MEMS加速度传感器简介(最终版)
MEMS加速度传感器简介(最终版)
MEMS电容式加速度传感器学校:哈尔滨工业大学(威海)学院:信息与电气工程学院专业:电子科学与技术作者:***090260207纪鹏飞090260208摘要本文从MEMS电容式加速度传感器的基本原理切入,主要介绍了该类型传感器的原理和三种主要结构:三明治式、扭摆式、梳齿式及其各自结构方面优点。
同时介绍目前应用较为广泛的集成式的基于电容原理的芯片MMA7455,主要分析了该集成传感器的内部结构和应用。
关键字:MEMS,电容式,加速度传感器,MMA7455AbstractIn this paper, we discussed the MEMS capacitive accelerometer from its fundamental principle and its three main structure which are sandwich, twist, and comb. Different structures have their own advantages. We also give the introduction to a popular IC accelerometer MM7455, putting an emphasis on its internal structure and some applications.Key words:MEMS, capacitive, accelerometer, MMA7455一、引言1.1 MEMS 加速度传感器简介MEMS(Micro-Machined Electro Mechanical Sensor)是微机电机械传感器的简称,它是一种微米级的类似集成电路的装置和工具。
MEMS 技术是一项有着广泛应用前景的基础技术。
以半导体技术和微机电加工工艺设计、制造的MEMS 传感器,集成度高,并可与信号处理电路集成在一起,大大降低了生产成本,已在汽车、消费电子和通信电子领域取得极大发展。
MEMS加速度传感器
2021/10/10
12
GrLoOuGpO3
电容式加速度传感器
电容式加速度传感器是基于电容原理的极距变化型的电容传感器,其中一个电极 是固定的,另一变化电极是弹性膜片。弹性膜片在外力(气压、液压等)作用下发 生位移,使电容量发生变化。这种传感器可以测量气流(或液流)的振动速度(或加 速度),还可以进一步测出压力。
2021/10/10
23
GrLoOuGpO3
其他类型加速度传感器
3.热对流加速度计
一个被放置在芯片中央的热源在一个空腔中产生一个悬浮的热气团,同时由铝和 多晶硅组成的热电偶组被等距离对称地放置在热源的四个方向。在未受到加速度 或水平放置时,温度的下降陡度是以热源为中心完全对称的。此时所有四个热电 偶组因感应温度而产生的电压是相同的。
2021/10/10
11
GrLoOuGpO3
压阻式加速度传感器
工艺流程
(a)
在硅片两侧积淀氮化硅。
(b)
在硅片的前侧积淀第一层多晶硅牺牲层,然后制作第一层。
(c)
在硅片的前侧积淀第二层氮化硅,并在硅片后侧积淀第一层氮化硅。
(d)
制作前侧和后侧。
(e)
积淀并制作金属层(镍)。
(f)
各向异性腐蚀来得到沟槽。
压电式
2021/10/10
压电式加速度传感器是利用某些物 质如石英晶体的压电效应,在加速 度计受振时,质量块加在压电元件 上的力也随之变化。
21
新 新 新 成熟
GrLoOuGpO3
其他类型加速度传感器
1.光波导加速度计
光波导加速度计的原理如下图所示:光源从波导1进入,经过分束部分后分成两部 分分别通入波导4和波导2,进入波导4的一束直接被探测器2探测,而进入波导2的 一束会经过一段微小的间隙后进入波导3,最终被探测器1探测到。有加速度时, 质量块会使得波导2弯曲,进而导至其与波导3的正对面积减小,使探测器1探测到 的光减弱。通过比较两个探测器检测到的信号即可求得加速度
MEMS加速度传感器
MEMS加速度传感器一.有关MEMS与MEMS传感器MEMS是微机电系统的缩写。
MEMS主要包括微型机构、微型传感器、微型执行器和相应的处理电路等几部分,它是在融合多种微细加工技术,并应用现代信息技术的最新成果的基础上发展起来的高科技前沿学科。
MEMS技术的发展开辟了一个全新的技术领域和产业,采用MEMS技术制作的微传感器、微执行器、微型构件、微机械光学器件、真空微电子器件、电力电子器件等在航空、航天、汽车、生物医学、环境监控、军事以及几乎人们所接触到的所有领域中都有着十分广阔的应用前景。
目前,全世界有大约600余家单位从事MEMS的研制和生产工作,已研制出包括微型压力传感器、加速度传感器、微喷墨打印头、数字微镜显示器在内的几百种产品,其中微传感器占相当大的比例。
微传感器是采用微电子和微机械加工技术制造出来的新型传感器。
与传统的传感器相比,它具有体积小、重量轻、成本低、功耗低、可靠性高、适于批量化生产、易于集成和实现智能化的特点。
同时,在微米量级的特征尺寸使得它可以完成某些传统机械传感器所不能实现的功能。
本文概述MEMS为加速度传感器的类型、工作原理、性能、应用和发展方向。
重点介绍一下电容式MEMS加速度传感器和MEMS传感器的应用二.MEMS微加速度传感器的原理MEMS技术所制造的加速度传感器根据原理分类有压阻式加速度传感器、压电式加速度传感器、电容式加速度传感器、热电偶式加速度传感器、谐振式加速度传感器、光波导加速度传感器,其中应用最广泛、受关注程度最高的是电容式加速度传感器。
传统加速度传感器就是利用了其内部的由于加速度造成的晶体变形这个特性。
由于这个变形会产生电压,只要计算出产生电压和所施加的加速度之间的关系,就可以将加速度转化成电压输出。
2.1压阻式加速度传感器压阻式加速度传感器是最早开发的一种。
其原理为外力作用下,单晶硅材料发生微小形变,原子内部电子能级发生变化,从而产生剧烈电阻率的变化,从而改变输出电信号,也就是压阻效应。
MEMS加速度计
MEMS加速度计MEMS(Micro-Electro-Mechanical Systems)加速度计是一种集成了微电子技术、微机械技术和传感器技术的微型加速度计。
MEMS加速度计以微机电系统技术为基础,利用微型机械结构和微电子技术制作而成的一种传感器。
其结构通常包括一个质量并且可以在三个不同方向上移动的臂梁,一些感应电极以及一个基座。
当加速度计受到外部加速度作用时,质量会受力发生偏移,从而导致感应电极的电荷和电场发生变化,通过测量这些变化,就可以得到外部加速度的信息。
MEMS加速度计主要有压电加速度计和电容加速度计两种类型。
压电加速度计是利用压电效应实现加速度测量的,当受到外部加速度作用时,压电材料产生电荷,从而产生电压输出。
电容加速度计是基于电容变化原理设计的,当加速度计产生加速度时,微机械结构中的电容会发生变化,通过测量电容变化就可以得到加速度的信息。
由于压电加速度计和电容加速度计都是微型化设计,制作工艺成熟,因此MEMS加速度计具有尺寸小、功耗低、成本低和可靠性高等特点。
MEMS加速度计广泛应用于许多领域,特别是在移动设备、汽车、航空航天、智能穿戴设备和工业自动化等领域。
在移动设备方面,MEMS加速度计可用于屏幕旋转、晃动控制和跌落检测等功能。
在汽车领域,MEMS加速度计能够实现碰撞检测、车身稳定控制和自动泊车等功能。
在航空航天领域,MEMS加速度计可用于姿态测量和导航系统。
在智能穿戴设备方面,MEMS加速度计可用于步数统计、睡眠监测和运动追踪等功能。
在工业自动化领域,MEMS加速度计可用于振动检测和故障诊断等应用。
然而,MEMS加速度计也存在一些问题。
首先,由于其微小尺寸,对温度、湿度和振动等环境因素的影响较大,可能会导致测量误差。
其次,MEMS加速度计的精度和分辨率相对较低,对微小加速度的测量不够敏感。
此外,MEMS加速度计的线性度和漂移等问题也需要进一步优化和改进。
综上所述,MEMS加速度计作为一种集成了微电子技术、微机械技术和传感器技术的微型加速度计,在各个领域有着重要的应用价值。
mems电容式加速度计原理
MEMS电容式加速度计原理一、工作原理MEMS电容式加速度计是一种基于微机械加工技术制成的传感器,用于测量加速度。
其核心部分是可移动的感应质量块和固定电极,它们之间存在微小的间距。
在工作状态下,当被测物体发生加速度时,感应质量块会受到力的作用,从而产生位移。
这个位移量会改变感应质量块与固定电极之间的距离,从而引起电容值的改变。
通过测量电容值的变化,可以推导出物体的加速度。
二、结构设计MEMS电容式加速度计的典型结构包括一个可移动的感应质量块和两个对称的固定电极。
感应质量块通常采用单晶硅材料制成,形状为长方形或圆形,其两端固定在弹性梁上。
弹性梁的材料一般为氮化硅或石英,它们具有良好的弹性性能和稳定的热性能。
固定电极一般采用金属材料制成,与硅衬底形成电容器。
当加速度作用在感应质量块上时,感应质量块会沿着敏感轴方向产生位移,从而改变电容器的电容值。
三、电容变化当感应质量块发生位移时,它与固定电极之间的距离会发生变化,导致电容值的改变。
这个电容变化量可以通过外部电路检测并转换为电压信号输出。
在MEMS电容式加速度计中,通常采用差分电容检测方式来提高检测灵敏度和减小外界干扰的影响。
差分电容检测方式是将两个对称的电容器串联在一起,通过测量两个电容器的电容差值来推导出加速度值。
四、测量范围MEMS电容式加速度计的测量范围取决于其结构设计、制造工艺和材料选择等因素。
一般来说,MEMS电容式加速度计的测量范围在±2g 至±10g之间。
在实际应用中,可以根据需要选择适合测量范围的加速度计。
此外,为了减小测量误差和提高测量的稳定性,可以对加速度计进行温度补偿和线性补偿等处理。
五、方向测量MEMS电容式加速度计一般只能测量单一方向的加速度值,而要实现方向测量则需要使用多个加速度计。
一般来说,将多个MEMS电容式加速度计按不同的方向布置在同一个被测物体上,每个加速度计负责测量一个方向的加速度值。
通过对这些加速度值进行处理和分析,可以获得物体在三维空间中的运动状态和方向信息。
MEMS压电式加速度计
MEMS压电式加速度计MEMS(Micro-Electro-Mechanical Systems)压电式加速度计是一种利用压电效应测量加速度的传感器。
它基于微纳技术制造而成,具有小型化、低功耗、高性能等优势,在汽车、航空航天、智能手机等领域广泛应用。
MEMS压电式加速度计的主要原理是利用压电材料的特性。
压电材料是一种在受到力或压力作用下会产生电荷的材料。
当压电材料受到加速度作用时,会产生应变,从而产生电荷。
通过测量这个电荷的大小,就可以确定加速度的大小。
MEMS压电式加速度计由压电传感器和信号处理电路组成。
压电传感器通常采用层状压电片结构,其中包含了压电材料和电极层。
当压电材料受到加速度作用时,会产生电荷,在电极间形成电压。
信号处理电路会将这个电压转换为数字信号,并进行处理和分析。
MEMS压电式加速度计具有以下优势。
首先,它是一种小型化的传感器,体积小、重量轻,可以方便地集成到其他设备中。
其次,它具有低功耗的特性,适合于电池供电的应用。
此外,它的响应速度快,可以检测频率较高的加速度变化。
最后,它的测量精度高,可以达到微米级的精度要求。
MEMS压电式加速度计在汽车行业中得到广泛应用。
例如,在车辆的安全系统中,可以通过加速度计来检测车辆的碰撞、翻滚等情况,从而触发安全气囊的打开。
此外,它还可以被用于车辆的悬挂系统、刹车系统等方面的控制和监测。
在航空航天领域,MEMS压电式加速度计可以用于火箭、导弹等飞行器的姿态控制和导航系统中。
通过测量加速度,可以确定飞行器的姿态和位置,从而实现精确的导航和控制。
在智能手机等消费类电子产品中,MEMS压电式加速度计可以用于屏幕旋转、手势识别等功能。
通过感知手机的倾斜、旋转等动作,可以实现屏幕的自动旋转、游戏的控制等功能。
总之,MEMS压电式加速度计是一种应用广泛的传感器,具有小型化、低功耗、高性能等优势。
它在汽车、航空航天、智能手机等领域发挥着重要的作用,为这些领域的发展和进步做出了贡献。
MEMS加速度传感器的研究报告
MEMS加速度传感器的研究报告MEMS(Micro-Electro-Mechanical Systems)加速度传感器是一种基于微纳技术制造的传感器,用于测量物体加速度的工具。
它具有小尺寸、低成本、高精度等优点,被广泛应用于汽车安全系统、移动设备、航空航天等领域。
本文主要对MEMS加速度传感器的原理、制造工艺、应用以及发展趋势进行研究和分析。
首先,MEMS加速度传感器的原理是基于微机械系统的振动原理。
当传感器受到加速度作用时,会引起传感器内部的微结构振动。
通过测量这种振动信号的变化,即可获得物体的加速度信息。
通常,MEMS加速度传感器采用谐振质量块和弹性支撑等微结构来实现。
其次,MEMS加速度传感器的制造工艺主要包括光刻、离子刻蚀、薄膜沉积等步骤。
首先,利用光刻技术在硅片上形成所需的结构图案。
然后,通过离子刻蚀方法将不需要的部分去除,形成谐振质量块和弹性支撑等微结构。
最后,通过薄膜沉积技术在微结构上形成感应电极,完成传感器的制造。
MEMS加速度传感器在众多领域有着广泛的应用。
在汽车安全系统中,它可以检测到车辆的碰撞或急刹车等情况,从而触发安全气囊的部署。
在移动设备中,它可以用于屏幕自动旋转、运动跟踪等功能。
在航空航天领域,它可以用于飞机的姿态稳定和导航系统的精确定位等。
随着技术不断发展,MEMS加速度传感器也呈现出一些新的趋势。
首先,尽管MEMS加速度传感器已取得很大进展,但其精度仍有提高的空间。
未来的研究将集中于提高传感器的精度和稳定性,以满足更高精度的应用需求。
其次,为了应对多种复杂环境下的应用需求,MEMS加速度传感器还需要增强其抗干扰能力和适应性。
此外,随着物联网技术的快速发展,MEMS加速度传感器将与其他传感器相结合,为更广泛的应用提供数据和支持。
综上所述,MEMS加速度传感器是一种重要的微纳技术应用,具有广泛的应用前景。
通过对其原理、制造工艺、应用和发展趋势的研究,可以更好地理解和推动该技术的发展,为相关领域的应用提供更好的解决方案。
MEMS加速度传感器地原理与构造
MEMS加速度传感器地原理与构造MEMS加速度传感器(Microelectromechanical systems accelerometer)是一种用于测量物体加速度的装置,它基于微电子技术和微机械技术的结合而实现。
MEMS加速度传感器的原理是利用微机电系统技术制造出微小而灵敏的质量悬浮结构,并通过对这些悬浮结构的位移或应力进行测量来确定物体的加速度。
首先是丙烯酸胶悬浮结构,它由一个质量悬浮结构和一个用于固定的结构组成。
质量悬浮结构通常由硅制成,具有非常小的质量并能自由运动。
它的运动会受到物体的加速度影响,从而使得该结构发生位移或应力变化。
接下来是压电传感器,它位于质量悬浮结构上方的盖片上。
压电传感器由压电材料制成,当质量悬浮结构发生位移或应力变化时,会产生相应的压电电荷。
这些电荷会由传感器收集并转化为电压信号。
最后是电路及信号处理部分。
传感器收集到的电荷信号会通过一些电路进一步放大和处理,从而得到一个可以测量的模拟电压信号。
这个电压信号可以转化为数字信号,并通过计算机或其他设备进行进一步分析和处理。
MEMS加速度传感器的工作原理基于牛顿力学中的加速度定义。
当物体受到外力作用导致加速度发生变化时,质量悬浮结构会通过惯性产生位移或应力变化。
这些变化被传感器捕捉并转化为电信号,从而可以测量物体的加速度。
总结来说,MEMS加速度传感器通过微电子和微机械技术,利用质量悬浮结构位移或应力变化来测量物体加速度。
其构造包括丙烯酸胶悬浮结构、压电传感器、电路及信号处理部分等组成。
通过该传感器可以实现物体加速度的测量,并在各种应用领域发挥重要作用。
MEMS加速度传感器现状及发展简述
微加速度传感器现状及发展简述1 引言MEMS(微机电系统)是在微电子技术、集成电路技术及其加工工艺的基础上发展而来。
其学科交叉特点明显,主要涉及微加工技术、机械学、电子学、设计学、材料学、热流理论等。
MEMS器件的特征长度从1毫米到1微米。
MEMS是一个新兴的、多学科交叉、多技术融合的高科技领域。
将MEMS技术应用到加速度传感器领域,就产生了微加速度传感器。
微加速度传感器具有体积小、重量轻、成本低、功耗低、可靠性高[1]、灵敏度高和集成度高等一系列优点。
如今微加速度传感器正在逐步取代传统加速度传感器,在电子产品、汽车工业、航天航空等军民领域得到广泛应用。
尽管各类微加速度传感器物理效应与结构形式不同,但它们都有着相同的力学基本原理和相似的工作原理。
2 微加速度传感器研究现状2.1 概述微硅加速度传感器是最早受到研究的微机械惯性传感器之一。
早在1970年左右,人们就开始研究微加速度传感器;到了80年代,电容式微加速度传感器出现。
90年代,压电式微加速度传感器设计成功。
受到扫描式隧道显微镜的启发,人们于20世纪末又开始隧道式硅微加速度计的研究[2]。
如今,微加速度传感器仍具有巨大研究活力。
2.2微加速度传感器的分类2.2.1压阻式微加速度传感器压阻效应是指当半导体受到应力作用时,由于应力引起能带的变化,能谷的能量移动,使其电阻率发生变化的现象。
压阻式微加速度传感器的悬臂梁上有压敏电阻,当质量块发生位移时,梁上的应力发生变化,进而改变压敏电阻的阻值,最终把加速度转变为电信号。
压阻式微加速度传感器经常使用三种结构。
双悬臂梁结构灵敏度高,但使用频率范围低,横向效应大,适用于小量程应用;双端支撑的四梁结构频率特性好,但灵敏度较低,适用于大量程应用;双岛五梁结构可以消除横向效应,灵敏度适中,适用于一般应用[1]。
压阻式微加速度传感器中比较典型的产品是美国EG&G ICSENSORS公司的产品,该公司传感器既有一维加速度传感器(如3022、3028、3145、3255等),也有三维加速度传感器(如3355),测量范围有0~e2509或0~e5009等[3]。
mems加速度传感器原理
mems加速度传感器原理加速度传感器是一种常见的MEMS(微机电系统)传感器,用于测量物体在三个轴向上的加速度。
它是由微小的机械结构和敏感器件组成,通过测量物体对这些结构的力的变化来确定加速度大小。
本文将介绍mems加速度传感器的工作原理及其应用。
一、mems加速度传感器的工作原理mems加速度传感器通常由质量块、弹簧和电容等组件构成。
当物体受到加速度作用时,质量块会受到力的作用而发生位移,而弹簧会受到拉伸或压缩。
这些位移和变形将导致电容的改变,从而通过电容变化来测量加速度。
具体来说,mems加速度传感器利用了电容的变化来测量加速度。
传感器中的质量块被固定在一个支撑结构上,并与支撑结构之间通过弹簧连接。
当物体受到加速度作用时,质量块会发生位移,而弹簧则会产生相应的拉伸或压缩。
这种位移和变形将导致质量块与支撑结构之间的电容发生变化。
mems加速度传感器中的电容通常由两个金属板构成,它们分别与质量块和支撑结构相连。
当质量块发生位移时,金属板之间的距离会发生改变,进而改变了电容的值。
这种电容的变化可以通过电路进行测量和分析,从而得到加速度的值。
二、mems加速度传感器的应用mems加速度传感器具有体积小、功耗低、成本低等优点,因此在许多领域得到广泛应用。
1. 汽车安全系统:mems加速度传感器可用于汽车的安全气囊系统和车辆稳定性控制系统。
通过测量车辆的加速度,可以及时触发气囊的放出,以保护乘客的安全。
同时,加速度传感器还可以监测车辆的姿态和动态参数,为车辆稳定性控制提供依据。
2. 手机和智能设备:mems加速度传感器广泛应用于手机和智能设备中,用于实现自动旋转屏幕、晃动动作识别、步数计数等功能。
通过测量设备的加速度,可以实现多种智能交互方式,提升用户体验。
3. 工业监测和控制:mems加速度传感器可用于工业设备的监测和控制。
例如,可以用于测量机械设备的振动和冲击,从而判断设备的工作状态和健康状况,及时进行维护和修理。
MEMS加速度计的原理和运用
MEMS加速度计的原理和运用MEMS加速度计(Micro-Electro-Mechanical Systems Accelerometer)是一种基于微机电系统技术的加速度传感器。
它可测量物体在三个坐标轴上的加速度,并广泛应用于许多领域,如智能手机、运动追踪、汽车安全系统等。
本文将详细介绍MEMS加速度计的原理和运用。
一、MEMS加速度计原理静态感应器通常由一个固定不动的基板、附着在基板上的引力传感器,以及一个用于测量引力传感器偏转的电容器或压阻器组成。
在无外力作用时,引力传感器受到引力的作用,不会发生偏转。
移动感应器通常由一个能够相对于基板移动的质量块和一个弹簧组成。
当物体在一些方向上加速时,质量块由于惯性而相对于基板发生位移,这一位移会引起弹簧产生恢复力。
通过测量恢复力的大小,可以确定加速度的大小。
MEMS加速度计一般采用压电效应或电容效应来实现测量。
在压电效应中,当质量块位移时,压电材料会产生电荷。
而在电容效应中,质量块的位移会改变电容器的电容值。
通过测量电荷或电容的改变,可以确定加速度的大小。
二、MEMS加速度计的运用1.智能手机和移动设备MEMS加速度计广泛应用于智能手机和移动设备中。
它可以检测手机的姿态、方向和动作。
例如,当手机倾斜时,加速度计可以检测到这一变化,并通过软件算法实现屏幕自动旋转功能。
此外,加速度计还用于运动游戏和步数计数等应用。
2.运动追踪3.汽车安全系统4.工业应用5.医疗设备6.飞行器和航天器总结:MEMS加速度计基于质量的惯性效应实现加速度测量,通常采用压电效应或电容效应来实现。
它在智能手机、运动追踪、汽车安全系统、工业应用、医疗设备和航天领域等方面都有广泛的应用。
随着技术的不断进步和成本的降低,MEMS加速度计的应用将更加普及和多样化。
基于MEMS技术的加速度传感器研究
基于MEMS技术的加速度传感器研究近年来,随着科技的发展,MEMS(微机电系统)技术在各个领域的应用越来越广泛。
其中,基于MEMS技术的加速度传感器在运动测量、姿态控制、安全监测等方面具有重要的应用价值。
本文将探讨基于MEMS技术的加速度传感器的原理、制备技术以及应用案例。
加速度传感器是一种能够测量物体加速度或者重力的传感器。
MEMS技术结合了微电子技术和微机械技术,使得传感器的尺寸变得非常小,并且能够批量生产。
基于MEMS技术的加速度传感器通常由微机械加速度传感器和集成电路两部分组成。
微机械加速度传感器通常采用质量悬浮结构,当受到外力作用时,质量将发生位移,由此测量加速度。
制备基于MEMS技术的加速度传感器需要经历多个步骤。
首先,通过光刻技术在硅衬底上形成质量悬浮结构。
然后,将金属电极沉积在衬底上,形成电容结构。
接着,通过刻蚀等工艺,雕刻出质量悬浮结构和电容结构。
最后,借助封装技术和集成电路,将传感器制作完整。
基于MEMS技术的加速度传感器具有许多优势。
首先,尺寸小,可以实现微型化和集成化,方便嵌入各类设备。
其次,价格相对较低,适用于大规模应用。
此外,基于MEMS技术制备的加速度传感器具有很高的灵敏度和稳定性,能够精确测量加速度和重力。
基于MEMS技术的加速度传感器在多个领域有广泛的应用。
在运动测量方面,加速度传感器可以用于测量运动物体的加速度和速度,应用于运动跟踪、步数统计等场景。
在姿态控制方面,加速度传感器可以用于测量物体的倾斜角度和旋转角度,应用于飞行器、机器人等设备的姿态控制。
另外,在安全监测方面,加速度传感器可以用于检测物体的碰撞、震动等,应用于汽车碰撞预警、地震预警等领域。
综上所述,基于MEMS技术的加速度传感器具有广泛的应用前景。
由于其尺寸小、灵敏度高和稳定性好等特点,使得加速度传感器在运动测量、姿态控制和安全监测等方面取得了重要的突破。
未来,随着MEMS技术的不断进步和创新,相信基于MEMS技术的加速度传感器将在更多领域发挥重要作用,为人们的生活带来更多便利和安全。
mems加速度计参数
mems加速度计参数
MEMS加速度计是一种微型机电系统,用于测量物体的加速度。
它由微型机械结构、传感器和信号处理器组成。
以下是常见的MEMS 加速度计参数:
1. 测量范围:表示MEMS加速度计可以测量的加速度范围,通常以重力加速度g为单位,例如±2g、±4g、±8g等。
2. 灵敏度:表示MEMS加速度计在单位加速度下输出的电压变化量,通常以mV/g为单位,例如200mV/g。
3. 分辨率:表示MEMS加速度计可以测量的最小加速度变化量,通常以mg为单位,例如1mg。
4. 器件带宽:表示MEMS加速度计可以测量加速度信号的频率范围,通常以Hz为单位,例如100Hz。
5. 器件噪声:表示MEMS加速度计在无加速度信号时输出的电压噪声水平,通常以mg为单位,例如0.1mg。
6. 线性度:表示MEMS加速度计输出与实际加速度之间的误差程度,通常以百分数或mg为单位,例如±0.2%FS或±2mg。
MEMS加速度计是一种常见的传感器,广泛应用于汽车、手机、游戏机、医疗器械等领域。
了解其参数可以帮助工程师选择适合的加速度计,以满足不同应用的需求。
- 1 -。
mems加速度计z轴结构及工作原理
mems加速度计z轴结构及工作原理mems加速度计是一种基于微机电系统(MEMS)技术的传感器,用于测量物体在三维空间中的加速度,其中z轴加速度是指物体在垂直于地面的方向上的加速度。
mems加速度计的结构可分为三个主要部分:质量块、支撑结构和感应电极。
质量块是mems加速度计的核心部件,通常采用微米级别的硅质材料制成。
支撑结构用于支撑质量块,以保持其相对静止位置,一般由弹性材料制成。
感应电极则用于测量质量块的位移,从而间接测量物体在z轴方向上的加速度。
mems加速度计的工作原理基于质量块的惯性。
当物体受到外力作用时,质量块会发生位移,而这种位移会导致感应电极间的电容发生变化。
通过测量电容的变化,可以推断出质量块的位移大小,从而得到物体在z轴方向上的加速度。
具体而言,mems加速度计利用电容变化来测量质量块的位移。
当物体受到加速度时,质量块会发生相应的位移,导致感应电极之间的电容发生变化。
通过测量电容的变化,可以确定质量块的位移量,从而得到物体在z轴方向上的加速度。
为了实现这一测量过程,mems加速度计通常采用差动电容结构。
差动电容结构由两对相等的感应电极组成,分别位于质量块的两侧。
当质量块发生位移时,感应电极之间的电容会发生变化。
通过测量两对感应电极之间的电容差值,可以确定质量块的位移量,进而计算出物体在z轴方向上的加速度。
为了提高mems加速度计的灵敏度和精度,还可以采用一些增强措施。
例如,可以在质量块和支撑结构之间设置减震垫,以减小外界干扰对加速度测量的影响。
同时,还可以采用温度补偿技术,通过测量环境温度的变化来修正mems加速度计的输出,以提高其稳定性和准确性。
mems加速度计是一种基于微机电系统技术的传感器,用于测量物体在三维空间中的加速度。
通过测量质量块的位移,可以间接得到物体在z轴方向上的加速度。
其结构简单、工作原理清晰,可以应用于许多领域,如运动追踪、姿态控制、智能手机等。
随着MEMS技术的不断发展,mems加速度计将会在更多领域发挥重要作用。
MEMS加速度计传感器MAXL-OL-2015说明书
MEMS加速度计传感器--MAXL-OL-2015C 说明书MAXL-OL-2015C是一款可以用于多种应用的先进MEMS传感器,其精度已提升到更高标准,此系列中有多款产品,不同产品不同精度可以应用到不同领域。
MAXL-OL-2015C是一款低功耗、低噪音、高稳定性的MEMS加速度计。
其接口简单,输出包括:与加速度成比例的差分模拟电压输出和用于热补偿的模拟温度-比例电压输出。
加速度输出电压范围为±1.2V。
MAXL-OL-2015C是一款性能强大的设备,量程高达±15g。
工作电压为3.3V,工作电流小于13mA。
特点❖传感器量程±15g❖单轴感知❖高分辨率❖低功耗❖体积小,LCC20封装❖重量轻❖符合ROHS标准1.加速计性能规格2.加速度计环境特性3.绝对最大额定值注:超过“绝对最大额定值”可能会对设备造成永久性损坏。
这只是应力等级,并不意味着设备在这些条件下正常运行。
长期处于最大额定值条件下可能会影响设备的可靠性。
MAXL-OL-2015C的封装为标准LCC外壳,共有20个引脚。
图1给出了精确的尺寸。
产品重量通常小于0.7克。
图2为封装质心的信息。
注:LCC的底部平面作为轴对准的参考平面。
将传感器固定在PCB上的任何其他方式都可能会降低传感器的性能MAXL-OL-2015C是一个完整的单轴加速度测量系统,测量范围为±15g.MAXL-OL-2015C加速度计的主要运行是通过电容感应测量加速度。
梁之间悬挂着一个小质量块。
当对传感器施加加速度时,质量块位置发生偏移,电极之间的电容会发生变化,从而导致读出电路的输出信号发生变化。
MAXL-OL-2015C传感器的完整测量链由低噪声放大器和模拟一阶低通滤波器组成,低噪声放大器将MEMS传感器的电容不平衡转换为模拟电压,模拟一阶低通滤波器负责降低高频噪声。
传感器运行的简化视图如下图所示。
4.MAXL-OL-2015C针脚输出5.引脚配置和功能说明6.MAXL-OL-2015C典型应用为了使MAXL-OL-2015C正常稳定运行,我们建议将加速计与下图所示的外部设备连接起来。
mems谐振式加速度传感器工作原理
mems谐振式加速度传感器工作原理哎呀,今天我们来聊聊那个小家伙,MEMS谐振式加速度传感器。
这个东西可真是个神奇的玩意儿!你有没有想过,我们身边的手机、平板,甚至一些智能家居设备里,竟然都藏着这样一个“小天才”?说到它的工作原理,嘿嘿,就像一个舞者在舞台上优雅地摇摆。
它里面有个微小的谐振器,像个乐手,负责感知加速度的变化。
想象一下,当你坐在过山车上,突然间一阵失重的感觉袭来,哇,刺激得不行!就是这个谐振器在欢快地工作。
它通过检测物体的振动变化,来判断加速度的方向和大小。
你看,这种小东西能在那么快的速度下,实时传递信息,简直就像在打快板。
无论是上坡还是下坡,它都能准确地“说”出你的加速度。
这玩意儿的构造可真精巧,内部的小部件就像乐队里的乐器,互相配合得天衣无缝。
MEMS技术让这些传感器小到几毫米,轻得像羽毛,却又能承受各种外界的挑战。
试想一下,日常生活中,我们走路、骑车、开车,都会有各种加速度的变化,而这个传感器就像个“侦探”,随时捕捉着这些动态。
更有趣的是,它的工作原理和我们生活中的很多现象都有联系。
比如说,当你急刹车时,身体会向前倾,那感觉就像被拉扯了一下,对吧?传感器就是通过检测这些“拉扯”来判断你当前的状态。
它的反应速度快得惊人,就像是一位老练的赛车手,瞬间就能做出决策。
我们再说说它的应用吧!在汽车行业,MEMS加速度传感器被广泛用于安全气囊的触发,真是事关生死的大事啊!它能够快速感知到碰撞,及时让安全气囊弹出,保护乘客的安全。
想想看,这小小的传感器竟能在危机时刻“出手相助”,真是令人佩服!在智能手机中,它的作用更是无处不在。
手机的屏幕自动旋转、游戏中的重力感应,都是它在背后默默支持的结果。
玩游戏的时候,你轻轻一摇,角色就开始飞速移动,那可是这位“幕后英雄”在操控哦!没有它,我们的生活可就失色不少。
这传感器还在运动设备中大显身手。
像智能手表、健身追踪器,都是利用它来监测运动状态的。
它能够记录你的步伐、跑步速度,甚至心率,让你对自己的运动情况一目了然。
MEMS加速度计
MEMS加速度计
MEMS(Micro Electro Mechanical System)加速度计是一种小型的微电子机械系统,它是一种集成在小尺寸的容器中的微型传感器。
它的一个主要功能是用于测量自身被作用力的改变。
MEMS加速度计通常用来测量一个物体的速度和加速度。
MEMS加速度计可以用来测量其中一种受力是否存在,或者可以用来测量其中一种力的大小和方向。
这种受力可以指物体的重力、运动或者是重力或运动之外的力,例如机械弹簧或气动弹簧等。
MEMS加速度计的输出信号可以经过处理,反映物体的运动状态,使制造者可以做出恰当的决定和行动。
MEMS加速度计无论在工业界还是日常生活中都有着很广泛的应用,它可以用来测量汽车、机器人、运动和其他各种运动的加速度,以及许多智能装置实现自由度控制。
它可以用来检测碰撞、行车轨迹和定位,从而应用到汽车安全系统中,使汽车安全变得有效。
此外,它还可以用来测量人体的运动,帮助科学家进行运动分析研究。
MEMS加速度计分析
MEMS加速度计分析MEMS加速度计是一种常见的微电子机械系统(MEMS)的类型,它能够测量物体的加速度。
由于其小尺寸、重量轻、功耗低等特点,MEMS加速度计已广泛应用于各种领域,如移动设备、汽车、工业控制等。
本文将对MEMS加速度计进行深入分析,包括其原理、结构、工作模式以及应用等方面。
一、MEMS加速度计的原理二、MEMS加速度计的结构MEMS加速度计的结构基本上由四个部分组成:质量块、弹簧、感应电路和封装。
其中,质量块是用来感应加速度的核心部件,弹簧用于支撑和约束质量块的运动,感应电路用于将机械位移转化为电信号,封装则用于保护MEMS加速度计的结构和电子器件。
三、MEMS加速度计的工作模式四、MEMS加速度计的应用MEMS加速度计在各个领域都有广泛的应用。
在移动设备领域,MEMS 加速度计被用于导航、姿态检测、图像稳定等方面。
在汽车领域,MEMS 加速度计可以用于车辆稳定性控制、碰撞检测等。
在工业控制领域,MEMS 加速度计可以应用于振动监测、机器人导航等。
五、MEMS加速度计的优缺点MEMS加速度计有许多优点,如小尺寸、重量轻、功耗低、价格低廉等。
此外,MEMS加速度计还具有高灵敏度、较大的测量范围以及良好的线性度。
然而,MEMS加速度计也存在一些缺点,例如温度漂移大、噪声较大、灵敏度不稳定等。
六、MEMS加速度计的发展趋势随着技术的不断进步,MEMS加速度计在性能和应用方面还有很大的发展空间。
目前,研究者们正在努力解决MEMS加速度计的噪声、温度漂移等问题,并且不断提高其灵敏度和稳定性。
总结:MEMS加速度计是一种应用广泛的传感器,其基本原理是利用微机电系统技术测量被测物体的加速度。
它的结构简单,可以通过单轴、双轴和三轴等不同模式来测量加速度,具有很多优点,但也存在一些缺点。
随着技术的不断进步,MEMS加速度计的性能和应用还将不断发展。
MEMS加速度传感器
MEMS加速度传感器学院:理学院专业:物理电子学姓名:学号:目录MEMS加速度传感器 (1)简介 (3)1、什么是加速度传感器? (3)2、什么是MEMS加速度传感器? (3)MEMS加速度计的应用领域 (4)MEMS加速度传感器的工作原理 (4)MEMS加速度传感器的现状与发展方向 (5)1、前景预测 (5)2、最新发展 (6)简介1、什么是加速度传感器?加速度传感器是一种惯性传感器,能够测量物体的加速力。
加速力就是当物体在加速过程中作用在物体上的力,就比如地球引力,也就是重力。
加速力可以是个常量,比如g,也可以是变量。
2、什么是MEMS加速度传感器?微机电系统(Microelectro Mechanical Systems,MEMS)是在微电子技术基础上发展起来的多学科交叉的前沿研究领域。
经过几十年的发展,已成为世界瞩目的重大科技领域之一。
它涉及电子、机械、材料、物理学、化学、生物学、医学等多种学科与技术,具有广阔的应用前景。
目前,全世界有大约600余家单位从事MEMS的研制和生产工作,已研制出包括微型压力传感器、加速度传感器、微喷墨打印头、数字微镜显示器在内的几百种产品,其中微传感器占相当大的比例。
微传感器是采用微电子和微机械加工技术制造出来的新型传感器。
与传统的传感器相比,它具有体积小、重量轻、成本低、功耗低、可靠性高、适于批量化生产、易于集成和实现智能化的特点。
同时,在微米量级的特征尺寸使得它可以完成某些传统机械传感器所不能实现的功能。
本文概述国内外目前已实现的微机械传感器特别是微机械谐振式传感器的类型、工作原理、性能和发展方向。
MEMS(Micro Electro Mechanical Systems)加速度传感器就是使用ME MS技术制造的加速度传感器。
由于采用了微机电系统技术,使得其尺寸大大缩小,一个MEMS加速度计只有指甲盖的几分之一大小。
MEMS加速度计具有体积小、重量轻、能耗低等优点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MEMS电容式加速度传感器
学校:哈尔滨工业大学(威海)
学院:信息与电气工程学院
专业:电子科学与技术
作者:***090260207
纪鹏飞090260208
摘要
本文从MEMS电容式加速度传感器的基本原理切入,主要介绍了该类型传感器的原理和三种主要结构:三明治式、扭摆式、梳齿式及其各自结构方面优点。
同时介绍目前应用较为广泛的集成式的基于电容原理的芯片MMA7455,主要分析了该集成传感器的内部结构和应用。
关键字:MEMS,电容式,加速度传感器,MMA7455
Abstract
In this paper, we discussed the MEMS capacitive accelerometer from its fundamental principle and its three main structure which are sandwich, twist, and comb. Different structures have their own advantages. We also give the introduction to a popular IC accelerometer MM7455, putting an emphasis on its internal structure and some applications.
Key words:MEMS, capacitive, accelerometer, MMA7455
一、引言
1.1 MEMS 加速度传感器简介
MEMS(Micro-Machined Electro Mechanical Sensor)是微机电机械传感器的简称,它是一种微米级的类似集成电路的装置和工具。
MEMS 技术是一项有着广泛应用前景的基础技术。
以半导体技术和微机电加工工艺设计、制造的MEMS 传感器,集成度高,并可与信号处理电路集成在一起,大大降低了生产成本,已在汽车、消费电子和通信电子领域取得极大发展。
MEMS 加速度传感器按敏感原理的不同可以分为压电式、压阻式、电容式、谐振式、热对流式等。
本文主要介绍MEMS 电容加速度传感器。
二、传感器工作原理与常见结构
2.1 MEMS 电容式加速度传感器工作原理
电容式微加速度传感器的基本结构是质量块与固定电极构成的电容。
当加速度使质量块产生位移时改变电容的重叠面积或间距。
检测到的电容信号经过前置放大、信号调理后,以直流电压方式输出,从而间接实现对加速度的检测。
如图1所示,电容式加速度传感器由两块固定电极夹着一块活动电极。
在静止的情况下,活动电极与两块固定电极的距离均为d 0形成两个大小为C 0的串联的电容。
当加速度传感器检测加速度时,活动电极受加速度力产生位移,两个电容的d 发生变化。
根据平行板电容的计算公式:
r S C d εε= 可知两个电容的大小将发生变化。
由于此时电容值和极板间隙不是线性关系,常
常采用差动电容检测方式以解决线性问题:
00020002r r r S S
S C d d d d d d εεεεεε∆=
-=∆-∆+∆
上式在d d ∆<<时成立。
图2-1 MEMS电容式加速度传感器工作示意图
2.2 MEMS电容加速度传感器的常见结构
2.2.1三明治式
所谓“三明治”结构,就是指检测质量夹在两块玻璃片之间的结构形式,如图3-1所示。
固定电极分布在活动电极两边,敏感质量块的上下两面均作为动极板。
当有加速度作用时,敏感质量块发生摆动,一对电容极板间的间距变大,而另一对电容极板闭的问距变小,从而形成差动检测电容。
这种结构需要双面光刻,加工工艺设备较多.器件加工制造难度较大:井因为悬臂支撑梁所能承受的应力有限,这种传感器所能测量的最大加速度值较小。
图2-2三明治式电容加速度计结构示意图
2.2.2 扭摆式
扭摆式是基于三明治式,扭摆式微加速度计的两个固定电容极板设计在活动极板的同一侧形成的。
由图3—2扭摆式微加速度计的结构可以看出,位于支承弹性粱两边的敏感质量和惯性矩不相等,当有垂直于基片的外界加速度作用时,敏感质量片将围绕支承弹性粱扭转,结构电容大小发生变化,一对结构电容增大,一对结构电容减小.从而形成结构差动电容,测量此差动电容值即可得到外界输入的加速度载荷大小。
这种传感器结构比较简单,不需要双面光刻.且能进行较大加速度值的测量。
图2-3 扭摆式电容加速度计结构示意图
图2-4 跷跷板式扭摆式电容加速度计结构示意图
2.2.3疏齿式
梳齿式电容加速度计利用若干对梳齿形状的电极形成检测电容和加力电容,它的一个明显优点就是利用增加电极数的方式来增大检测电容。
梳齿有定齿和动齿两种,定齿固定在基片上,动齿则附着在检测质量上。
检测质量由弹簧支撑于基片上。
当有外部加速度输入时,动齿随同检测质量一起运动,并产生微位移,引起动齿与定齿之间电容的变化,电容的变化量可以通过检测电路检测出来,进而检测出微位移和输入加速度的值。
其键台强度高、面积大、难度低,键台接触电阻小、均匀且成品率高,提高了加速度计的分辨率和精度。
但是结构相对比较复杂,加工起来难度较大。
图2-5 疏齿式电容加速度计结构示意图
三、MMA7455三轴加速度传感器
3.1 MMA7455内部结构
MEMS加速度传感器主要有两部分:微电子技术加工的电容性机械系统( Micro Electro Mechanical System )和带有闭环反馈的信号转换控制系统ASIC( Application System Integrated Circuit )。
MMA7455内部由三轴加速度传感器、多路开关、C—V转换器、放大电路、AD转换、以及控制电路与输出
驱动电路,如图3-1所示。
图3-1 MMA7455内部结构
3.2 MMA7455应用
3.2.1 MMA7455加速度测量
MMA7455可以设置三种模式2g、4g和8g,不同模式下测量精度不同输出也不同。
根据三轴检测数据的输出与芯片工作模式可以计算出不同轴方向加速度分量大小,最后求出加速度方向与大小。
图3-2为2g模式下芯片不同放置X、Y、Z的输出。
图3-2
由图可以看出芯片纵向为X轴方向,横向为Y轴方向,垂直方向为Z轴。
对于传感器模式的选择及g值的选择强调不同的应用环境。
一般来说1.5g 适合自由落体与精确的倾斜补偿的应用,2g适合手持运动检测与游戏控制器,4g适合低振动监控、运输与处理,8g适合高震动监控与较高震动的读取。
合适选取模式可以获得较高的精确度。
3.2.2 MMA7455倾角测量
加速度传感器可以用于多种场合的检测与监控,如倾斜度的侦测、运动检测、定位侦测、震动侦测、振动侦测以及自由落体等。
利用三轴加速度传感器计算单轴倾角。
图3-3是倾角测量图解。
这时加速度输出与倾角的关系
所以γ可以用反正切方程求的
图3-3倾角测量图解
四总结
本文介绍了电容式微机械加速度传感器工作原理,结构组成以及飞思卡尔半导体公司的MMA7455三轴加速度传感器芯片内部组成、测量应用等。
电容式加速度微传感器具有灵敏度高、直流响应和噪声特性好、温漂低、低温灵敏度好、功耗低等优点。
参考文献
[1] 刘晓宁《半导体传感器》哈尔滨工业大学(威海) 2011
[2] 孙以材编著《微电子机械加工系统(MEMS)技术基础》冶金工业出版社 2009
[3] Sadra/Smith 《Microelectronics Circuits》电子工业出版社2006
[4] 王巍等基于微机械传感器的倾角传感器 2010
[5] Freescale Semiconductor, Inc. MMA7455 Device User Guide.。