地质-地球化学过程示踪剂,在 解决当代地球科学面临的基本理论问题—天体、地 球、生命、人类和元素的起源及演化,为人类提供 充足的资源和良好的生存环境等方面发挥重要的作 用。
第五章 微量元素地球化学
微量元素地球化学的
研究思路及研究方法:
1) “见微而知著”: 通过观察自然界中之 “微” — 微量元素,来认识天体、地球中各种 地质-地球化学作用之“著” 。
§1 微量元素地球化学基本理论
一、微量元素和常量元素
1.微量元素
a. 地球化学体系中丰度低于0.1%的元素.统称为微(痕)量元素。 b. Gast(1968): 不作为体系中任何相的主要组分(化学计量)存在的元 素。 c. 元素在所研究的地球化学体系中的浓度低到可以近似服从稀溶液 定律(亨利定律)的范围. d. 1998年中国科学院地球化学研究所出版的教材中提出微量元素地 球化学概念的严格定义应是:只要元素在所研究客体(地质体、岩 石、矿物等)中的含量低到可以近似地用稀溶液定律描述其行为, 该元素可称为微量元素。
三、能斯特定律及分配系数
1.能斯特定律
能斯特(Nernst)定律是描述微量组分在两共存相中分配达平衡 时的行为特征。
地球化学过程元素演化的实质是元素在相互共存相(液固,固-固)间的分配。元素在共存相间的分配决定于元素及 矿物的晶体化学性质和热力学条件。 常量元素 能形成自己的独立矿物,其在各相间分配受相律 (f=K-φ+2)控制,遵循化学计量法则。 微量元素 在固熔体、熔体和溶液中的分配不受相律和化学计 量的限制,而服从稀溶液定律(亨利定律),即当分配达到平 衡时元素在各相间的化学势相等,即( = ) 。
微量元素的特点:
在体系中含量低( 0.1%),通常不形成自己的独立矿物, 其行为服从稀溶液定律和分配定律。在不同条件下演化规律基 本一致,可以指示物质的来源和地质体的成因。
9第四章微量元素地球化学1课件
微量元素地球化学的发展历史
微量元素地球化学经历了2个主要发展时期:
①20世纪60年代以前 从微观的角度来认识微量元素的分布及其
在自然界的结合规律,主要通过元素的原子、离
子半径,电荷、极化性质和电负性等特性,研究微量元素 在地球各系统及不同矿物、岩石中的分配和分布。
② 20世纪70年代起
微量元素地球化学的研究从定性向定
量,从微观向宏观发展,进入了建立 定量理论模型的阶段。
微量元素地球化学的研究几乎涉及地学的
所有领域,如地幔不均一性、古构造环境 的判别恢复、成岩成矿物质来源的示踪、 全球及局部环境变化/演化的研究等。
第4章 微量元素地球化学
4.1 基本概念和理论 4.2 岩浆作用过程中微量元素分配演化
溶液中。
推荐定义
只要元素在所研究的客体(地质体、 岩石和矿物等)中的含量低到可以近似地 用稀溶液定律描述其行为时,称之为微量 元素。
2 微量元素存在形式:
①以类质同象形式占据矿物晶格 ②矿物包裹体中 ③吸附于矿物表面或以杂质形式存
在于矿物晶体缺陷的间隙内。
其中类质同像是主要形式。
通常将自然体系中含量低于0.1%的元素称 为微量元素,也叫痕迹元素。
以分散性和低含量为特点。
②Gast(1968)定义
体系中不作为任何相的主要化学组分存
在的元素,即该元素既不能形成独立矿 物相,也不是某矿物相的主要组成部分。 只能以次要组分容纳于其它主要组分形 成的矿物固溶体中。
③物理化学液体理论/热力学定义
根据元素在所研究的地球化学体
系中的浓度低到可以近似服从稀溶 液定律(亨利定律)的范围,则称 该元素为微量元素。
④目前一致认识:
13微量元素地球化学专题培训课件
4.稀土元素地球化学
1.稀土元素分类
两分法: (1)轻稀土(LREE)或铈族稀土,La到Eu:原子序数小,
质量小; (2)重稀土(HREE),Gd到Lu:原子序数大,质量大,
有时把钇(Y)也列入HREE。Gd到Lu+Y为钇族稀土;
轻稀土组(LREE)—ΣCe族稀土
+Y 重稀土组(HREE)—ΣY族稀土
4.稀土元素地球化学
镧原子外层电子构型5d16s2,Ce有一个电子充填于4f亚 层,以后均进入4f亚层,直至将4f亚层完全充满为止。
4.稀土元素地球化学
受到5s2和5p6亚层中8个电子的很好屏蔽,4f亚层电子不 大明显参与化学反应。因此4f亚层电子数目的任何差异 既不导致化学行为很大不同,也不引起明显的配位场效 应。所以,REE倾向于在任何地质体中成组而不是单个 或几个一起产出。当硅酸盐与金属或硫化物共存时, REE优先浓集于硅酸盐中,具有亲石性。
花岗岩
碱性玄武岩
10
大陆拉斑
玄武岩
球粒陨石
1
大洋拉斑
玄武岩
1
10
100
1000
10000
REE(10)-6
地壳不同变质原岩的REE与La/Yb比值判别图,可用于区分不
同类型的玄武岩、花岗岩和碳酸盐岩
4.稀土元素地球化学
(2) LREE/HREE(或∑Ce/∑Y) 为轻和重稀土元素比值。 这一参数能较好地反映REE 元素的分异程度以及指示部 分熔融残留体和岩浆结晶矿 物的特征。可为判别岩浆早 期结晶矿物的特征或对岩浆 残余源岩的REE组成等的分 析提供判断的依据
基性岩、基性岩、中性岩至酸性岩,ΣREE值逐渐增高。 相对于碳酸岩,沉积岩中细粒碎屑岩和砂岩ΣREE值较 高,主要反映富集REE副矿物和粘土矿物选择性吸附的 结果,而非源区特征。因此,对于变质岩和壳源岩浆 岩,ΣREE能对其原岩或源岩的性质进行定性的指示。
地球化学课件第3章_微量元素地球化学
第三章微量元素地球化学近20年来微量元素地球化学,尤其是稀土元素地球化学得到了迅猛发展和广泛应用。
上世纪60年代之前,微量元素的研究主要是了解和查明微量元素在陨石、地球各圈层以及不同地质体中的分布、演化和迁移规律,研究对象为上部地壳。
60-80年代,开始利用微量元素作为示踪剂或指示剂研究成岩、成矿作用,例如进行岩石类型划分、原岩恢复、成岩成矿物质来源及其物理化学条件分析等。
20世纪90年代以来,微量元素地球化学进入定量模型和理论发展阶段,主要利用微量元素的特有的地球化学性质、结合热力学有关理论,建立微量元素地球化学模型,对成岩、成矿的熔融与结晶作用过程进行定量理论计算,使微量元素地球化学形成了独特的理论体系和研究方法。
实际上,微量元素地球化学是和现代分析技术的发展相伴生的,早期的分析仪器主要是光谱和X-衍射,随着电感耦合等离子发射光谱、中子活化、电子探针、离子探针以及同位素质谱稀释法的发展和应用,使得大量快速的精确的微区微粒的微量元素测定成为可能。
目前,微量元素研究涉及地球化学和地质学的一切领域,大至地球和天体的形成和演化、小至矿物晶格中的元素分配。
同时,微量元素与同位素的结合,可以更加准确全面地理解地质、地球化学过程,所以说,微量元素地球化学的应用和发展有助于各项地质研究,包括油气地质研究。
第一节微量元素的概念和类型一、微量元素的概念微量元素(trace element),又称痕量元素,目前未有统一认可的严格定义。
习惯上把研究体系(矿物岩石等)中元素含1%的量大于称为主要元素或常量元素(major,common element),把含量在1%-0.1%称为次要元素(minor,subordinate element),而把含量小于0.1%称之为微量元素。
有人也把次要元素当作微量元素的。
这取决于研究者的兴趣和研究目的。
有人认为,在地壳中除O、Si、Al、Fe等几个丰度最大的元素外,其余均可称为微量元素。
4微量元素地球化学(第四章.11)——微量元素地球化学课件PPT
Olivine Opx
Rb
0.010 0.022
Sr
0.014 0.040
Ba
0.010 0.013
Ni
14
5
Cr
0.70
10
La
0.007 0.03
Rare Earth Elements
Ce
0.006 0.02
Nd
0.006 0.03
ቤተ መጻሕፍቲ ባይዱ
Sm
0.007 0.05
Eu
0.007 0.05
Dy
0.013 0.15
残余岩浆分数
第四章 岩浆作用中微量元素行为
瑞利结晶分异
第四章 岩浆作用中微量元素行为
平衡结晶分异
结晶的晶体与残余液体保持平衡状态
残留液体中某些微量元素的浓度 CL 可用下列 方程进行模拟:
eq. 9-
其中
CL = CO / [D + F(1-D)] CO: 初始液相浓度 F: 残余液体的量分数
D: 总分配系数
eq. 9-8 CL/CO = F (D -1)
Rayleigh Fractionation
第四章 岩浆作用中微量元素行为
瑞利结晶分异 已知 k = Cs / Cl ,令m为相的质量,x为摩
尔数(n),则有:
K=
第四章 岩浆作用中微量元素行为
瑞利结晶分异
第四章 岩浆作用中微量元素行为
瑞利结晶分异
第四章 岩浆作用中微量元素行为
岩浆演化模型
Crystallization (结晶作用)
瑞利结晶分异和平衡结晶分异
Partial Melting (部分熔融)
平衡部分熔融和分离部分熔融
地球化学讲义微量元素地球化学(中国地质大学)
第3页/共39页
微量元素地球化学是研究微量元素在地球及其子系统中的分布特
地 球 化 学
征、化学作用及化学演化的一门分支学科。它根据系统的特征和微 量元素的特性,阐明他们在地球系统中的分布分配,在自然体系中
的性状以及在自然界的运动过程和演化历史。
微量元素可以作为地质—地球化学作用的示踪剂,其特色之处就 是能近似定量地解决问题,使实际资料与模型设计结合起来。
价键性质化合物元素分配的解释;八十年代引入了量子力学,量子化学
观点……
中国地质大学地球科学学院地球化学系制作,2018年8月30日更新
第6页/共39页
1.前提条件:一定的温度、压力下,微量元素在两相中可以形成液态 (或固态)的稀溶液; 2.微量元素在两相中的化学位计算
地 球 化 学
θ u1 =u1 +RTlnα1
u2 =u 2 +RTlnα2
u:离子化学位; uθ:标准状态下化学位(25℃,1atm)
α:离子活度(当溶液中离子的浓度 β趋近于0时,活度与浓度成正比,
比例系数k即亨利系数: α =k β );T:体系的绝对温度; R:气体常数(8.314J/mol· K);1和2:两个相。 3.微量元素在两相中分配达到平衡时: u1 =u 2 θ uθ 2 -u1 RT α1 α 2 = kβ1 kβ 2 = β1 β 2 = e =K D T,P =常数 这就是能斯特分配定律:
地 球 化 学
θ u1 <u θ 2 :K D >1,β1 >β 2 -----微量元素更多的进入1相 θ u1 =u θ 1、相之间分配相等 2 2 :K D =1,β1 =β 2 -----微量元素在
可见,微量元素在某相中的化学位越低,它的含量就会越高,就 像是水往低处流一样的道理 5.微量元素在岩石与熔体之间的分配系数:常用岩石中所有矿物 的分配系数与岩石中各矿物含量的乘 积之和一表达。
地球化学课件5
置换常数 例如,在K[AlSi3O8]+Rb= Rb[AlSi3O8]+K 的反应中,Rb(tr)置换钾长石中的K(cr)。该反 应的平衡常数为产物的活度积除以反应物的活度 积。如果将[AlSi3O8]简写为 A ,该反应的平衡置 换 常 数 为 : K = a strAa lcr / a scrA a ltr …… (5)
拉乌尔定律和亨利定律的区别
为什么拉乌尔定律中的比例常数与溶质无关, 而亨利定律中的比例常数却与溶质及溶剂都有 关呢?这是由于稀溶液的溶质浓度很小,对溶 剂分子来说,其周围几乎都是溶剂分子,其活 动很少受到溶质分子的影响,所以拉乌尔定律 中的比例常数只由溶剂的性质就基本可以确定 。而对于稀溶液的溶质分子来说,它的周围几 乎全是溶剂分子,所以亨利定律中的比例常数 不能单独由溶质性质决定,而必须由溶质和溶 剂二者共同决定。
一、微量元素地球化学的基本理论
(2)理想溶液 Ideal Solution
在理想溶液中,具有相同粒子体积
和晶格键力的组份混合不造成体系分子能态
和体积的任何变化。在这种情况下,体系在
混合过程既不吸热也不放热,因此,在理想
状态下混合组份的活度( ai )等于它们的浓
度:
a = X
1
亨利定律 Henry’s law
P i = P i0 X i
一、微量元素地球化学的基本理论
式中Pi为组份i在Xi浓度时的蒸汽分压 ,Pi0为纯组份i在相同温度下的饱和蒸汽压。 该实验规律称为拉乌尔定律。
性质十分相近的组份混合组成的溶 液往往在整个浓度范围内都符合这一规 律,这类溶液称为理想溶液。不符合拉乌 尔定律的溶液则称为非理想溶液。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西藏阿里多龙地区中侏罗统碎屑沉积岩的地球
化学特征及其构造环境分析
学号:120110100 姓名:胡维云专业:构造地质学
前言
班公湖—怒江成矿带西段位于西藏自治区西北部的阿里地区境内,跨班公湖—怒江缝合带南北两侧,由于仅开展过 1∶25 万区域地质调查、1∶20万区域化探等少量基础地质工作,是西藏地质工作程度最低的地区之一。
近年来该成矿带内资源评价工作取得了突出的进展,多龙超大型斑岩铜金矿床和嘎尔穷、嘎拉勒、弗野、材玛等大型矽卡岩型铜铁多金属矿床的相继发现与评价,揭示出班公湖—怒江成矿带成矿条件优越,找矿潜力巨大。
关于班公湖—怒江结合带所代表的特提斯洋盆的性质,打开、闭合的时限和多龙大型矿集区的构造背景、成矿作用,不同的学者存在很大的争议。
目前,己有许多资料证明了该带代表了一个已消失的具有一定规模的洋壳盆地。
王恒忠等(2005)认为班公湖--怒江缝合带内的早白奎世OIB型火山岩是班公湖—怒江洋盆演化晚期的洋岛(塔仁本区早白垩世OIB型玄武岩(主要依据于上覆灰岩中化石时代));而张玉修等(2004)研究认为该套玄武岩是早白垩世冈底斯弧弧后盆地的产物。
一、研究目的及意义
拟通过研究多龙地区中侏罗统地层的岩石类型及组合特征和岩石地球化学特征,分析该地区中侏罗统地层形成的大地构造环境,为正确认识多龙超大型斑岩铜金矿床的成矿地质背景和结合带的演化提供了新的线索。
二、研究区地质背景
构造位置上,多龙地区处于班公湖—怒江缝合带北侧, 羌塘地块的南缘;地理位置上处于西藏自治区阿里地区。
该区构造以断裂为主,呈近东西向带状断续展布。
断裂构造主要表现为一系列走向近东西向且大致平行的北倾逆冲断层,并控制着地层和岩浆岩的分布。
沿构造-岩浆带,大规模的岛弧火山活动发生在中—晚侏罗世,形成燕山早期陆缘火山弧,为一套含大量火山碎屑岩的以安山质为主的玄武—安山—流纹岩组合,火山作用晚期岩浆成分向碱性演化,以陆相中心式喷发为主,兼具熔岩溢流(西藏自治区区域地质志,2000)。
岩浆的深成侵入作用发生在早白垩世至晚白垩世早期,以中酸性幕式侵入为特点,岩体一般呈岩珠或小岩基沿东西向呈带状分布,岩性主要有石英闪长岩、花岗闪长岩、二长花岗岩、似斑状花岗岩及花岗斑岩,年龄在70—140Ma之间(西藏自治区区域地质志,2000)。
研究区地层主要为晚三叠统的日干配错组、中侏罗统的曲色组一段、色哇组、,早白垩统的美日切组,新近系中新统的康托组、更新统和全新统。
地层属羌塘—昌都地层区内的羌南地层分区之多码分区,出露宽度大于10km。
三、研究依据
据现有资料研究表明:砂岩的TFe2O3+MgO、TiO2含量,以及Al2O3/SiO2、K2O/Na2O 和A12O3/(CaO+Na2O)等比值具有显著的构造背景差异,因而成为其形成的大地构造环境判别的重要参数(Bhatia,1983)。
Roser等人(1986)认为,K2O/Na2O值与SiO2值可有效地示踪砂岩形成构造环境,并编制了构造判断图解。
在Bhatia(1983)提出的TiO2-TFe2O3+MgO图解,Roser和Korsch(1988)提出了区分物源区是铁镁质的、中性的或长英质火成岩和石英沉积
岩的判别图解。
沉积岩中的稀土元素的含量主要受控于沉积物源区的性质,而与沉积岩的搬运过程、沉积环境、成岩作用等均无明显关系,因而,它们是示踪物源区构造背景的最好标志之一(GU X X,et al,2003)。
稀土元素配分模式可以用来指示物源岩性特征,因为源自基性岩石的稀土元素具有较低的LREE/HREE,并且无Eu异常。
而长英质岩石通常具有较高的LREE/HREE,具Eu负异常。
Bhatia(1985)通过对不同构造背景下形成砂岩稀土元素特征的研究,建立了不同源区构造背景下砂岩的稀土元素特征标志。
Bhatia和Crook认为,一些不活泼微量元素(如La、Th、Y、Zr、Ti、Co、Ni)及其比值(如Zr/Hf、Eu/Eu*、Ta/Nb、La/Sc、Th/U等)在沉积过程中发生明显改变,在砂岩物源区和构造环境判别图上作用很大(Bhatia M R、Crook K A W,1986)。
他们利用这些元素组合特征建立了一系列判别图解,很好地区分出大洋岛弧、大陆岛弧、活动大陆边缘(安第斯型盆地)和被动大陆边缘四种构造背景下的砂岩。
四、研究方法:
1.在野外进行测剖面时,对该地层进行系统的采样。
2.并对岩石野外特征进行细致的描述。
回到室内对样品磨片和粉碎,主量元素氧化物用X 荧光法分析,微量元素及稀土元素分析利用ICP-MS 进行测定。
3.通过镜下薄片观察得到该套岩石的岩石组合特征,结合野外工作绘制地层剖面。
4.用分析的主量和微量数据根据前人的研究成果进行计算和投图。
5.根据剖面分析和地球化学特征进行该套碎屑岩的物源分析和构造环境判别。
五、预期成果:
区域上羌塘盆地南缘发育以浊积岩为代表的海底扇,横向上表现为海底扇-深水盆地-扇三角洲充填模式,盆地窄而深,物源分析表明中侏罗世巴柔期是羌塘前陆盆地南缘班公湖—怒江缝合带逆冲楔形成和侵位时期(李勇等,2001),构造活动强烈,在东巧一带在变质橄榄岩底盘动热晕中获得的角闪石年龄为179 Ma,即是这一逆冲推覆的证据(周详等,1984),表明班公湖—怒江洋已开始俯冲。
而且张玉修等人对改则蛇绿岩研究(张玉修等,2007)和史仁灯对班公湖蛇绿岩研究(史仁灯,2007)也同样得到了班公湖怒江洋至少在中侏罗世开始由扩张转换为俯冲消减。
所以预期结果为该套碎屑岩发育的构造环境应为岛弧环境,指示当时班公湖-怒江洋处于俯冲状态。
参考文献:
1. Bhatia M R、Crook K A W. Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins [J].Contributions to Mineralogy and Petrology,1986,92(2):181-193.
2.李光明,段志明,刘波等.西藏班公湖-怒江结合带北缘多龙地区侏罗纪增生杂岩的特征及意义. 地质通报. 2011.30(8)
3和钟铧,王玉芬等.漠河盆地中侏罗统砂岩地球化学特征及物源属性分析[J].沉积与特提斯地质,2008,28(4):94-100.
4.张玉修,班公湖--怒江缝合带西段构造演化.优秀博士论文,2007.
5.史仁灯,班公湖SSZ型蛇绿岩年龄对班-怒洋时限的制约[J].科学通报,2007.52(2): 223-227.
6.曲晓明,辛洪波.藏西班公湖斑岩铜矿带的形成时代与成矿构造环境[J].地质通报,2006,25(7):792-799.
7.王忠恒,王永胜,谢元和等.西藏班公湖一怒江缝合带中段塔仁本洋岛型玄武岩的发现及地质意义[J].沉积与特提斯地质,2005,25(1-2):153-162.
8.张玉修,李勇,李亚林等,西藏羌塘盆地东部侏罗系生油条件与油气显示.合肥工业大学学报(自然科学),2004,27(6):635-639
9.李勇,王成善,伊海生等.青藏高原中侏罗世-早白垩世羌塘复合型前陆盆地充填模式.沉积学报,2001,19 (1) :20—27.
10.西藏地质矿产局.西藏自治区区域地质志[M].北京;地质出版社,2000.
11.周祥.西藏板块构造—建造图及说明书[M].北京:地质出版社,1984.
题目
1. 研究目的和意义
2. 拟解决问题
3. 研究手段或方法
4. 预期结果
5. 参考文献
(限2000-3000字,不含文献)
通过E-mail(95362872@)交作业!
(2012年5月31日之前提交,过期不候!)。