2017年河南省中考数学试卷及答案

合集下载

2017年河南省中考数学试卷及答案解析

2017年河南省中考数学试卷及答案解析

2017年河南省中考数学试卷备注:只看6、8、9、10、13、14、15、18、20、22、23题一、选择题(每小题3分,共30分)1.(3分)下列各数中比1大的数是()A.2 B.0 C.﹣1 D.﹣32.(3分)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×10153.(3分)某几何体的左视图如图所示,则该几何体不可能是()A.B.C.D.4.(3分)解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=35.(3分)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分6.(3分)一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根7.(3分)如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD 是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠28.(3分)如图是一次数学活动可制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.9.(3分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1)B.(2,1)C.(1,)D.(2,)10.(3分)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B 的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A.B.2﹣C.2﹣D.4﹣二、填空题(每小题3分,共15分)11.(3分)计算:23﹣=.12.(3分)不等式组的解集是.13.(3分)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m与n的大小关系为.14.(3分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P 运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC 的面积是.15.(3分)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB 上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为.三、解答题(本题共8个小题,满分75分)16.(8分)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.17.(9分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有人,a+b=,m=;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.18.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF ∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.19.(9分)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)20.(9分)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B(3,1).(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.21.(10分)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.(10分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.23.(11分)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2017年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)【考点】18:有理数大小比较.【分析】根据正数大于零、零大于负数,可得答案.【解答】解:2>0>﹣1>﹣3,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零、零大于负数是解题关键.2.(3分)【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将74.4万亿用科学记数法表示为:7.44×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)【考点】U3:由三视图判断几何体.【分析】左视图是从左边看到的,据此求解.【解答】解:从左视图可以发现:该几何体共有两列,正方体的个数分别为2,1,D不符合,故选D.【点评】考查了由三视图判断几何体的知识,解题的关键是了解该几何体的构成,难度不大.4.(3分)【考点】B3:解分式方程.【专题】11 :计算题;522:分式方程及应用.【分析】分式方程变形后,两边乘以最简公分母x﹣1得到结果,即可作出判断.【解答】解:分式方程整理得:﹣2=﹣,去分母得:1﹣2(x﹣1)=﹣3,故选A【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.5.(3分)【考点】W5:众数;W4:中位数.【分析】将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决.【解答】解:位于中间位置的两数分别是95分和95分,故中位数为95分,数据95出现了3次,最多,故这组数据的众数是95分,故选A.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.6.(3分)【考点】AA:根的判别式.【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣5)2﹣4×2×(﹣2)=41>0,∴方程有两个不相等的实数根.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.(3分)【考点】L9:菱形的判定;L5:平行四边形的性质.【分析】根据平行四边形的性质.菱形的判定方法即可一一判断.【解答】解:A、正确.对角线相等是平行四边形的菱形.B、正确.邻边相等的平行四边形是菱形.C、错误.对角线相等的平行四边形是矩形,不一定是菱形.D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.故选C.【点评】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法.8.(3分)【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个数字都是正数的情况数,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两个数字都是正数的有4种情况,∴两个数字都是正数的概率是:=.故选:C.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,解题时注意:概率=所求情况数与总情况数之比.9.(3分)【考点】LE:正方形的性质;D5:坐标与图形性质;L1:多边形.【分析】由已知条件得到AD′=AD=2,AO=AB=1,根据勾股定理得到OD′==,于是得到结论.【解答】解:∵AD′=AD=2,AO=AB=1,∴OD′==,∵C′D′=2,C′D′∥AB,∴C(2,),故选D.【点评】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.10.(3分)【考点】MO:扇形面积的计算;R2:旋转的性质.【分析】连接OO′,BO′,根据旋转的想知道的∠OAO′=60°,推出△OAO′是等边三角形,得到∠AOO′=60°,推出△OO′B是等边三角形,得到∠AO′B=120°,得到∠O′B′B=∠O′BB′=30°,根据图形的面积公式即可得到结论.【解答】解:连接OO′,B O′,∵将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,∴∠OAO′=60°,∴△OAO′是等边三角形,∴∠AOO′=60°,∵∠AOB=120°,∴∠O′OB=60°,∴△OO′B是等边三角形,∴∠AO′B=120°,∵∠AO′B′=120°,∴∠B′O′B=120°,∴∠O′B′B=∠O′BB′=30°,∴图中阴影部分的面积=S△B′O′B﹣(S扇形O′OB﹣S△OO′B)=×1×2﹣(﹣×2×)=2﹣.故选C.【点评】本题考查了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.二、填空题(每小题3分,共15分)11.(3分)【考点】22:算术平方根;1E:有理数的乘方.【分析】明确表示4的算术平方根,值为2.【解答】解:23﹣=8﹣2=6,故答案为:6.【点评】本题主要考查了算术平方根和有理数的乘方的定义,是一个基础题目,比较简单.12.(3分)【考点】CB:解一元一次不等式组.【分析】先求出不等式的解集,再求出不等式组的公共部分,【解答】解:解不等式①0得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集是﹣1<x≤2,故答案为﹣1<x≤2.【点评】题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.13.(3分)【考点】G6:反比例函数图象上点的坐标特征.【分析】由反比例函数y=﹣可知函数的图象在第二、第四象限内,可以知道在每个象限内,y随x的增大而增大,根据这个判定则可.【解答】解:∵反比例函数y=﹣中k=﹣2<0,∴此函数的图象在二、四象限内,在每个象限内,y随x的增大而增大,∵0<1<2,∴A、B两点均在第四象限,∴m<n.故答案为m<n.【点评】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出反比例函数图象所在的象限是解答此题的关键.14.(3分)【考点】E7:动点问题的函数图象.【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B先A运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC的长度,本题属于中等题型.15.(3分)【考点】PB:翻折变换(折叠问题);KW:等腰直角三角形.【分析】①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,于是得到结论;②如图2,当∠MB′C=90°,推出△CMB′是等腰直角三角形,得到CM=MB′,列方程即可得到结论.【解答】解:①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,∴BM=BC=+;②如图2,当∠MB′C=90°,∵∠A=90°,AB=AC,∴∠C=45°,∴△CMB′是等腰直角三角形,∴CM=MB′,∵沿MN所在的直线折叠∠B,使点B的对应点B′,∴BM=B′M,∴CM=BM,∵BC=+1,∴CM+BM=BM+BM=+1,∴BM=1,综上所述,若△MB′C为直角三角形,则BM的长为+或1,故答案为:+或1.【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.三、解答题(本题共8个小题,满分75分)16.(8分)【考点】4J:整式的混合运算—化简求值.【专题】11 :计算题.【分析】首先化简(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),然后把x=+1,y=﹣1代入化简后的算式,求出算式的值是多少即可.【解答】解:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y)=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy当x=+1,y=﹣1时,原式=9(+1)(﹣1)=9×(2﹣1)=9×1=9【点评】此题主要考查了整式的混合运算﹣化简求值问题,要熟练掌握,解答此题的关键是要明确:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.17.(9分)【考点】VB:扇形统计图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据B组的频数是16,对应的百分比是32%,据此求得调查的总人数,利用百分比的意义求得b,然后求得a的值,m的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数1000乘以对应的比例即可求解.【解答】解:(1)调查的总人数是16÷32%=50(人),则b=50×16%=8,a=50﹣4﹣16﹣8﹣2=20,A组所占的百分比是=8%,则m=8.a+b=8+20=28.故答案是:50,28,8;(2)扇形统计图中扇形C的圆心角度数是360°×=144°;(3)每月零花钱的数额x在60≤x<120范围的人数是1000×=560(人).【点评】本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小.18.(9分)【考点】MC:切线的性质;KH:等腰三角形的性质.【分析】(1)根据圆周角定理求出BD⊥AC,∠BDC=90°,根据切线的性质得出AB⊥BF,求出∠ACB=∠FCB,根据角平分线性质得出即可;(2)求出AC=10,AD=6,根据勾股定理求出BD,再根据勾股定理求出BC即可.【解答】(1)证明:∵AB是⊙O的直径,∴∠BDA=90°,∴BD⊥AC,∠BDC=90°,∵BF切⊙O于B,∴AB⊥BF,∵CF∥AB,∴CF⊥BF,∠FCB=∠ABC,∵AB=AC,∴∠ACB=∠ABC,∴∠ACB=∠FCB,∵BD⊥AC,BF⊥CF,∴BD=BF;(2)解:∵AB=10,AB=AC,∴AC=10,∵CD=4,∴AD=10﹣4=6,在Rt△ADB中,由勾股定理得:BD==8,在Rt△BDC中,由勾股定理得:BC==4.【点评】本题考查了切线的性质,勾股定理,角平分线性质,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.19.(9分)【考点】TB:解直角三角形的应用﹣方向角问题.【分析】如图作CE⊥AB于E.设AE=EC=x,则BE=x﹣5,在Rt△BCE中,根据tan53°=,可得=,求出x,再求出BC、AC,分别求出A、B两船到C的时间,即可解决问题.【解答】解:如图作CE⊥AB于E.在Rt△ACE中,∵∠A=45°,∴AE=EC,设AE=EC=x,则BE=x﹣5,在Rt△BCE中,∵tan53°=,∴=,解得x=20,∴AE=EC=20,∴AC=20=28.2,BC==25,∴A船到C的时间≈=0.94小时,B船到C的时间==1小时,∴C船至少要等待0.94小时才能得到救援.【点评】本题考查解直角三角形的应用﹣方向角问题、锐角三角函数、速度、时间、路程之间的关系等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.20.(9分)【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)先将B(3,1)代入反比例函数即可求出k的值,然后将A代入反比例函数即可求出m的,再根据B两点的坐标即可求出一次函数的解析式.(2)设P的坐标为(x,y),由于点P在直线AB上,从而可知PD=y,OD=x,由题意可知:1≤x≤3,从而可求出S的范围【解答】解:(1)将B(3,1)代入y=,∴k=3,将A(m,3)代入y=,∴m=1,∴A(1,3),将A(1,3)代入代入y=﹣x+b,∴b=4,∴y=﹣x+4(2)设P(x,y),由(1)可知:1≤x≤3,∴PD=y=﹣x+4,OD=x,∴S=x(﹣x+4),∴由二次函数的图象可知:S的取值范围为:≤S≤2故答案为:(1)y=﹣x+4;y=.【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是求出一次函数与反比例函数的解析式,本题属于中等题型.21.(10分)(【考点】9A:二元一次方程组的应用.【分析】(按买3个A种魔方和买4个B种魔方钱数相同解答)(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0≤m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.(按购买3个A种魔方和4个B种魔方需要130元解答)(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0≤m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.【解答】(按买3个A种魔方和买4个B种魔方钱数相同解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为20元/个,B种魔方的单价为15元/个.(2)设购进A种魔方m个(0≤m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=20m×0.8+15(100﹣m)×0.4=10m+600;w活动二=20m+15(100﹣m﹣m)=﹣10m+1500.当w活动一<w活动二时,有10m+600<﹣10m+1500,解得:m<45;当w活动一=w活动二时,有10m+600=﹣10m+1500,解得:m=45;当w活动一>w活动二时,有10m+600>﹣10m+1500,解得:45<m≤50.综上所述:当m<45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m>45时,选择活动二购买魔方更实惠.(按购买3个A种魔方和4个B种魔方需要130元解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为26元/个,B种魔方的单价为13元/个.(2)设购进A种魔方m个(0≤m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=26m×0.8+13(100﹣m)×0.4=15.6m+520;w活动二=26m+13(100﹣m﹣m)=1300.当w活动一<w活动二时,有15.6m+520<1300,解得:m<50;当w活动一=w活动二时,有15.6m+520=1300,解得:m=50;当w活动一>w活动二时,有15.6m+520>1300,不等式无解.综上所述:当m<50时,选择活动一购买魔方更实惠;当m=50时,选择两种活动费用相同.【点评】本题考查了二元一次方程组的应用、一次函数的应用、解一元一次不等式以及解一元一次方程,解题的关键是:(1)找准等量关系,列出关于x、y的二元一次方程组;(2)根据两种活动方案找出w活动一、w活动二关于m的函数关系式.22.(10分)【考点】RB:几何变换综合题.【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,另为利用三角形的中位线得出平行线即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,(2)由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN最大=2+5=7,∴S△PMN最大=PM2=×MN2=×(7)2=.【点评】此题是几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质,解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出△ABD≌△ACE,解(3)的关键是判断出MN最大时,△PMN的面积最大,是一道基础题目.23.(11分)【考点】HF:二次函数综合题.【分析】(1)把A点坐标代入直线解析式可求得c,则可求得B点坐标,由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)①由M点坐标可表示P、N的坐标,从而可表示出MA、MP、PN、PB的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m的方程,可求得m的值;②用m可表示出M、P、N的坐标,由题意可知有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,可分别得到关于m的方程,可求得m的值.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,PA=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴BN=OM=m,∴=,即=,解得m=0(舍去)或m=2,∴M(2,0);当∠NBP=90°时,则有=,∵A(3,0),B(0,2),P(m,﹣m+2),∴BP==m,AP==(3﹣m),∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(2,0)或(,0);②由①可知M(m,0),P(m,﹣m+2),N(m,﹣m2+m+2),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=3(三点重合,舍去)或m=;当M为线段PN的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=3(舍去)或m=﹣1;当N为线段PM的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=3(舍去)或m=﹣;综上可知当M,P,N三点成为“共谐点”时m的值为或﹣1或﹣.【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、相似三角形的判定和性质、勾股定理、线段的中点、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中利用相似三角形的性质得到关于m的方程是解题的关键,注意分两种情况,在(2)②中利用“共谐点”的定义得到m的方程是解题的关键,注意分情况讨论.本题考查知识点较多,综合性较强,分情况讨论比较多,难度较大.。

2017年河南省中考数学试题(含答案)

2017年河南省中考数学试题(含答案)

2017年河南省普通高中招生考试试卷数学一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.下列各数中比1大的数是( )A .2B .0C .-1D .-3 “”用科学计数法表示为( )A .1274.410⨯ B .137.4410⨯ C .1374.410⨯ D .147.4410⨯ 3.某几何体的左视图如下图所示,则该几何体不可能是( )A .B .C .D . 4.解分式方程13211x x-=--,去分母得( ) A .12(1)3x --=- B .12(1)3x --= C.1223x --=- D .1223x -+= 5.八年级某同学6此数学小测验的成绩分别为:80分,85分,95分,100分,则该同学这6次成绩的众数和中位数分别是( )A .95分,95分B .95分,90分 C. 90分,95分 D .95分,85分 6.一元二次方程22520x x --=的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根 C. 只有一个实数根 D .没有实数根7.如图,在ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能..判定ABCD 是菱形的只有( ) A .AC BD ⊥ B .AB BC = C.AC BD = D .12∠=∠8.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( ) A .18 B .16 C.14 D .129.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O 固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点'D 处,则点C 的对应点'C 的坐标为( )A .(3,1)B .(2,1) C.(1,3) D .(2,3)10.如图,将半径为2,圆心角为120︒的扇形OAB 绕点A 逆时针旋转60︒,点O ,B 的对应点分别为'O ,'B ,连接'BB ,则图中阴影部分的面积是( )A .23π B .233π- C.2233π- D .2433π- 二、填空题(每小题3分,共15分)11.计算:324-= .12.不等式组20,12x x x -≤⎧⎪⎨-<⎪⎩的解集是 .13.已知点(1,)A m ,(2,)B n 在反比例函数2y x=-的图象上,则m 与n 的大小关系为 . 14.如图1,点P 从ABC ∆的顶点B 出发,沿B C A →→匀速运动到点A .图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则ABC ∆的面积是 . 15.如图,在Rt ABC ∆中,90A ∠=︒,AB AC =,21BC =+,点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠B ∠,使点B 的对应点'B 始终落在边AC 上.若'MBC ∆为直角三角形,则BM 的长为 .三、解答题 (本大题共8个小题,满分75分)16.先化简,再求值: 2(2)()()5()x y x y x y x x y ++-+--,其中21x =+,21y =-.17.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表. 请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有 人,a b += ,m = ; (2)求扇形统计图中扇形C 的圆心角度数;(3)该校共有1000人,请估计每月零花钱的数额x 在60120x ≤<范围的人数.18.如图,在ABC ∆中, AB AC =,以AB 为直径的⊙O 交AC 边于点D ,过点C 作//CF AB ,与过点B 的切线交于点F ,连接BD .(1)求证:BD BF =;(2)若10AB =,4CD =,求BC 的长.19.如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C .此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45︒方向,B 船测得渔船C 在其南偏东53︒方向.已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:4sin 535︒≈,3cos535︒≈,4tan 533︒≈,2 1.41≈) 20. 如图,一次函数y x b =-+与反比例函数(0)ky x x=>的图象交于点(,3)A m 和(3,1)B .(1)填空:一次函数的解析式为 ,反比例函数的解析式为 ;(2)点P 是线段AB 上一点,过点P 作PD x ⊥轴于点D ,连接OP ,若POD ∆的面积为S ,求S 的取值范围.21.学校“百变魔方”社团准备购买A ,B 两种魔方.已知购买2个 A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同. (1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A ,B 两种魔方共100个(其中A 种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.如图1,在Rt ABC ∆中,90A ∠=︒,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想图1中,线段PM 与PN 的数量关系是 ,位置关系是 ; (2)探究证明把ADE ∆绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN ∆的形状,并说明理由;(3)拓展延伸把ADE ∆绕点A 在平面内自由旋转,若4AD =,10AB =,请直接写出PMN ∆面积的最大值. 23. 如图,直线23y x c =-+与x 轴交于点(3,0)A ,与y 轴交于点B ,抛物线243y x bx c =-++经过点A ,B .(1)求点B 的坐标和抛物线的解析式;(2)M (m ,0)为x 轴上一个动点,过点M 垂直于x 轴的直线与直线AB 和抛物线分别交于点P 、N , ①点M 在线段OA 上运动,若以B ,P ,N 为顶点的三角形与APM ∆相似,求点M 的坐标;②点M 在x 轴上自由运动,若三个点M ,P ,N 中恰有一点是其它两点所连线段的中点(三点重合除外),则称M ,P ,N 三点为“共谐点”.请直接写出使得M ,P ,N 三点成为“共谐点”的m 的值.一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.下列各数中比1大的数是( )A .2B .0C .-1D .-3 【答案】A, 【解析】试题分析:根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.考点:有理数的大小比较.亿元.数据“”用科学计数法表示为( )A .1274.410⨯ B .137.4410⨯ C .1374.410⨯ D .147.4410⨯ 【答案】B.考点:科学记数法.3. 某几何体的左视图如下图所示,则该几何体不可能是( )A .B .C .D . 【答案】D. 【解析】试题分析:几何体的左视图是从左面看几何体所得到的图形,选项A 、B 、C 的左视图都为,选项D 的左视图不是,故选D.考点:几何体的三视图. 4. 解分式方程13211x x-=--,去分母得( ) A .12(1)3x --=- B .12(1)3x --= C.1223x --=- D .1223x -+=【答案】A. 考点:解分式方程.5. 八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是( )A .95分,95分B .95分,90分 C. 90分,95分 D .95分,85分 【答案】A. 【解析】试题分析:这组数据中95出现了3次,次数最多,为众数;中位数为第3和第4两个数的平均数为95,故选A.考点:众数;中位数.6. 一元二次方程22520x x --=的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根 C. 只有一个实数根 D .没有实数根 【答案】B. 【解析】试题分析:这里a=2,b=-5,c=-2,所以△=2(5)42(2)2516410--⨯⨯-=+=,即可得方程22520x x --=有有两个不相等的实数根,故选B.考点:根的判别式.7. 如图,在ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能..判定ABCD 是菱形的只有( )A .AC BD ⊥B .AB BC = C.AC BD = D .12∠=∠ 【答案】C.考点:菱形的判定.8. 如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.18B.16C.14D.12【答案】C.【解析】试题分析:列表得,1 2 0 -11 (1,1)(1,2)(1,0)(1,-1)2 (2,1)(2,2)(2,0)(2,-1)0 (0,1)(0,2)(0,0)(0,-1)-1 (-1,1)(-1,2)(-1,0)(-1,-1)由表格可知,总共有16种结果,两个数都为正数的结果有4种,所以两个数都为正数的概率为41 164=,故选C.考点:用列表法(或树形图法)求概率.9. 我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点'D处,则点C的对应点'C的坐标为()A.(3,1) B.(2,1) C.(1,3) D.(2,3)【答案】D.考点:图形与坐标.10. 如图,将半径为2,圆心角为120︒的扇形OAB绕点A逆时针旋转60︒,点O,B的对应点分别为'O,'B,连接'BB,则图中阴影部分的面积是()A.23πB.233πC.2233πD.2433π【答案】C. 【解析】试题分析:连接O 'O 、'O B ,根据旋转的性质及已知条件易证四边形AOB 'O 为菱形,且∠'O OB=∠O 'O B=60°,又因∠A 'O 'B =∠A 'O B=120°,所以∠B 'O 'B =120°,因∠O 'O B+∠B 'O 'B =120°+60°=180°,即可得O 、'O 、'B 三点共线,又因'O 'B ='O B ,可得∠'O 'B B=∠'O B 'B ,再由∠O 'O B=∠'O 'B B+∠'O B 'B =60°,可得∠'O 'B B=∠'O B 'B =30°,所以△OB 'B 为Rt 三角形,由锐角三角函数即可求得B 'B =3,所以2''16022=S 2232323603OBB BOO S S ππ⨯-=⨯⨯=阴影扇形,故选C. 考点:扇形的面积计算.二、填空题(每小题3分,共15分)11. 计算:324= . 【答案】6. 【解析】试题分析:原式=8-2=6. 考点:实数的运算.12. 不等式组20,12x x x -≤⎧⎪⎨-<⎪⎩的解集是 .【答案】-1<x ≤2.考点:一元一次不等式组的解法.13. 已知点(1,)A m ,(2,)B n 在反比例函数2y x=-的图象上,则m 与n 的大小关系为 . 【答案】m<n. 【解析】试题分析:把点(1,)A m ,(2,)B n 分别代入2y x=-可得m=-2,n=-1,所以m<n. 考点:反比例函数图象上点的特征.14. 如图1,点P 从ABC ∆的顶点B 出发,沿B C A →→匀速运动到点A .图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则ABC ∆的面积是 . 【答案】12.考点:动点函数图象.15. 如图,在Rt ABC ∆中,90A ∠=︒,AB AC =,21BC =+,点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠B ∠,使点B 的对应点'B 始终落在边AC 上.若'MBC ∆为直角三角形,则BM 的长为 . 【答案】1或212+. 【解析】试题分析:在Rt ABC ∆中,90A ∠=︒,AB AC =,可得∠B=∠C=45°,由折叠可知,BM='MB ,若使'MBC ∆为直角三角形,分两种情况:①0'90MB C ∠=,由∠C=45°可得'MB ='CB ,设BM=x ,则'MB ='CB =x ,MC=2x ,所以x+2x =21BC =+,解得x=1,即BM=1;②0'90B MC ∠=,此时点B 和点C 重合,BM=12122BC +=.所以BM 的长为1或212+. 考点:折叠(翻折变换).三、解答题 (本大题共8个小题,满分75分)16. 先化简,再求值:2(2)()()5()x y x y x y x x y ++-+--,其中21x =+,21y =-.【答案】原式=9xy ,当21x =+,21y =-时,原式=9.考点:整式的运算.17. 为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表. 请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有 人,a b += ,m = ; (2)求扇形统计图中扇形C 的圆心角度数;(3)该校共有1000人,请估计每月零花钱的数额x 在60120x ≤<范围的人数. 【答案】(1)50,28,8;(2) 144°;(3)560. 【解析】试题分析:(1)用B 组的人数除以B 组人数所占的百分比,即可得这次被调查的同学的人数,利用A 组的人数除以这次被调查的同学的人数即可求得m 的值,用总人数减去A 、B 、E 的人数即可求得a+b 的值;(2)先求得C 组人数所占的百分比,乘以360°即可得扇形统计图中扇形C 的圆心角度数;(3)用总人数1000乘以每月零花钱的数额x 在60120x ≤<范围的人数的百分比即可求得答案. 考点:统计图.18. 如图,在ABC ∆中, AB AC =,以AB 为直径的⊙O 交AC 边于点D ,过点C 作//CF AB ,与过点B 的切线交于点F ,连接BD . (1)求证:BD BF =;(2)若10AB =,4CD =,求BC 的长. 【答案】(1)详见解析;(2)45 . 【解析】试题分析:(1)根据已知条件已知CB 平分∠DCF ,再证得BD AC ⊥、BF CF ⊥,根据角平分线的性质定理即可证得结论;(2)已知AB AC ==10,4CD =,可求得AD =6,在Rt △ABD 中,根据勾股定理求得2BD 的值,在Rt △BDC 中,根据勾股定理即可求得BC 的长. 试题解析: (1)∵AB AC = ∴∠ABC=∠ACB ∵//CF AB ∴∠ABC=∠FCB∴∠ACB=∠FCB ,即CB 平分∠DCF ∵AB 为⊙O 直径∴∠ADB=90°,即BD AC ⊥ ∵BF 为⊙O 的切线 ∴BF AB ⊥ ∵//CF AB∴BF CF ⊥ ∴BD=BF考点:圆的综合题.19.如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C .此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45︒方向,B 船测得渔船C 在其南偏东53︒方向.已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:4sin 535︒≈,3cos535︒≈,4tan 533︒≈,2 1.41≈) 【解析】试题分析:过点C 作CD AB ⊥交AB 的延长线于点D ,可得∠CDA=90°,根据题意可知∠CDA=45°,设CD=x ,则AD=CD=x ,在Rt △BDC 中,根据三角函数求得CD 、BC 的长,在Rt △ADC 中,求得AC 的长,再分别计算出B 船到达C 船处约需时间和A 船到达C 船处约需时间,比较即可求解. ∴B 船到达C 船处约需时间:25÷25=1(小时) 在Rt △ADC 中,AC=2x ≈× ∴÷考点:解直角三角形的应用.20. 如图,一次函数y x b =-+与反比例函数(0)ky x x=>的图象交于点(,3)A m 和(3,1)B . (1)填空:一次函数的解析式为 ,反比例函数的解析式为 ;(2)点P 是线段AB 上一点,过点P 作PD x ⊥轴于点D ,连接OP ,若POD ∆的面积为S ,求S 的取值范围.【答案】(1) 4y x =-+,3y x =;(2)S 的取值范围是322S ≤≤. 【解析】试题分析:(1)把(3,1)B 分别代入y x b =-+和(0)ky x x=>,即可求得b 、k 的值,直接写出对应的解析式即可;(2)把点(,3)A m 代入3y x=求得m=1,即可得点A 的坐标设点P (n ,-n+4),,因点P 是线段AB 上一点,可得1≤n ≤3,根据三角形的面积公式,用n 表示出POD ∆的面积为S ,根据n 的取值范围即可求得S 的取值范围.而点P 是线段AB 上一点,设点P (n ,-n+4),则1≤n ≤3 ∴S=2111(4)(2)2222OD PD n n n ⋅=⨯⨯-+=--+∵102-且1≤n ≤3∴当n=2时,S 最大=2,当n=1或3时,=32S 最小, ∴S 的取值范围是322S ≤≤. 考点:一次函数与反比例函数的综合题.21. 学校“百变魔方”社团准备购买A ,B 两种魔方.已知购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A ,B 两种魔方共100个(其中A 种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.【答案】(1) A 、B 两种魔方的单价分别为20元、15元;(2) 当45<m ≤50时,活动二更实惠;当m=45时,活动一、二同样实惠;当0≤m<45(或0<m<50)时,活动一更实惠.试题解析:(1) 设A 、B 两种魔方的单价分别为x 元、y 元,根据题意得2613034x y x y+=⎧⎨=⎩ ,解得2015x y =⎧⎨=⎩ 即A 、B 两种魔方的单价分别为20元、15元;(2)设购买A 魔方m 个,按活动一和活动二购买所需费用分别为1w 元、2w 元,依题意得1w =20m ×××(100-m )=10m+600,2w =20m+15(100-m-m )=-10m+1500,①1w >2w 时,10m+600>-10m+1500,所以m>45;②1w =2w 时,10m+600=-10m+1500,所以m=45;③1w <2w 时,10m+600<-10m+1500,所以m<45;∴当45<m ≤50时,活动二更实惠;当m=45时,活动一、二同样实惠;当0≤m<45(或0<m<50)时,活动一更实惠.考点:二元一次方程组的应用;一次函数的应用.22. 如图1,在Rt ABC ∆中,90A ∠=︒,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想图1中,线段PM 与PN 的数量关系是 ,位置关系是 ;(2)探究证明把ADE ∆绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN ∆的形状,并说明理由;(3)拓展延伸把ADE ∆绕点A 在平面内自由旋转,若4AD =,10AB =,请直接写出PMN ∆面积的最大值.【答案】(1)PM=PN ,PM PN ⊥;(2)等腰直角三角形,理由详见解析;(3)492. 试题解析:(1)PM=PN ,PM PN ⊥; ∴PM=12CE ,且//PM CE , 同理可证PN=12BD ,且//PN BD ∴PM=PN, ∠MPD=∠ECD ,∠PNC=∠DBC ,∴∠MPD=∠ECD=∠ACD+∠ACE=∠ACD+∠ABD ,∠DPN=∠PNC+∠PCN =∠DBC+∠PCN ,∴∠MPN=∠MPD+∠DPN=∠ACD+∠ABD+∠DBC+∠PCN=∠ABC+∠ACB=90°,即△PMN 为等腰直角三角形. (3)492. 考点: 旋转和三角形的综合题.23. 如图,直线23y x c =-+与x 轴交于点(3,0)A ,与y 轴交于点B ,抛物线243y x bx c =-++经过点A ,B .(1)求点B 的坐标和抛物线的解析式;(2)M (m ,0)为x 轴上一个动点,过点M 垂直于x 轴的直线与直线AB 和抛物线分别交于点P 、N , ①点M 在线段OA 上运动,若以B ,P ,N 为顶点的三角形与APM ∆相似,求点M 的坐标;②点M 在x 轴上自由运动,若三个点M ,P ,N 中恰有一点是其它两点所连线段的中点(三点重合除外),则称M ,P ,N 三点为“共谐点”.请直接写出使得M ,P ,N 三点成为“共谐点”的m 的值.【答案】(1)B (0,2),2410233y x x =-++;(2)①点M 的坐标为(118,0)或M (52,0);②m=-1或m=14-或m=12. 试题解析:(1)直线23y x c =-+与x 轴交于点(3,0)A , ∴2303c -⨯+=,解得c=2 ∴B (0,2),∵抛物线243y x bx c =-++经过点(3,0)A , ∴2433203b -⨯++=,∴b=103 ∴抛物线的解析式为2410233y x x =-++; (2)∵MN x ⊥轴,M (m ,0),∴N(2410,233m m m -++ ) ①有(1)知直线AB 的解析式为223y x =-+,OA=3,OB=2 ∵在△APM 中和△BPN 中,∠APM=∠BPN, ∠AMP=90°,若使△APM 中和△BPN 相似,则必须∠NBP=90°或∠BNP =90°,分两种情况讨论如下:(I )当∠NBP=90°时,过点N 作NC y ⊥轴于点C ,则∠NBC+∠BNC=90°,NC=m , BC=22410410223333m m m m -++-=-+ ∵∠NBP=90°,∴∠NBC+∠ABO=90°, ∴∠BNC=∠ABO , ∴Rt △NCB ∽ Rt △BOA∴NC CB OB OA = ,即24103323m m m -+= ,解得m=0(舍去)或m=118 ∴M (118,0); 考点:二次函数综合题.。

2017年河南省中考数学试卷-答案

2017年河南省中考数学试卷-答案

8.【答案】C【解析】画树状图得:共有16种等可能的结果,两个数字都是正数的有4种情况,所以记录的两个数字都是正数的概率是41164=,故选C. 【解析】'AD AD =,''C D CD =3),故选D 【考点】正方形的性质、坐标与图形的性质、勾股定理【答案】C连接'OD ,,将半径为逆时针旋转,AOB ∠=,''AO B ∠'120O B =︒2'602223603OBB O S π⨯--=扇形【解析】反比例函数2【解析】①如图1,当'90B MC ∠=︒,'B 与A 重合.M 是BC 的中点,12122BM BC +∴==;②如图2,当'90MB C ∠=︒时,90A ∠=︒,AB AC =,45C ∴∠=︒,'CMB △是等腰直角三角形,2'CM MB ∴=,由折叠可知'BM B M =,2CM BM ∴=,21BC =+,221CM BM BM BM ∴+=+=+,1BM ∴=,综上所述,若'MB C △为直角三角形,则BM 的长为212+或1.)证明:AB AC =//CF AB FCB =∠ACB ∴∠=CB 平分DCF ∠AB 是O 的直径,90ADB ∴∠=︒,即AC ⊥BF 是O 的切线,BF AB ∴⊥//CF AB ,BF ∴BD BF ∴=(2)AC AB ==AD AC CD ∴=-=在Rt ABD ∆中,22BD AB AD =-BDC ∆中,2BD CD +tan53BD ︒,即5)tan53︒,55tan 5345313︒≈︒-20sin53CD ≈︒)点102-<,且∴当2n =当1n =或S ∴的取值范围是即A ,B 两种魔方的单价分别为20元,15元.(2)设购买A 种魔方m 个,按活动一和活动二购买所需费用分别为1w 元,2w 元,依题意得1200.8150.4(100)w m m =⨯+⨯-=10600m +22015(100)101500w m m m m =+--=-+当12w w >时,10600101500m m +>-+,45m ∴>当12w w =时,10600101500m m +=-+,45m ∴=当12w w <时,10600101500m m +<-+,45m ∴<∴当4550m <≤时,活动二更实惠;当45m =时,活动一、二同样实惠;当045m ≤<(或050m <<)时,活动一更实惠.解法二:(l )设A ,B 两种魔方的单价分别为x 元,y 元.根据题意得2613034130x y x y +=⎧⎨+=⎩解得2613x y =⎧⎨=⎩即A ,B 两种魔方的单侨分别为26元和13元.(2)设购买A 种魔方m 个,按活动一和活动二购买所需费用分别为1w 元,2w 元,根据题意得1260.8130.4(100)w m m =⨯+⨯-15.6520m =+22613(1002)1300w m m =+-=15.60>,1w ∴随m 的增大而增大,∴当50m =时,1w 最大,此时115.6505201300w =⨯+=∴当050m ≤≤时,101300w ≤≤,∴当050m ≤<(或050m <<)时,活动一更实惠;0m =当50m =时,活动一、二同样实惠.【考点】二元一次方程组和一次函数的实际应用.22.【答案】解:(1)PM PN =,PM PN ⊥.(2)等腰直角三角形.理由如下:由旋转可得BAD CAE ∠=∠又AB AC =.AD AE =,BAD CAE ≅∴△△点)直线抛物线)MN x ⊥24,3m m -+①由(1)知直线3,OB =在APM △和NCB Rt BOA∆CB OA ,2m ∴=解得(舍去)或11 m=。

2017年河南省中考数学试卷(解析版)

2017年河南省中考数学试卷(解析版)

2017年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.下列各数中比1大的数是()A.2 B.0 C.﹣1 D.﹣3【分析】根据正数大于零、零大于负数,可得答案.【解答】解:2>0>﹣1>﹣3,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零、零大于负数是解题关键.2.2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×1015【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将74.4万亿用科学记数法表示为:7.44×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.某几何体的左视图如图所示,则该几何体不可能是()A.B.C.D.【分析】左视图是从左边看到的,据此求解.【解答】解:从左视图可以发现:该几何体共有两列,正方体的个数分别为2,1,D不符合,故选D.【点评】考查了由三视图判断几何体的知识,解题的关键是了解该几何体的构成,难度不大.4.解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=3【分析】分式方程变形后,两边乘以最简公分母x﹣1得到结果,即可作出判断.【解答】解:分式方程整理得:﹣2=﹣,去分母得:1﹣2(x﹣1)=﹣3,故选A【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.5.八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分【分析】将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决.【解答】解:位于中间位置的两数分别是95分和95分,故中位数为95分,数据95出现了3次,最多,故这组数据的众数是95分,故选A.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.6.一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣5)2﹣4×2×(﹣2)=41>0,∴方程有两个不相等的实数根.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠2【分析】根据平行四边形的性质.菱形的判定方法即可一一判断.【解答】解:A、正确.对角线相等是平行四边形的菱形.B、正确.邻边相等的平行四边形是菱形.C、错误.对角线相等的平行四边形是矩形,不一定是菱形.D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.故选C.【点评】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法.8.如图是一次数学活动可制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个数字都是正数的情况数,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两个数字都是正数的有4种情况,∴两个数字都是正数的概率是:=.故选:C.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,解题时注意:概率=所求情况数与总情况数之比.9.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1)B.(2,1)C.(1,)D.(2,)【分析】由已知条件得到AD′=AD=2,AO=AB=1,根据勾股定理得到OD′==,于是得到结论.【解答】解:∵AD′=AD=2,AO=AB=1,∴OD′==,∵C′D′=2,C′D′∥AB , ∴C (2,),故选D .【点评】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.10.如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O ,B 的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是( )A .B .2﹣C .2﹣D .4﹣【分析】连接OO′,BO′,根据旋转的想知道的∠OAO′=60°,推出△OAO′是等边三角形,得到∠AOO′=60°,推出△OO′B 是等边三角形,得到∠AO′B=120°,得到∠O′B′B=∠O′BB′=30°,根据图形的面积公式即可得到结论. 【解答】解:连接OO′,BO′,∵将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°, ∴∠OAO′=60°,∴△OAO′是等边三角形, ∴∠AOO′=60°, ∵∠AOB=120°, ∴∠O′OB=60°,∴△OO′B 是等边三角形, ∴∠AO′B=120°, ∵∠AO′B′=120°, ∴∠B′O′B=120°, ∴∠O′B′B=∠O′BB′=30°,∴图中阴影部分的面积=S △B′O′B ﹣(S 扇形O′OB ﹣S △OO′B )=×1×2﹣(﹣×2×)=2﹣.故选C.【点评】本题考查了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.二、填空题(每小题3分,共15分)11.计算:23﹣=6.【分析】明确表示4的算术平方根,值为2.【解答】解:23﹣=8﹣2=6,故答案为:6.【点评】本题主要考查了算术平方根和有理数的乘方的定义,是一个基础题目,比较简单.12.不等式组的解集是﹣1<x≤2.【分析】先求出不等式的解集,再求出不等式组的公共部分,【解答】解:解不等式①0得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集是﹣1<x≤2,故答案为﹣1<x≤2.【点评】题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.13.已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m与n 的大小关系为m<n.【分析】由反比例函数y=﹣可知函数的图象在第二、第四象限内,可以知道在每个象限内,y随x的增大而增大,根据这个判定则可.【解答】解:∵反比例函数y=﹣中k=﹣2<0,∴此函数的图象在二、四象限内,在每个象限内,y随x的增大而增大,∵0<1<2,∴A、B两点均在第四象限,∴m<n.故答案为m<n.【点评】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出反比例函数图象所在的象限是解答此题的关键.14.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是12.【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B先A运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC的长度,本题属于中等题型.15.如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为+或1.【分析】①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,于是得到结论;②如图2,当∠MB′C=90°,推出△CMB′是等腰直角三角形,得到CM=MB′,列方程即可得到结论.【解答】解:①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,∴BM=BC=+;②如图2,当∠MB′C=90°,∵∠A=90°,AB=AC,∴∠C=45°,∴△CMB′是等腰直角三角形,∴CM=MB′,∵沿MN所在的直线折叠∠B,使点B的对应点B′,∴BM=B′M,∴CM=BM,∵BC=+1,∴CM+BM=BM+BM=+1,∴BM=1,综上所述,若△MB′C为直角三角形,则BM的长为+或1,故答案为:+或1.【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.三、解答题(本题共8个小题,满分75分)16.先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.【分析】首先化简(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),然后把x=+1,y=﹣1代入化简后的算式,求出算式的值是多少即可.【解答】解:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y)=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy当x=+1,y=﹣1时,原式=9(+1)(﹣1)=9×(2﹣1)=9×1=9【点评】此题主要考查了整式的混合运算﹣化简求值问题,要熟练掌握,解答此题的关键是要明确:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.17.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A0≤x<304B30≤x<6016C60≤x<90aD90≤x<120bE x≥1202请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有50人,a+b=28,m=8;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.【分析】(1)根据B组的频数是16,对应的百分比是32%,据此求得调查的总人数,利用百分比的意义求得b,然后求得a的值,m的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数1000乘以对应的比例即可求解.【解答】解:(1)调查的总人数是16÷32%=50(人),则b=50×16%=8,a=50﹣4﹣16﹣8﹣2=20,A组所占的百分比是=8%,则m=8.a+b=8+20=28.故答案是:50,28,8;(2)扇形统计图中扇形C的圆心角度数是360°×=144°;(3)每月零花钱的数额x在60≤x<120范围的人数是1000×=560(人).【点评】本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小.18.如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C 作CF∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.【分析】(1)根据圆周角定理求出BD⊥AC,∠BDC=90°,根据切线的性质得出AB⊥BF,求出∠ACB=∠FCB,根据角平分线性质得出即可;(2)求出AC=10,AD=6,根据勾股定理求出BD,再根据勾股定理求出BC即可.【解答】(1)证明:∵AB是⊙O的直径,∴∠BDA=90°,∴BD⊥AC,∠BDC=90°,∵BF切⊙O于B,∴AB⊥BF,∵CF∥AB,∴CF⊥BF,∠FCB=∠ABC,∵AB=AC,∴∠ACB=∠ABC,∴∠ACB=∠FCB,∵BD⊥AC,BF⊥CF,∴BD=BF;(2)解:∵AB=10,AB=AC,∴AC=10,∵CD=4,∴AD=10﹣4=6,在Rt△ADB中,由勾股定理得:BD==8,在Rt△BDC中,由勾股定理得:BC==4.【点评】本题考查了切线的性质,勾股定理,角平分线性质,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.19.如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)【分析】如图作CE⊥AB于E.设AE=EC=x,则BE=x﹣5,在Rt△BCE中,根据tan53°=,可得=,求出x,再求出BC、AC,分别求出A、B两船到C的时间,即可解决问题.【解答】解:如图作CE⊥AB于E.在Rt△ACE中,∵∠A=45°,∴AE=EC,设AE=EC=x,则BE=x﹣5,在Rt△BCE中,∵tan53°=,∴=,解得x=20,∴AE=EC=20,∴AC=20=28.2,BC==25,∴A船到C的时间≈=0.94小时,B船到C的时间==1小时,∴C船至少要等待0.94小时才能得到救援.【点评】本题考查解直角三角形的应用﹣方向角问题、锐角三角函数、速度、时间、路程之间的关系等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.20.如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B(3,1).(1)填空:一次函数的解析式为y=﹣x+4,反比例函数的解析式为y=;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.【分析】(1)先将B(3,1)代入反比例函数即可求出k的值,然后将A代入反比例函数即可求出m的,再根据B两点的坐标即可求出一次函数的解析式.(2)设P的坐标为(x,y),由于点P在直线AB上,从而可知PD=y,OD=x,由题意可知:1≤x≤3,从而可求出S的范围【解答】解:(1)将B(3,1)代入y=,∴k=3,将A(m,3)代入y=,∴m=1,∴A(1,3),将A(1,3)代入代入y=﹣x+b,∴b=4,∴y=﹣x+4(2)设P(x,y),由(1)可知:1≤x≤3,∴PD=y=﹣x+4,OD=x,∴S=x(﹣x+4),∴由二次函数的图象可知:S的取值范围为:≤S≤2故答案为:(1)y=﹣x+4;y=.【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是求出一次函数与反比例函数的解析式,本题属于中等题型.21.学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.【分析】(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0≤m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.【解答】解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为20元/个,B种魔方的单价为15元/个.(2)设购进A种魔方m个(0≤m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=20m×0.8+15(100﹣m)×0.4=10m+600;w活动二=20m+15(100﹣m﹣m)=﹣10m+1500.当w活动一<w活动二时,有10m+600<﹣10m+1500,解得:m<45;当w活动一=w活动二时,有10m+600=﹣10m+1500,解得:m=45;当w活动一>w活动二时,有10m+600>﹣10m+1500,解得:45<m≤50.综上所述:当m<45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m>45时,选择活动二购买魔方更实惠.【点评】本题考查了二元一次方程组的应用、一次函数的应用、解一元一次不等式以及解一元一次方程,解题的关键是:(1)找准等量关系,列出关于x、y的二元一次方程组;(2)根据两种活动方案找出w活动一、w活动二关于m的函数关系式.22.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是PM=PN,位置关系是PM ⊥PN;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,另为利用三角形的中位线得出平行线即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN= BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,(2)由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,5=7,∴MN最大=2+=PM2=×MN2=×(7)2=.∴S△PMN最大【点评】此题是几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质,解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出△ABD≌△ACE,解(3)的关键是判断出MN最大时,△PMN的面积最大,是一道基础题目.23.如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.【分析】(1)把A点坐标代入直线解析式可求得c,则可求得B点坐标,由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)①由M点坐标可表示P、N的坐标,从而可表示出MA、MP、PN、PB的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m 的方程,可求得m的值;②用m可表示出M、P、N的坐标,由题意可知有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,可分别得到关于m的方程,可求得m的值.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,PA=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴BN=OM=m,∴=,即=,解得m=0(舍去)或m=2,∴M(2,0);当∠NBP=90°时,则有=,∵A(3,0),B(0,2),P(m,﹣m+2),∴BP==m,AP==(3﹣m),∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(2,0)或(,0);②由①可知M(m,0),P(m,﹣m+2),N(m,﹣m2+m+2),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=3(三点重合,舍去)或m=;当M为线段PN的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=3(舍去)或m=﹣1;当N为线段PM的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=3(舍去)或m=﹣;综上可知当M,P,N三点成为“共谐点”时m的值为或﹣1或﹣.【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、相似三角形的判定和性质、勾股定理、线段的中点、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中利用相似三角形的性质得到关于m的方程是解题的关键,注意分两种情况,在(2)②中利用“共谐点”的定义得到m的方程是解题的关键,注意分情况讨论.本题考查知识点较多,综合性较强,分情况讨论比较多,难度较大.21。

2017年河南省中考数学真题及参考答案

2017年河南省中考数学真题及参考答案

2017年河南省中考数学真题及参考答案(WORD 版本真题试卷+名师解析答案,建议下载保存)一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的 答案的字母代号按要求用2B 铅笔涂黑. 1。

2017的相反数是( ) A. -2017 B. 2017 C. 12017-D. 120172.已知2a =-,则代数式1a +的值为( ) A. -3 B. -2 C. -1 D. 1 3。

下列运算正确的是( )A. 325a a a +=B. 32a a a ÷=C. 326a a a =D. ()239a a =4。

下图是一个几何体的三视图,则这个几何体是( )A. 三棱柱B. 圆柱C. 圆台D. 圆锥5.如图1,直线,则与相交所形成的的度数为( )A. 45°B. 60°C. 90°D. 120°6.如图2,在平面直角坐标系中,ABC ∆位于第二象限,点A 的坐标是()2,3-,先把ABC ∆向右平移4个单位长度得到111A B C ∆,再作与111A B C ∆关于x 轴对称的222A B C ∆,则点A 的对应点2A 的坐标是( )A. ()3,2-B. ()2,3-C. ()1,2-D. ()1,2-7.海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里。

数据2000000用科学记数法表示为210n⨯,则的值为( ) A. 5 B. 6 C. 7 D. 88.若分式211x x --的值为0,则x 的值为( )A. -1B. 0C. 1D. 1±9. 今年3月12 日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表: 年龄(岁) 12 13 14 15 16 人数14357则这20名同学年龄的众数和中位数分别是( ) A. 15,14 B. 15,15 C. 16,14 D. 16,1510.如图3,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为( )A.12 B. 14 C. 18 D. 11611.如图4,在菱形ABCD 中,8,6AC BD ==,则ABC ∆的周长为( )A. 14B. 16C. 18D. 2012.如图5,点A B C 、、在O 上,0//,25AC OB BAO ∠=,则BOC ∠的度数为( )A. 25°B. 50°C. 60°D. 80°13.已知ABC ∆的三边长分别为4、4、6,在ABC ∆所在平面内画一条直线,将ABC ∆分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )条 A. 3 B. 4 C. 5 D. 614.如图6,ABC ∆的三个顶点分别为()()()1,24,24,4A B C 、、。

2017河南省中考数学试卷含答案

2017河南省中考数学试卷含答案

2017年河南省普通高中招生考试试卷数学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟.2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效.一、选择题(每题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.下列各数中比1大的数是()A. 2B. 0C. -1 32.2016年,我国国内生产总值达到74.4万亿元,用科学计数法表示为()A. 74.4×1012B. 7.44×1013C. 74.4×1013D. 7.44×10143.某几何体的左视图如下图所示,则该几何体不可能是()4.解分式方程,去分母得()A.1-2(1)3B.1-2(1)=3C.1-223D.1-22=35.八年级某同学6次数学小测验的成绩分别为80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B. 95分,90分C. 90分,95分D. 95分,85分6.一元二次方程2x2-52=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根判定□是菱形的只有7.如图,在□中,对角线、相交于点O,添加下列条件不能..()⊥ D.∠1=∠28.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2,若转动转盘两次,每次转盘停止后记录指针所指区域数字(当指针恰好指在分界线上时,不记,重转)则记录两个数字都是正数的概率为()A. B. C. D.9.我们知道:四边形具有不稳定性,如图,在平面直角坐标系中,边长为2的正方形边在x轴上,的中点是坐标原点O。

固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点处,则点C的对应点坐标为()A.(,3)B. (2,1)C. (1,)D. (2,)10.如图,将半径为2,圆心角为120°的扇形绕点A逆时针旋转60°,点O,B的对应点分别为,,连接B,则图中阴影部分的面积是()A.ππ C. -π D. -π第7题 第8题 第9题 第10题二、填空题(每题3分,共15分) 11.计算2312.不等式组的解集是13.已知点A (1,m ),B (2,n )在反比例函数的图像上,则m 与n 的大小关系为14.如图1,点P 从△的顶点B 出发,沿B C A 匀速运动到点A ,图2是点P 运动时,线段的长度y 随时间x 变化的关系图像,其中M 为曲线部分的最低点,则△的面积是45OAB CxyMPNBMCAB`第14题 图1 图2 第15题15.如图,在△中,∠90°,,1,点M ,N 分别是边,上的动点,沿所在直线折叠∠B ,使点B 的对应点始终..落在边上,若为直角三角形,则的长为三、解答题(本大题共8个小题,满分75分) 16.(8分)先化简,再求值: (2)2+()()-5x (),其中1,117.(9分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制了如下两个尚不完整的统计图表.调查结果统计表请根据以上图表,解答下列问题:(1)填空:这次被调查的学生共有人,,;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.18.(9分)如图,在△中,,以为直径的⊙O交边于点D,过点C作∥,与过点B的切线交于点F,连接.(1)求证:;(2)若10,4,求的长.C19.(9分)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C.此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:53°≈, 53°≈,53°≈,≈1.41)20.(9分)如图,一次函数与反比例函数(x>0)的图像交于点A(m,3)和B(3,1),(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点P是线段上一点,过点P作⊥x轴于点D,连接,若△的面积为S,求S的取值范围.21.(10分)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A 种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求两种魔方的单价;(2)结合社员们的要求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如右图所示,请根据以上信息,说明选择哪种活动购买魔方更实惠.22.(10分)如图1,在△中,∠90°,,点D,E分别在边,上,,连接,点M,P,N分别为、、的中点.(1)观察猜想图1中,线段与的数量关系是,位置关系是;(2)探究证明把△绕点A逆时针方向旋转到图2的位置,连接,,,判断△的形状,并说明理由;(3)拓展延伸把△绕点A在平面内自由旋转,若4,10,请直接写出△面积的最大值.23.(11分)如图,直线与x轴交于点A(3,0),与y轴交于点B,抛物线经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)点M(m,0)为x轴上一点,过点M且垂直于x轴的直线与直线与抛物线交于点P,N.①点M在线段上运动,若以B、P、N为顶点的三角形与△相似,求点M坐标;②点M在x轴上自由移动,若三个点M、P、N中恰有一个点是其它两线段中点(三点重合除外),则称M、N、P三点为“共谐点”,请直接写出使得M、N、P三点成为“共谐点”的m值.2017年河南省普通高中招生考试数学试题答案;。

2017年河南省中考数学试卷及解析

2017年河南省中考数学试卷及解析

2017年河南省中考数学试卷一、选择题(每小题3分,共30分)1.(3分)下列各数中比1大的数是()A.2 B.0 C.﹣1 D.﹣32.(3分)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×10153.(3分)某几何体的左视图如图所示,则该几何体不可能是()A.B.C.D.4.(3分)解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=35.(3分)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分6.(3分)一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根7.(3分)如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD 是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠28.(3分)如图是一次数学活动可制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.9.(3分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1)B.(2,1)C.(1,)D.(2,)10.(3分)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B 的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A.B.2﹣C.2﹣D.4﹣二、填空题(每小题3分,共15分)11.(3分)计算:23﹣=.12.(3分)不等式组的解集是.13.(3分)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m与n的大小关系为.14.(3分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P 运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC 的面积是.15.(3分)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB 上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为.三、解答题(本题共8个小题,满分75分)16.(8分)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.17.(9分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有人,a+b=,m=;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.18.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF ∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.19.(9分)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)20.(9分)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B(3,1).(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.21.(10分)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.(10分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.23.(11分)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2017年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)【考点】18:有理数大小比较.【分析】根据正数大于零、零大于负数,可得答案.【解答】解:2>0>﹣1>﹣3,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零、零大于负数是解题关键.2.(3分)【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将74.4万亿用科学记数法表示为:7.44×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)【考点】U3:由三视图判断几何体.【分析】左视图是从左边看到的,据此求解.【解答】解:从左视图可以发现:该几何体共有两列,正方体的个数分别为2,1,D不符合,故选D.【点评】考查了由三视图判断几何体的知识,解题的关键是了解该几何体的构成,难度不大.4.(3分)【考点】B3:解分式方程.【专题】11 :计算题;522:分式方程及应用.【分析】分式方程变形后,两边乘以最简公分母x﹣1得到结果,即可作出判断.【解答】解:分式方程整理得:﹣2=﹣,去分母得:1﹣2(x﹣1)=﹣3,故选A【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.5.(3分)【考点】W5:众数;W4:中位数.【分析】将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决.【解答】解:位于中间位置的两数分别是95分和95分,故中位数为95分,数据95出现了3次,最多,故这组数据的众数是95分,故选A.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.6.(3分)【考点】AA:根的判别式.【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣5)2﹣4×2×(﹣2)=41>0,∴方程有两个不相等的实数根.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.(3分)【考点】L9:菱形的判定;L5:平行四边形的性质.【分析】根据平行四边形的性质.菱形的判定方法即可一一判断.【解答】解:A、正确.对角线相等是平行四边形的菱形.B、正确.邻边相等的平行四边形是菱形.C、错误.对角线相等的平行四边形是矩形,不一定是菱形.D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.故选C.【点评】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法.8.(3分)【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个数字都是正数的情况数,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两个数字都是正数的有4种情况,∴两个数字都是正数的概率是:=.故选:C.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,解题时注意:概率=所求情况数与总情况数之比.9.(3分)【考点】LE:正方形的性质;D5:坐标与图形性质;L1:多边形.【分析】由已知条件得到AD′=AD=2,AO=AB=1,根据勾股定理得到OD′==,于是得到结论.【解答】解:∵AD′=AD=2,AO=AB=1,∴OD′==,∵C′D′=2,C′D′∥AB,∴C(2,),故选D.【点评】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.10.(3分)【考点】MO:扇形面积的计算;R2:旋转的性质.【分析】连接OO′,BO′,根据旋转的想知道的∠OAO′=60°,推出△OAO′是等边三角形,得到∠AOO′=60°,推出△OO′B是等边三角形,得到∠AO′B=120°,得到∠O′B′B=∠O′BB′=30°,根据图形的面积公式即可得到结论.【解答】解:连接OO′,BO′,∵将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,∴∠OAO′=60°,∴△OAO′是等边三角形,∴∠AOO′=60°,∵∠AOB=120°,∴∠O′OB=60°,∴△OO′B是等边三角形,∴∠AO′B=120°,∵∠AO′B′=120°,∴∠B′O′B=120°,∴∠O′B′B=∠O′BB′=30°,∴图中阴影部分的面积=S△B′O′B﹣(S扇形O′OB﹣S△OO′B)=×1×2﹣(﹣×2×)=2﹣.故选C.【点评】本题考查了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.二、填空题(每小题3分,共15分)11.(3分)【考点】22:算术平方根;1E:有理数的乘方.【分析】明确表示4的算术平方根,值为2.【解答】解:23﹣=8﹣2=6,故答案为:6.【点评】本题主要考查了算术平方根和有理数的乘方的定义,是一个基础题目,比较简单.12.(3分)【考点】CB:解一元一次不等式组.【分析】先求出不等式的解集,再求出不等式组的公共部分,【解答】解:解不等式①0得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集是﹣1<x≤2,故答案为﹣1<x≤2.【点评】题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.13.(3分)【考点】G6:反比例函数图象上点的坐标特征.【分析】由反比例函数y=﹣可知函数的图象在第二、第四象限内,可以知道在每个象限内,y随x的增大而增大,根据这个判定则可.【解答】解:∵反比例函数y=﹣中k=﹣2<0,∴此函数的图象在二、四象限内,在每个象限内,y随x的增大而增大,∵0<1<2,∴A、B两点均在第四象限,∴m<n.故答案为m<n.【点评】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出反比例函数图象所在的象限是解答此题的关键.14.(3分)【考点】E7:动点问题的函数图象.【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B先A运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC的长度,本题属于中等题型.15.(3分)【考点】PB:翻折变换(折叠问题);KW:等腰直角三角形.【分析】①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,于是得到结论;②如图2,当∠MB′C=90°,推出△CMB′是等腰直角三角形,得到CM=MB′,列方程即可得到结论.【解答】解:①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,∴BM=BC=+;②如图2,当∠MB′C=90°,∵∠A=90°,AB=AC,∴∠C=45°,∴△CMB′是等腰直角三角形,∴CM=MB′,∵沿MN所在的直线折叠∠B,使点B的对应点B′,∴BM=B′M,∴CM=BM,∵BC=+1,∴CM+BM=BM+BM=+1,∴BM=1,综上所述,若△MB′C为直角三角形,则BM的长为+或1,故答案为:+或1.【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.三、解答题(本题共8个小题,满分75分)16.(8分)【考点】4J:整式的混合运算—化简求值.【专题】11 :计算题.【分析】首先化简(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),然后把x=+1,y=﹣1代入化简后的算式,求出算式的值是多少即可.【解答】解:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y)=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy当x=+1,y=﹣1时,原式=9(+1)(﹣1)=9×(2﹣1)=9×1=9【点评】此题主要考查了整式的混合运算﹣化简求值问题,要熟练掌握,解答此题的关键是要明确:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.17.(9分)【考点】VB:扇形统计图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据B组的频数是16,对应的百分比是32%,据此求得调查的总人数,利用百分比的意义求得b,然后求得a的值,m的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数1000乘以对应的比例即可求解.【解答】解:(1)调查的总人数是16÷32%=50(人),则b=50×16%=8,a=50﹣4﹣16﹣8﹣2=20,A组所占的百分比是=8%,则m=8.a+b=8+20=28.故答案是:50,28,8;(2)扇形统计图中扇形C的圆心角度数是360°×=144°;(3)每月零花钱的数额x在60≤x<120范围的人数是1000×=560(人).【点评】本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小.18.(9分)【考点】MC:切线的性质;KH:等腰三角形的性质.【分析】(1)根据圆周角定理求出BD⊥AC,∠BDC=90°,根据切线的性质得出AB⊥BF,求出∠ACB=∠FCB,根据角平分线性质得出即可;(2)求出AC=10,AD=6,根据勾股定理求出BD,再根据勾股定理求出BC即可.【解答】(1)证明:∵AB是⊙O的直径,∴∠BDA=90°,∴BD⊥AC,∠BDC=90°,∵BF切⊙O于B,∴AB⊥BF,∵CF∥AB,∴CF⊥BF,∠FCB=∠ABC,∵AB=AC,∴∠ACB=∠ABC,∴∠ACB=∠FCB,∵BD⊥AC,BF⊥CF,∴BD=BF;(2)解:∵AB=10,AB=AC,∴AC=10,∵CD=4,∴AD=10﹣4=6,在Rt△ADB中,由勾股定理得:BD==8,在Rt△BDC中,由勾股定理得:BC==4.【点评】本题考查了切线的性质,勾股定理,角平分线性质,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.19.(9分)【考点】TB:解直角三角形的应用﹣方向角问题.【分析】如图作CE⊥AB于E.设AE=EC=x,则BE=x﹣5,在Rt△BCE中,根据tan53°=,可得=,求出x,再求出BC、AC,分别求出A、B两船到C的时间,即可解决问题.【解答】解:如图作CE⊥AB于E.在Rt△ACE中,∵∠A=45°,∴AE=EC,设AE=EC=x,则BE=x﹣5,在Rt△BCE中,∵tan53°=,∴=,解得x=20,∴AE=EC=20,∴AC=20=28.2,BC==25,∴A船到C的时间≈=0.94小时,B船到C的时间==1小时,∴C船至少要等待0.94小时才能得到救援.【点评】本题考查解直角三角形的应用﹣方向角问题、锐角三角函数、速度、时间、路程之间的关系等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.20.(9分)【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)先将B(3,1)代入反比例函数即可求出k的值,然后将A代入反比例函数即可求出m的,再根据B两点的坐标即可求出一次函数的解析式.(2)设P的坐标为(x,y),由于点P在直线AB上,从而可知PD=y,OD=x,由题意可知:1≤x≤3,从而可求出S的范围【解答】解:(1)将B(3,1)代入y=,∴k=3,将A(m,3)代入y=,∴m=1,∴A(1,3),将A(1,3)代入代入y=﹣x+b,∴b=4,∴y=﹣x+4(2)设P(x,y),由(1)可知:1≤x≤3,∴PD=y=﹣x+4,OD=x,∴S=x(﹣x+4),∴由二次函数的图象可知:S的取值范围为:≤S≤2故答案为:(1)y=﹣x+4;y=.【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是求出一次函数与反比例函数的解析式,本题属于中等题型.21.(10分)(【考点】9A:二元一次方程组的应用.【分析】(按买3个A种魔方和买4个B种魔方钱数相同解答)(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0≤m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.(按购买3个A种魔方和4个B种魔方需要130元解答)(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0≤m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.【解答】(按买3个A种魔方和买4个B种魔方钱数相同解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为20元/个,B种魔方的单价为15元/个.(2)设购进A种魔方m个(0≤m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=20m×0.8+15(100﹣m)×0.4=10m+600;w活动二=20m+15(100﹣m﹣m)=﹣10m+1500.当w活动一<w活动二时,有10m+600<﹣10m+1500,解得:m<45;当w活动一=w活动二时,有10m+600=﹣10m+1500,解得:m=45;当w活动一>w活动二时,有10m+600>﹣10m+1500,解得:45<m≤50.综上所述:当m<45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m>45时,选择活动二购买魔方更实惠.(按购买3个A种魔方和4个B种魔方需要130元解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为26元/个,B种魔方的单价为13元/个.(2)设购进A种魔方m个(0≤m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=26m×0.8+13(100﹣m)×0.4=15.6m+520;w活动二=26m+13(100﹣m﹣m)=1300.当w活动一<w活动二时,有15.6m+520<1300,解得:m<50;当w活动一=w活动二时,有15.6m+520=1300,解得:m=50;当w活动一>w活动二时,有15.6m+520>1300,不等式无解.综上所述:当m<50时,选择活动一购买魔方更实惠;当m=50时,选择两种活动费用相同.【点评】本题考查了二元一次方程组的应用、一次函数的应用、解一元一次不等式以及解一元一次方程,解题的关键是:(1)找准等量关系,列出关于x、y的二元一次方程组;(2)根据两种活动方案找出w活动一、w活动二关于m的函数关系式.22.(10分)【考点】RB:几何变换综合题.【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,另为利用三角形的中位线得出平行线即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,(2)由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN最大=2+5=7,∴S△PMN最大=PM2=×MN2=×(7)2=.【点评】此题是几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质,解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出△ABD≌△ACE,解(3)的关键是判断出MN最大时,△PMN的面积最大,是一道基础题目.23.(11分)【考点】HF:二次函数综合题.【分析】(1)把A点坐标代入直线解析式可求得c,则可求得B点坐标,由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)①由M点坐标可表示P、N的坐标,从而可表示出MA、MP、PN、PB的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m的方程,可求得m的值;②用m可表示出M、P、N的坐标,由题意可知有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,可分别得到关于m的方程,可求得m的值.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,PA=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴BN=OM=m,∴=,即=,解得m=0(舍去)或m=2,∴M(2,0);当∠NBP=90°时,则有=,∵A(3,0),B(0,2),P(m,﹣m+2),∴BP==m,AP==(3﹣m),∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(2,0)或(,0);②由①可知M(m,0),P(m,﹣m+2),N(m,﹣m2+m+2),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=3(三点重合,舍去)或m=;当M为线段PN的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=3(舍去)或m=﹣1;当N为线段PM的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=3(舍去)或m=﹣;综上可知当M,P,N三点成为“共谐点”时m的值为或﹣1或﹣.【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、相似三角形的判定和性质、勾股定理、线段的中点、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中利用相似三角形的性质得到关于m的方程是解题的关键,注意分两种情况,在(2)②中利用“共谐点”的定义得到m的方程是解题的关键,注意分情况讨论.本题考查知识点较多,综合性较强,分情况讨论比较多,难度较大.。

2017年河南省中考数学试卷(后附答案解析)

2017年河南省中考数学试卷(后附答案解析)

2017年河南省中考数学试卷一、选择题(每小题3分,共30分)1.(3分)下列各数中比1大的数是()A.2 B.0 C.﹣1 D.﹣32.(3分)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×10153.(3分)某几何体的左视图如图所示,则该几何体不可能是()A.B.C.D.4.(3分)解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=35.(3分)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分6.(3分)一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根7.(3分)如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠28.(3分)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.9.(3分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1)B.(2,1) C.(1,)D.(2,)10.(3分)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B 的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A. B.2﹣C.2﹣D.4﹣二、填空题(每小题3分,共15分)11.(3分)计算:23﹣=.12.(3分)不等式组的解集是.13.(3分)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m与n的大小关系为.14.(3分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC 的面积是.15.(3分)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB 上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为.三、解答题(本题共8个小题,满分75分)16.(8分)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.17.(9分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A0≤x<304B30≤x<6016C60≤x<90aD90≤x<120bE x≥1202请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有人,a+b=,m=;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.18.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.19.(9分)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)20.(9分)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B(3,1).(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.21.(10分)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B 种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.(10分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.23.(11分)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c 经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2017年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2017•河南)下列各数中比1大的数是()A.2 B.0 C.﹣1 D.﹣3【分析】根据正数大于零、零大于负数,可得答案.【解答】解:2>0>﹣1>﹣3,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零、零大于负数是解题关键.2.(3分)(2017•河南)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×1015【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将74.4万亿用科学记数法表示为:7.44×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•河南)某几何体的左视图如图所示,则该几何体不可能是()A.B.C.D.【分析】左视图是从左边看到的,据此求解.【解答】解:从左视图可以发现:该几何体共有两列,正方体的个数分别为2,1,D不符合,故选D.【点评】考查了由三视图判断几何体的知识,解题的关键是了解该几何体的构成,难度不大.4.(3分)(2017•河南)解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=3【分析】分式方程变形后,两边乘以最简公分母x﹣1得到结果,即可作出判断.【解答】解:分式方程整理得:﹣2=﹣,去分母得:1﹣2(x﹣1)=﹣3,故选A【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.5.(3分)(2017•河南)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分【分析】将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决.【解答】解:位于中间位置的两数分别是95分和95分,故中位数为95分,数据95出现了3次,最多,故这组数据的众数是95分,故选A.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.6.(3分)(2017•河南)一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣5)2﹣4×2×(﹣2)=41>0,∴方程有两个不相等的实数根.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.(3分)(2017•河南)如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠2【分析】根据平行四边形的性质.菱形的判定方法即可一一判断.【解答】解:A、正确.对角线垂直的平行四边形的菱形.B、正确.邻边相等的平行四边形是菱形.C、错误.对角线相等的平行四边形是矩形,不一定是菱形.D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.故选C.【点评】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法.8.(3分)(2017•河南)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个数字都是正数的情况数,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两个数字都是正数的有4种情况,∴两个数字都是正数的概率是:=.故选:C.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,解题时注意:概率=所求情况数与总情况数之比.9.(3分)(2017•河南)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1)B.(2,1) C.(1,)D.(2,)【分析】由已知条件得到AD′=AD=2,AO=AB=1,根据勾股定理得到OD′==,于是得到结论.【解答】解:∵AD′=AD=2,AO=AB=1,∴OD′==,∵C′D′=2,C′D′∥AB,∴C′(2,),故选D.【点评】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.10.(3分)(2017•河南)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A .B .2﹣C .2﹣D .4﹣【分析】连接OO′,BO′,根据旋转的性质得到∠OAO′=60°,推出△OAO′是等边三角形,得到∠AOO′=60°,推出△OO′B 是等边三角形,得到∠AO′B=120°,得到∠O′B′B=∠O′BB′=30°,根据图形的面积公式即可得到结论. 【解答】解:连接OO′,BO′,∵将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°, ∴∠OAO′=60°,∴△OAO′是等边三角形, ∴∠AOO′=60°, ∵∠AOB=120°, ∴∠O′OB=60°,∴△OO′B 是等边三角形, ∴∠AO′B=120°, ∵∠AO′B′=120°, ∴∠B′O′B=120°, ∴∠O′B′B=∠O′BB′=30°,∴图中阴影部分的面积=S △B′O′B ﹣(S 扇形O′OB ﹣S △OO′B )=×1×2﹣(﹣×2×)=2﹣.故选C .【点评】本题考查了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.二、填空题(每小题3分,共15分)11.(3分)(2017•河南)计算:23﹣=6.【分析】明确表示4的算术平方根,值为2.【解答】解:23﹣=8﹣2=6,故答案为:6.【点评】本题主要考查了算术平方根和有理数的乘方的定义,是一个基础题目,比较简单.12.(3分)(2017•河南)不等式组的解集是﹣1<x≤2.【分析】先求出不等式的解集,再求出不等式解集的公共部分.【解答】解:解不等式①得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集是﹣1<x≤2,故答案为﹣1<x≤2.【点评】题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.13.(3分)(2017•河南)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m 与n的大小关系为m<n.【分析】由反比例函数y=﹣可知函数的图象在第二、第四象限内,可以知道在每个象限内,y随x的增大而增大,根据这个判定则可.【解答】解:∵反比例函数y=﹣中k=﹣2<0,∴此函数的图象在二、四象限内,在每个象限内,y随x的增大而增大,∵0<1<2,∴A、B两点均在第四象限,∴m<n.故答案为m<n.【点评】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出反比例函数图象所在的象限是解答此题的关键.14.(3分)(2017•河南)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是12.【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC的长度,本题属于中等题型.15.(3分)(2017•河南)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为+或1.【分析】①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,于是得到结论;②如图2,当∠MB′C=90°,推出△CMB′是等腰直角三角形,得到CM=MB′,列方程即可得到结论.【解答】解:①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,∴BM=BC=+;②如图2,当∠MB′C=90°,∵∠A=90°,AB=AC,∴∠C=45°,∴△CMB′是等腰直角三角形,∴CM=MB′,∵沿MN所在的直线折叠∠B,使点B的对应点B′,∴BM=B′M,∴CM=BM,∵BC=+1,∴CM+BM=BM+BM=+1,∴BM=1,综上所述,若△MB′C为直角三角形,则BM的长为+或1,故答案为:+或1.【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.三、解答题(本题共8个小题,满分75分)16.(8分)(2017•河南)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.【分析】首先化简(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),然后把x=+1,y=﹣1代入化简后的算式,求出算式的值是多少即可.【解答】解:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y)=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy当x=+1,y=﹣1时,原式=9(+1)(﹣1)=9×(2﹣1)=9×1=9【点评】此题主要考查了整式的混合运算﹣化简求值问题,要熟练掌握,解答此题的关键是要明确:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.17.(9分)(2017•河南)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A0≤x<304B30≤x<6016C60≤x<90aD90≤x<120bE x≥1202请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有50人,a+b=28,m=8;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.【分析】(1)根据B组的频数是16,对应的百分比是32%,据此求得调查的总人数,利用百分比的意义求得b,然后求得a的值,m的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数1000乘以对应的比例即可求解.【解答】解:(1)调查的总人数是16÷32%=50(人),则b=50×16%=8,a=50﹣4﹣16﹣8﹣2=20,A组所占的百分比是=8%,则m=8.a+b=8+20=28.故答案是:50,28,8;(2)扇形统计图中扇形C的圆心角度数是360°×=144°;(3)每月零花钱的数额x在60≤x<120范围的人数是1000×=560(人).【点评】本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小.18.(9分)(2017•河南)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.【分析】(1)根据圆周角定理求出BD⊥AC,∠BDC=90°,根据切线的性质得出AB⊥BF,求出∠ACB=∠FCB,根据角平分线性质得出即可;(2)求出AC=10,AD=6,根据勾股定理求出BD,再根据勾股定理求出BC即可.【解答】(1)证明:∵AB是⊙O的直径,∴∠BDA=90°,∴BD⊥AC,∠BDC=90°,∵BF切⊙O于B,∴AB⊥BF,∵CF∥AB,∴CF⊥BF,∠FCB=∠ABC,∵AB=AC,∴∠ACB=∠ABC,∴∠ACB=∠FCB,∵BD⊥AC,BF⊥CF,∴BD=BF;(2)解:∵AB=10,AB=AC,∴AC=10,∵CD=4,∴AD=10﹣4=6,在Rt△ADB中,由勾股定理得:BD==8,在Rt△BDC中,由勾股定理得:BC==4.【点评】本题考查了切线的性质,勾股定理,角平分线性质,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.19.(9分)(2017•河南)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)【分析】如图作CE⊥AB于E.设AE=EC=x,则BE=x﹣5,在Rt△BCE中,根据tan53°=,可得=,求出x,再求出BC、AC,分别求出A、B两船到C的时间,即可解决问题.【解答】解:如图作CE⊥AB于E.在Rt△ACE中,∵∠A=45°,∴AE=EC,设AE=EC=x,则BE=x﹣5,在Rt△BCE中,∵tan53°=,∴=,解得x=20,∴AE=EC=20,∴AC=20=28.2,BC==25,∴A船到C的时间≈=0.94小时,B船到C的时间==1小时,∴C船至少要等待0.94小时才能得到救援.【点评】本题考查解直角三角形的应用﹣方向角问题、锐角三角函数、速度、时间、路程之间的关系等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.20.(9分)(2017•河南)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B(3,1).(1)填空:一次函数的解析式为y=﹣x+4,反比例函数的解析式为y=;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.【分析】(1)先将B(3,1)代入反比例函数即可求出k的值,然后将A代入反比例函数即可求出m的,再根据B两点的坐标即可求出一次函数的解析式.(2)设P的坐标为(x,y),由于点P在直线AB上,从而可知PD=y,OD=x,由题意可知:1≤x≤3,从而可求出S的范围【解答】解:(1)将B(3,1)代入y=,∴k=3,将A(m,3)代入y=,∴m=1,∴A(1,3),将A(1,3)代入代入y=﹣x+b,∴b=4,∴y=﹣x+4(2)设P(x,y),由(1)可知:1≤x≤3,∴PD=y=﹣x+4,OD=x,∴S=x(﹣x+4),∴由二次函数的图象可知:S的取值范围为:≤S≤2故答案为:(1)y=﹣x+4;y=.【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是求出一次函数与反比例函数的解析式,本题属于中等题型.21.(10分)(2017•河南)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.【分析】(按买3个A种魔方和买4个B种魔方钱数相同解答)(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.(按购买3个A种魔方和4个B种魔方需要130元解答)(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.【解答】(按买3个A 种魔方和买4个B 种魔方钱数相同解答)解:(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个, 根据题意得:, 解得:. 答:A 种魔方的单价为20元/个,B 种魔方的单价为15元/个.(2)设购进A 种魔方m 个(0<m ≤50),总价格为w 元,则购进B 种魔方(100﹣m )个, 根据题意得:w 活动一=20m ×0.8+15(100﹣m )×0.4=10m +600;w 活动二=20m +15(100﹣m ﹣m )=﹣10m +1500.当w 活动一<w 活动二时,有10m +600<﹣10m +1500,解得:m <45;当w 活动一=w 活动二时,有10m +600=﹣10m +1500,解得:m=45;当w 活动一>w 活动二时,有10m +600>﹣10m +1500,解得:45<m ≤50.综上所述:当m <45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m >45时,选择活动二购买魔方更实惠.(按购买3个A 种魔方和4个B 种魔方需要130元解答)解:(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个, 根据题意得:, 解得:. 答:A 种魔方的单价为26元/个,B 种魔方的单价为13元/个.(2)设购进A 种魔方m 个(0<m ≤50),总价格为w 元,则购进B 种魔方(100﹣m )个, 根据题意得:w 活动一=26m ×0.8+13(100﹣m )×0.4=15.6m +520;w 活动二=26m +13(100﹣m ﹣m )=1300.当w 活动一<w 活动二时,有15.6m +520<1300,解得:m <50;当w 活动一=w 活动二时,有15.6m +520=1300,解得:m=50;当w 活动一>w 活动二时,有15.6m +520>1300,不等式无解.综上所述:当0<m<50时,选择活动一购买魔方更实惠;当m=50时,选择两种活动费用相同.【点评】本题考查了二元一次方程组的应用、一次函数的应用、解一元一次不等式以及解一元一次方程,解题的关键是:(1)找准等量关系,列出关于x、y的二元一次方程组;(2)根据两种活动方案找出w活动一、w活动二关于m的函数关系式.22.(10分)(2017•河南)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是PM=PN,位置关系是PM⊥PN;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)方法1、先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN 最大=AM+AN,最后用面积公式即可得出结论.方法2、先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可.【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,(2)由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,=2+5=7,∴MN最大=PM2=×MN2=×(7)2=.∴S△PMN最大方法2、由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在AB的延长线上,∴BD=AB+AD=14,∴PM=7,=PM2=×72=∴S△PMN最大【点评】此题是几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质,解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出△ABD≌△ACE,解(3)的关键是判断出MN最大时,△PMN的面积最大,是一道中考常考题.23.(11分)(2017•河南)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.【分析】(1)把A点坐标代入直线解析式可求得c,则可求得B点坐标,由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)①由M点坐标可表示P、N的坐标,从而可表示出MA、MP、PN、PB的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m的方程,可求得m的值;②用m可表示出M、P、N的坐标,由题意可知有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,可分别得到关于m的方程,可求得m的值.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,AM=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴BN=OM=m,∴=,即=,解得m=0(舍去)或m=2.5,∴M(2.5,0);当∠NBP=90°时,则有=,∵A(3,0),B(0,2),P(m,﹣m+2),∴BP==m,AP==(3﹣m),∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(2.5,0)或(,0);②由①可知M(m,0),P(m,﹣m+2),N(m,﹣m2+m+2),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=3(三点重合,舍去)或m=;当M为线段PN的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=3(舍去)或m=﹣1;当N为线段PM的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=3(舍去)或m=﹣;综上可知当M,P,N三点成为“共谐点”时m的值为或﹣1或﹣.【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、相似三角形的判定和性质、勾股定理、线段的中点、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中利用相似三角形的性质得到关于m的方程是解题的关键,注意分两种情况,在(2)②中利用“共谐点”的定义得到m的方程是解题的关键,注意分情况讨论.本题考查知识点较多,综合性较强,分情况讨论比较多,难度较大.。

2017年河南省中考数学试卷含答案

2017年河南省中考数学试卷含答案

数学试卷第1页(共16页)数学试卷第2页(共16页)绝密★启用前河南省2017年普通高中招生考试数学(本试卷满分120分,考试时间100分钟)第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各数中比1大的数是()A .2B .0C .1-D .3-2.2016年,我国国内生产总值达到74.4万亿元.数据“74.4万亿”用科学记数法表示为()A .1274.410⨯B .137.4410⨯C .1374.410⨯D .147.4410⨯3.某几何体的左视图如下图所示,则该几何体不可能是()4.解分式方程13211x x-=--,去分母得()A .12(1)3x--=-B .12(1)3x --=C .1223x --=-D .1223x -+=5.八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A .95分,95分B .95分,90分C .90分,95分D .95分,85分6.一元二次方程22520x x --=的根的情况是()A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根7.如图,在□ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能判定□ABCD 是菱形的只有()A .AC BD ⊥B .AB BC =C .AC BD=D .12∠=∠8.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字1-,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A .18B .16C .14D .129.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O .固定点A ,B ,在正方形沿箭头方向推,使点D落在y 轴正半轴上点D '处,则点C 的对应点C '的坐标为()A .(3,1)B .(2,1)C .(1,3)D .(2,3)10.如图,将半径为2,圆心角为120 的扇形OAB 绕A 逆时针旋转60 ,点O ,B 的对应点分别为O ',B ',连接BB ',则图中阴影部分的面积是()A .2π3B .π233-C .2π233-D .2π433-第Ⅱ卷(非选择题共90分)二、填空题(本大题共5小题,每小题3分,共15分.请把答案填在题中的横线上)11.计算:324=-.ABCD毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第3页(共16页)数学试卷第4页(共16页)12.不等式组20,12x x x -⎧⎪⎨-⎪⎩≤<的解集是.13.已知点(1,)A m ,(2,)B n 在反比例函数2y x=-的图象上,则m 与n 的大小关系为.14.如图1,点P 从ABC △的顶点B 出发,沿B C A →→匀速运动到点A .图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则ABC △的面积是.15.如图,在Rt ABC △中,90A ∠= ,AB AC =,21BC =+,点M ,N 分别是BC ,AB 上的动点,沿MN 所在的直线折叠B ∠,使点B 的对应点B '始终落在边AC 上.若MB C '△为直角三角形,则BM 的长为.三、解答题(本大题共8小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分8分)先化简,再求值:2(2)()()5()x y x y x y x x y ++-+--,其中21x =+,21y =-.17.(本小题满分9分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表调查结果扇形统计图组别分组(单位:元)人数A030x ≤<4B 3060x ≤<16C6090x ≤<aD90120x ≤<b E 120x ≥2请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有人,a b +=,m =;(2)求扇形统计图中扇形C 的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x 在60120x ≤<范围的人数.18.(本小题满分9分)如图,在ABC △中,AB AC =,以AB 为直径的O 交AC 边于点D ,过点C 作CF AB ∥,与过点B 的切线交于点F ,连接BD .(1)求证:BD BF =;(2)若10AB =,4CD =,求BC 的长.19.(本小题满分9分)如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C .此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45 方向,B 船测得渔船C 在其南偏东53 方向.已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:4sin535 ≈,3cos535 ≈,4tan533≈,2 1.41≈)图1图2数学试卷第5页(共16页)数学试卷第6页(共16页)20.(本小题满分9分)如图,一次函数y x b =-+与反比例函数(x )ky x=>0的图象交于点(,3)A m 和(3,1)B .(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点P 是线段AB 上一点,过点P 作PD x ⊥轴于点D ,连接OP ,若POD △的面积为S ,求S的取值范围.21.(本小题满分10分)学校“百变魔方”社团准备购买A ,B 两种魔方.已知购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A ,B 两种魔方共100个(其中A 种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.(本小题满分10分)如图1,在Rt ABC △中,90A ∠= ,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC的中点.图1图2(1)观察猜想图1中,线段PM 与PN 的数量关系是,位置关系是;(2)探究证明把ADE △绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN △的形状,并说明理由;(3)拓展延伸把ADE △绕点A 在平面内自由旋转,若4AD =,10AB =,请直接写出PMN △面积的最大值.23.(本小题满分11分)如图,直线23y x c =-+与x 轴交于点(3,0)A ,与y 轴交于点B ,抛物线243y x bx c =-++经过点A ,B.(1)求点B 的坐标和抛物线的解析式;(2)(,0)M m 为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________姓名________________考生号_____________________________________________数学试卷第7页(共16页)数学试卷第8页(共16页)交于点P ,N .①点M 在线段OA 上运动,若以B ,P ,N 为顶点的三角形与APM △相似,求点M 的坐标;②点M 在x 轴上自由运动,若三个点M ,P ,N 中恰有一点是其他两点所连线段的中点(三点重合除外),则称M ,P ,N 三点为“共谱点”.请直接写出使得M ,P ,N 三点成为“共谱点”的m 的值.河南省2017年普通高中招生考试数学答案解析第Ⅰ卷一、选择题1.【答案】A【解析】31012-<-<<<.故选A.【考点】有理数大小的比较2.【答案】B【解析】将74.4万亿用科学记数法表示为137.4410⨯,故选B.【考点】科学记数法表示较大的数3.【答案】D【解析】由左视图可以发现,几何体从左往右看共有2列,观察各选项知D 选项中的几何体从左往右看共有3列,D 不符合,故选D .【考点】由三视图判断几何体.4.【答案】A【解析】分式方程整理得13211x x -=---,去分母,得()1213x --=-.故选A.【考点】解分式方程.5.【答案】A【解析】位于中间位置的两个数都是95分,故中位数为95分,数据中95分出现了3次,出现次数最多,故这组数据的众数是95分,故选A.【考点】众数、中位数6.【答案】B【解析】2(5)42(2)410∴∆=--⨯⨯-=>,该方程有两个不相等的实数根,故选B.【知识拓展】一元二次方程20(0)ax bx c a ++=≠的根与判别式24b ac =-△有入下关系:当0>△时,方程有两个不相等的实数根;当=0△时,方程有两个相等的实数根;当0<△时,方程无实数根.【考点】一元二次方程根的判别式.7.【答案】C【解析】对角线垂直的平行四边形是菱形;邻边相等的平行四边形是菱形;对角线相等的平行四边形是矩形,不一定是菱形;平行四边形中,对角线平分一组对角,可证明平行四边形的邻边相等,即可判定平行四边形是菱形,练上所述,故选C.【考点】菱形的判定、平行四边形的性质.8.【答案】C【解析】画树状图得:共有16种等可能的结果,两个数字都是正数的有4种情况,所以记录的两个数字都是正数的概率是41164=,故选C.【考点】列表法或画树状图法求概率.9.【答案】D【解析】'2AD AD == ,112AO AB ==,'OD ∴==,''2C D CD == ,''//C D AB,C ∴,故选D .【考点】正方形的性质、坐标与图形的性质、勾股定理10.【答案】C【解析】连接'OD ,'BO , 将半径为2,圆心角为120︒的扇形OAB 绕点A 逆时针旋转60︒,'60OAO ∠=︒,'AO AO =,'OAO ∴△是等边三角形,'60AOO ∴∠=︒,120AOB ∠=︒ ,'60O OB ∴∠=︒,'OO B △是等边三角形,'120AO B ∴∠=︒,数学试卷第9页(共16页)数学试卷第10页(共16页)''120AO B ∠=︒ ,''120B O B ∴∠=︒,''''30O B B O BB ∴∠=∠=︒,'OBB △为直角三角形,'BB =∴图中阴影部分的面积2''16022223603OBB O OB S S ππ⨯=-=⨯⨯= 扇形△,故选C .【考点】扇形面积的计算、等边三角形的判定和性质、旋转的性质.第Ⅱ卷二、填空题11.【答案】6【解析】826=-=原式【考点】幂的运算、二次根式的运算.12.【答案】12x -<≤【解析】解不等式20x -≤,得2x ≤,解不等式12x x -<,得1x >-,∴不等式组的解集为12x -<≤.【考点】解不等式组13.【答案】m n<【解析】 反比例函数2y x=-中20k =-<,∴此函效的图像在第二、四象限内,在每个象限内,y 随x 的增大而增大.012<<,A ∴,B 两点均在第四象限,m n ∴<.【考点】反比倒函数图像和性质.14.【答案】12【解析】根据题意可知点P 在BC 上运动时,此时BP 不断增大,由图像可知点P 从B向A 运动时,BP 两次取得最大值5.即5BC BA ==.由于M 是曲线部分的最低点,∴此时BP 最小,即BP AC ⊥,4BP =.当BP AC ⊥时,由勾股定理可知3PC =.BAC △为等腰三角形.3PA ∴=,6AC ∴=,ABC ∴△的面积为146122⨯⨯=【考点】动点问题、函数图像.15.【答案】12+或1【解析】①如图1,当'90B MC ∠=︒,'B 与A 重合.M 是BC 的中点,1122BM BC +∴==;②如图2,当'90MB C ∠=︒时,90A ∠=︒ ,AB AC =,45C ∴∠=︒,'CMB △是等腰直角三角形,'CM ∴=,由折叠可知'BM B M =,CM ∴=,1BC =+,1CM BM BM ∴+=+=,1BM ∴=,综上所述,若'MB C △为直角三角形,则BM 的长为12或1.【考点】图形的折叠、等腰直角三角形的性质三、解答题16.【答案】解:222224455x xy y x y x xy=+++--+原式9xy=当1x =,1y =时,91)9xy ==+=原式【考点】本题考查整式的混合运算,化简求值问题17.【答案】解:(1)50,28.8(2)(18%32%16%4%)36040%360144----⨯︒=⨯︒=︒.即扇形统计图中扇形C 的圆心角为144︒.(3)28100056050⨯=.即每月零花钱的数额x 在60120x ≤<范围的人数为560.【考点】统计表、扇形统计图、用样本估计总体.数学试卷第11页(共16页)数学试卷第12页(共16页)18.【答案】(1)证明:AB AC = ,ABC ACB ∴∠=∠//CF AB ,ABC FCB ∴∠=∠ACB FCB ∴∠=∠,即CB 平分DCF ∠AB 是O 的直径,90ADB ∴∠=︒,即BD AC ⊥BF 是O 的切线,BF AB ∴⊥//CF AB ,BF CF ∴⊥BD BF∴=(2)10AC AB == ,4CD =1046AD AC CD ∴=-=-=在Rt ABD ∆中,2222210664BD AB AD =-=-=在Rt BDC ∆中,BC ===即BC的长为【解析】(1)根据圆周定理求出BD AC ⊥,根据切线在性质得出AB BF ⊥,求出ACB FCB ∠=∠,根据角平分线性质即可证明;(2)由题得AC ,AD ,根据勾股定理求出BD ,再根据勾股定理求出BC 即可。

2017年河南省数学中招考试试题及解析

2017年河南省数学中招考试试题及解析

2017年中招考试数学试卷一.选择题(共10小题)1.下列各数中比1大的数是()A.2 B.0 C.﹣1 D.﹣32.2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×10153.某几何体的左视图如图所示,则该几何体不可能是()A.B.C.D.4.解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=3 5.八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分6.一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根7.如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD 是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠28.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.9.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1)B.(2,1) C.(1,)D.(2,)10.如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A. B.2﹣C.2﹣D.4﹣二.填空题(共5小题)11.计算:23﹣=.12.不等式组的解集是.13.已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m与n的大小关系为.14.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是.15.如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为.三.解答题(共8小题)16.先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.17.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A0≤x<304B30≤x<6016C60≤x<90aD90≤x<120bE x≥1202请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有人,a+b=,m=;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.18.如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.19.如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)20.如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B(3,1).(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.21.学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.23.如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2017年中招考试数学试卷参考答案与解析一.选择题(共10小题)1.A2.B3.D4. A5. A6.B7.C8.C9.D 10.C二.填空题(共5小题)11.解:23﹣=8﹣2=6,故答案为:6.12.解:解不等式①0得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集是﹣1<x≤2,故答案为﹣1<x≤2.13.解:∵反比例函数y=﹣中k=﹣2<0,∴此函数的图象在二、四象限内,在每个象限内,y随x的增大而增大,∵0<1<2,∴A、B两点均在第四象限,∴m<n.故答案为m<n.14.解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:1215.解:①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,∴BM=BC=+;②如图2,当∠MB′C=90°,∵∠A=90°,AB=AC,∴∠C=45°,∴△CMB′是等腰直角三角形,∴CM=MB′,∵沿MN所在的直线折叠∠B,使点B的对应点B′,∴BM=B′M,∴CM=BM,∵BC=+1,∴CM+BM=BM+BM=+1,∴BM=1,综上所述,若△MB′C为直角三角形,则BM的长为+或1,故答案为:+或1.三.解答题(共8小题)16.解:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y)=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy当x=+1,y=﹣1时,原式=9(+1)(﹣1)=9×(2﹣1)=9×1=917.解:(1)调查的总人数是16÷32%=50(人),则b=50×16%=8,a=50﹣4﹣16﹣8﹣2=20,A组所占的百分比是=8%,则m=8.a+b=8+20=28.故答案是:50,28,8;(2)扇形统计图中扇形C的圆心角度数是360°×=144°;(3)每月零花钱的数额x在60≤x<120范围的人数是1000×=560(人).18.(1)证明:∵AB是⊙O的直径,∴∠BDA=90°,∴BD⊥AC,∠BDC=90°,∵BF切⊙O于B,∴AB⊥BF,∵CF∥AB,∴CF⊥BF,∠FCB=∠ABC,∵AB=AC,∴∠ACB=∠ABC,∴∠ACB=∠FCB,∵BD⊥AC,BF⊥CF,∴BD=BF;(2)解:∵AB=10,AB=AC,∴AC=10,∵CD=4,∴AD=10﹣4=6,在Rt△ADB中,由勾股定理得:BD==8,在Rt△BDC中,由勾股定理得:BC==4.19.解:如图作CE⊥AB于E.在Rt△ACE中,∵∠A=45°,∴AE=EC,设AE=EC=x,则BE=x﹣5,在Rt△BCE中,∵tan53°=,∴=,解得x=20,∴AE=EC=20,∴AC=20=28.2,BC==25,∴A船到C的时间≈=0.94小时,B船到C的时间==1小时,∴C船至少要等待0.94小时才能得到救援.20.解:(1)将B(3,1)代入y=,∴k=3,将A(m,3)代入y=,∴m=1,∴A(1,3),将A(1,3)代入代入y=﹣x+b,∴b=4,∴y=﹣x+4(2)设P(x,y),由(1)可知:1≤x≤3,∴PD=y=﹣x+4,OD=x,∴S=x(﹣x+4),∴由二次函数的图象可知:S的取值范围为:≤S≤2故答案为:(1)y=﹣x+4;y=.21.解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为20元/个,B种魔方的单价为15元/个.(2)设购进A种魔方m个(0≤m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=20m×0.8+15(100﹣m)×0.4=10m+600;w活动二=20m+15(100﹣m﹣m)=﹣10m+1500.当w活动一<w活动二时,有10m+600<﹣10m+1500,解得:m<45;当w活动一=w活动二时,有10m+600=﹣10m+1500,解得:m=45;当w活动一>w活动二时,有10m+600>﹣10m+1500,解得:45<m≤50.综上所述:当m<45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m>45时,选择活动二购买魔方更实惠.(按购买3个A种魔方和4个B种魔方需要130元解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为26元/个,B种魔方的单价为13元/个.(2)设购进A种魔方m个(0≤m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=26m×0.8+13(100﹣m)×0.4=15.6m+520;w活动二=26m+13(100﹣m﹣m)=1300.当w活动一<w活动二时,有15.6m+520<1300,解得:m<50;当w活动一=w活动二时,有15.6m+520=1300,解得:m=50;当w活动一>w活动二时,有15.6m+520>1300,不等式无解.综上所述:当m<50时,选择活动一购买魔方更实惠;当m=50时,选择两种活动费用相同.22.解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,(2)由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,=2+5=7,∴MN最大∴S=PM2=×MN2=×(7)2=.△PMN最大23.解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,PA=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴BN=OM=m,∴=,即=,解得m=0(舍去)或m=2.5,∴M(2.5,0);当∠NBP=90°时,则有=,∵A(3,0),B(0,2),P(m,﹣m+2),∴BP==m,AP==(3﹣m),∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(2.5,0)或(,0);②由①可知M(m,0),P(m,﹣m+2),N(m,﹣m2+m+2),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=3(三点重合,舍去)或m=;当M为线段PN的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=3(舍去)或m=﹣1;当N为线段PM的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=3(舍去)或m=﹣;综上可知当M,P,N三点成为“共谐点”时m的值为或﹣1或﹣.。

2017河南省中考数学试卷及答案

2017河南省中考数学试卷及答案

年河南省中招数学试卷及答案2017年河南省普通高中招生考试试卷2017 数学注意事项:.分钟6页,三个大题,满分120分,考试时间1001.本试卷共. 本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效2.. 分)下列各小题均有四个答案,其中只有一个是正确的(每题3分,共30一、选择题)下列各数中比1大的数是( 1.A. 2 B. 0 C. -1 D.-3)年,我国国内生产总值达到74.4万亿元,用科学计数法表示为( 2.201614 ×10 D. 7.44× C. 74.4A. 74.4×10 B. 7.44×10 3.某几何体的左视图如下图13121310所示,则该几何体不可能是()31??2(解分式方程4. ),去分母得xx?1?1=3 C.1-2x-2=-3D.1-2x+2=3(x-1)A.1-2(x-1)=-3 B.1-2次成绩的100分,则该同学这695分,95分,95分,805.八年级某同学6次数学小测验的成绩分别为分,85分,众数和中位数分别是() 85分 C. 90分,95分 D. 95分,A.95分,95分 B. 95分,90分2)6.一元二次方程2x-5x-2=0根的情况是(没有实数根 C.有两个相等的实数根 B.有两个不相等的实数根只有一个实数根 D.A.□□)ABCD是菱形的只有(如图,在判定ABCD中,对角线AC、BD相交于点O,添加下列条件不能7...2∠⊥BD B.AB=BC C.AC=BD D.∠1=A.AC,若转动转盘如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字8.-1,0,1,2两次,每次转盘停止后记录指针所指区域数字(当指针恰好指在分界线上时,不记,重转)则记录两个数字都是正数的概率为()1111A. B. C. D. 2864的中轴上,AB边2的正方形ABCDAB在x9.我们知道:四边形具有不稳定性,如图,在平面直角坐标系中,边长为??DC坐的对应点处,则点yO点是坐标原点。

2017河南省中考数学试卷和答案

2017河南省中考数学试卷和答案

2017年河南省普通高中招生考试试卷数学注意事项:1. 本试卷共6页.三个大题.满分120分.考试时间100分钟.2. 本试卷上不要答题.请按答题卡上注意事项的要求直接把答案填写在答题 卡上.答在试卷上的答案无效.数根 D.没有实数根□ ABCD 是菱形的只有( ) A.AC 丄 BD B.AB=BC C.AC=BD 8.如图是一次数学活动课制作的一个转盘D. / 1= / 2 .盘面被等分成四个扇形区域 .并分7.如图.在口 ABCD 中.对角线AC 、BD 相交于点 O.添加下列条件不能 判定一、选择题(每题 是正确的.1.下列各数中比1 A. 2B. 03分.共30 大的数是( C. -1分) F 列各小题均有四个答案.其中只有一个 ) D.-374.4万亿元.用科学计数法表示为(132.2016年.我国国内生产总值达到 A. 74.4 X 1012B. 7.44 X 10 13C. 74.4 X 10 133.某几何体的左视图如下图所示.则该几何体不可能是()D. 7.44 X 10 14)B h".去分母得 B.1-2 (x-1 ) =34. 解分式方程-1-x 1A.1-2 (x-1 ) =-35. 八年级某同学6次数学小测验的成绩分别为 C.1-2x-2=-3 80 分.85分.100分.则该同学这6次成绩的众数和中位数分别是(A.95 分.95 分B. 95 分.90 分C. 90 分.95 分 6. 一元二次方程2x 2-5x-2=0 根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根D.1 -2x+2=3 分.95分.95分.95)D. 95 分.85 分C.只有一个实( ) 2别标有数字-1.0,12 字(当指针恰好指在分界线上时率为()1 11 A. 1B. 1C. 1864若转动转盘两次.每次转盘停止后记录指针所指区域数.不记.重转)则记录两个数字都是正数的概 D.9. 我们知道:四边形具有不稳定性 方形ABCD 边AB 在x 轴上.AB形沿箭头方向推.使点D 落在y 轴正半轴上点 ()A. ( 3.3)B. (2,1 )C. (1. 3)10. 如图.将半径为2.圆心角为120 °的扇形 1 2.如图.在平面直角坐标系中.边长为2的正 的中点是坐标原点 0。

(完整版)2017年河南省中考数学试卷(含答案解析版)

(完整版)2017年河南省中考数学试卷(含答案解析版)

2017年河南省中考数学试卷一、选择题(每小题3分,共30分)1.(3分)下列各数中比1大的数是( )A .2B .0C .﹣1D .﹣32.(3分)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示( )A .74.4×1012B .7.44×1013C .74.4×1013D .7.44×10153.(3分)某几何体的左视图如图所示,则该几何体不可能是( )A.B.C.D.4.(3分)解分式方程﹣2=,去分母得( )1x ‒131‒x A .1﹣2(x ﹣1)=﹣3B .1﹣2(x ﹣1)=3C .1﹣2x ﹣2=﹣3D .1﹣2x +2=35.(3分)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是( )A .95分,95分B .95分,90分C .90分,95分D .95分,85分6.(3分)一元二次方程2x 2﹣5x ﹣2=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根7.(3分)如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能判定▱ABCD 是菱形的只有( )sA .AC ⊥BDB .AB=BC C .AC=BD D .∠1=∠28.(3分)如图是一次数学活动可制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )A .B .C .D .181614129.(3分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D′处,则点C 的对应点C′的坐标为( )A .(,1)B .(2,1)C .(1,)D .(2,)33310.(3分)如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O ,B 的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是( )an l l n beA .B .2﹣C .2﹣D .4﹣2π33π332π332π3二、填空题(每小题3分,共15分)11.(3分)计算:23﹣= .412.(3分)不等式组的解集是 .{x ‒2≤0x ‒12<x 13.(3分)已知点A (1,m ),B (2,n )在反比例函数y=﹣的图象上,则m2x 与n 的大小关系为 .14.(3分)如图1,点P 从△ABC 的顶点B 出发,沿B→C→A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是 .15.(3分)如图,在Rt △ABC 中,∠A=90°,AB=AC ,BC=+1,点M ,N 分别2是边BC ,AB 上的动点,沿MN 所在的直线折叠∠B ,使点B 的对应点B′始终落在边AC 上,若△MB′C 为直角三角形,则BM 的长为 .三、解答题(本题共8个小题,满分75分)16.(8分)先化简,再求值:(2x +y )2+(x ﹣y )(x +y )﹣5x (x ﹣y ),其中x=+1,y=﹣1.2217.(9分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A 0≤x <304B 30≤x <6016C 60≤x <90a D 90≤x <120b Ex ≥1202请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有 人,a +b= ,m= ;(2)求扇形统计图中扇形C 的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x 在60≤x <120范围的人数.18.(9分)如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 交AC 边于点D ,过点C 作CF ∥AB ,与过点B 的切线交于点F ,连接BD .(1)求证:BD=BF ;(2)若AB=10,CD=4,求BC 的长.g o19.(9分)如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C ,此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45°方向,B 船测得渔船C 在其南偏东53°方向,已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°45≈,tan53°≈,≈1.41)3543220.(9分)如图,一次函数y=﹣x +b 与反比例函数y=(x >0)的图象交于点kx A (m ,3)和B (3,1).(1)填空:一次函数的解析式为 ,反比例函数的解析式为 ;(2)点P 是线段AB 上一点,过点P 作PD ⊥x 轴于点D ,连接OP ,若△POD 的面积为S ,求S 的取值范围.g21.(10分)学校“百变魔方”社团准备购买A ,B 两种魔方,已知购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A ,B 两种魔方共100个(其中A 种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.(10分)如图1,在Rt △ABC 中,∠A=90°,AB=AC ,点D ,E 分别在边AB ,AC 上,AD=AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想 图1中,线段PM 与PN 的数量关系是  ,位置关系是 ;(2)探究证明把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸把△ADE 绕点A 在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.23.(11分)如图,直线y=﹣x +c 与x 轴交于点A (3,0),与y 轴交于点B ,抛23物线y=﹣x 2+bx +c 经过点A ,B .43(1)求点B 的坐标和抛物线的解析式;(2)M (m ,0)为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P ,N .①点M 在线段OA 上运动,若以B ,P ,N 为顶点的三角形与△APM 相似,求点M 的坐标;②点M 在x 轴上自由运动,若三个点M ,P ,N 中恰有一点是其它两点所连线段的中点(三点重合除外),则称M ,P ,N 三点为“共谐点”.请直接写出使得M ,P ,N 三点成为“共谐点”的m的值.2017年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2017•河南)下列各数中比1大的数是( )A.2B.0C.﹣1D.﹣3【考点】18:有理数大小比较.【分析】根据正数大于零、零大于负数,可得答案.【解答】解:2>0>﹣1>﹣3,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零、零大于负数是解题关键.2.(3分)(2017•河南)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示( )A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×1015【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将74.4万亿用科学记数法表示为:7.44×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•河南)某几何体的左视图如图所示,则该几何体不可能是( rA.B.C.D.【考点】U3:由三视图判断几何体.【分析】左视图是从左边看到的,据此求解.【解答】解:从左视图可以发现:该几何体共有两列,正方体的个数分别为2,1,D 不符合,故选D .【点评】考查了由三视图判断几何体的知识,解题的关键是了解该几何体的构成,难度不大. 4.(3分)(2017•河南)解分式方程﹣2=,去分母得( )1x ‒131‒x A .1﹣2(x ﹣1)=﹣3B .1﹣2(x ﹣1)=3C .1﹣2x ﹣2=﹣3D .1﹣2x +2=3【考点】B3:解分式方程.【专题】11 :计算题;522:分式方程及应用.【分析】分式方程变形后,两边乘以最简公分母x ﹣1得到结果,即可作出判断.【解答】解:分式方程整理得:﹣2=﹣,1x ‒13x ‒1去分母得:1﹣2(x ﹣1)=﹣3,故选A【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检5.(3分)(2017•河南)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是( )A.95分,95分B.95分,90分C.90分,95分D.95分,85分【考点】W5:众数;W4:中位数.【分析】将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决.【解答】解:位于中间位置的两数分别是95分和95分,故中位数为95分,数据95出现了3次,最多,故这组数据的众数是95分,故选A.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.6.(3分)(2017•河南)一元二次方程2x2﹣5x﹣2=0的根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根【考点】AA:根的判别式.【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣5)2﹣4×2×(﹣2)=41>0,∴方程有两个不相等的实数根.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.(3分)(2017•河南)如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能判定▱ABCD是菱形的只有( )A .AC ⊥BDB .AB=BCC .AC=BD D .∠1=∠2【考点】L9:菱形的判定;L5:平行四边形的性质.【分析】根据平行四边形的性质.菱形的判定方法即可一一判断.【解答】解:A 、正确.对角线相等是平行四边形的菱形.B 、正确.邻边相等的平行四边形是菱形.C 、错误.对角线相等的平行四边形是矩形,不一定是菱形.D 、正确.可以证明平行四边形ABCD 的邻边相等,即可判定是菱形.故选C .【点评】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法.8.(3分)(2017•河南)如图是一次数学活动可制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )A .B .C .D .18161412【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个数字都是正数的情况数,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两个数字都是正数的有4种情况,∴两个数字都是正数的概率是:=.41614故选:C .【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,解题时注意:概率=所求情况数与总情况数之比. 9.(3分)(2017•河南)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D′处,则点C 的对应点C′的坐标为( )A .(,1)B .(2,1)C .(1,)D .(2,)333【考点】LE :正方形的性质;D5:坐标与图形性质;L1:多边形.【分析】由已知条件得到AD′=AD=2,AO=AB=1,根据勾股定理得到OD′=12=,于是得到结论.AD '2‒OA 23【解答】解:∵AD′=AD=2,AO=AB=1,12∴OD′==,AD '2‒OA 23∵C′D′=2,C′D′∥AB ,∴C (2,),3故选D .【点评】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.10.(3分)(2017•河南)如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O ,B 的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是( )A .B .2﹣C .2﹣D .4﹣2π33π332π332π3【考点】MO :扇形面积的计算;R2:旋转的性质.【分析】连接OO′,BO′,根据旋转的想知道的∠OAO′=60°,推出△OAO′是等边三角形,得到∠AOO′=60°,推出△OO′B 是等边三角形,得到∠AO′B=120°,得到∠O′B′B=∠O′BB′=30°,根据图形的面积公式即可得到结论.【解答】解:连接OO′,BO′,∵将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,∴∠OAO′=60°,∴△OAO′是等边三角形,∴∠AOO′=60°,∵∠AOB=120°,∴∠O′OB=60°,∴△OO′B 是等边三角形,∴∠AO′B=120°,∵∠AO′B′=120°,∴∠B′O′B=120°,∴∠O′B′B=∠O′BB′=30°,∴图中阴影部分的面积=S △B′O′B ﹣(S 扇形O′OB ﹣S △OO′B )=×1×2﹣(﹣×2×)=2﹣.12360⋅π×2236012332π3故选C .【点评】本题考查了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键. 二、填空题(每小题3分,共15分)11.(3分)(2017•河南)计算:23﹣= 6 .4【考点】22:算术平方根;1E :有理数的乘方.【分析】表示4的算术平方根,值为2.4【解答】解:23﹣=8﹣2=6,4故答案为:6.【点评】本题主要考查了算术平方根和有理数的乘方的定义,是一个基础题目,比较简单. 12.(3分)(2017•河南)不等式组的解集是 ﹣1<x ≤2 .{x ‒2≤0x ‒12<x 【考点】CB :解一元一次不等式组.【分析】先求出不等式的解集,再求出不等式组的公共部分,【解答】解:{x ‒2≤0①x ‒12<x②解不等式①0得:x ≤2,解不等式②得:x >﹣1,∴不等式组的解集是﹣1<x ≤2,故答案为﹣1<x ≤2.【点评】题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.13.(3分)(2017•河南)已知点A (1,m ),B (2,n )在反比例函数y=﹣的图2x 象上,则m 与n 的大小关系为 m <n .【考点】G6:反比例函数图象上点的坐标特征.【分析】由反比例函数y=﹣可知函数的图象在第二、第四象限内,可以知道在2x 每个象限内,y 随x 的增大而增大,根据这个判定则可.【解答】解:∵反比例函数y=﹣中k=﹣2<0,2x ∴此函数的图象在二、四象限内,在每个象限内,y 随x 的增大而增大,∵0<1<2,∴A 、B 两点均在第四象限,∴m <n .故答案为m <n .【点评】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出反比例函数图象所在的象限是解答此题的关键. 14.(3分)(2017•河南)如图1,点P 从△ABC 的顶点B 出发,沿B→C→A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是 12 .【考点】E7:动点问题的函数图象.【分析】根据图象可知点P 在BC 上运动时,此时BP 不断增大,而从C 向A 运动时,BP 先变小后变大,从而可求出BC 与AC 的长度.【解答】解:根据图象可知点P 在BC 上运动时,此时BP 不断增大,由图象可知:点P 从B 先A 运动时,BP 的最大值为5,即BC=5,由于M 是曲线部分的最低点,∴此时BP 最小,即BP ⊥AC ,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC 的面积为:×4×6=1212故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC 与AC 的长度,本题属于中等题型.15.(3分)(2017•河南)如图,在Rt △ABC 中,∠A=90°,AB=AC ,BC=+1,2点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠∠B ,使点B 的对应点B′始终落在边AC 上,若△MB′C 为直角三角形,则BM 的长为 +或112212.【考点】PB :翻折变换(折叠问题);KW :等腰直角三角形.【分析】①如图1,当∠B′MC=90°,B′与A 重合,M 是BC 的中点,于是得到结论;②如图2,当∠MB′C=90°,推出△CMB′是等腰直角三角形,得到CM=MB′,列方程即可得到结论.2【解答】解:①如图1,当∠B′MC=90°,B′与A 重合,M 是BC 的中点,∴BM=BC=+;1212212②如图2,当∠MB′C=90°,∵∠A=90°,AB=AC ,∴∠C=45°,∴△CMB′是等腰直角三角形,∴CM=MB′,2∵沿MN 所在的直线折叠∠B ,使点B 的对应点B′,∴BM=B′M ,∴CM=BM ,2∵BC=+1,2d ∴CM +BM=BM +BM=+1,22∴BM=1,综上所述,若△MB′C 为直角三角形,则BM 的长为+或1,12212故答案为:+或1.12212【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.三、解答题(本题共8个小题,满分75分)16.(8分)(2017•河南)先化简,再求值:(2x +y )2+(x ﹣y )(x +y )﹣5x (x ﹣y ),其中x=+1,y=﹣1.22【考点】4J :整式的混合运算—化简求值.【专题】11 :计算题.【分析】首先化简(2x +y )2+(x ﹣y )(x +y )﹣5x (x ﹣y ),然后把x=+1,y=﹣122代入化简后的算式,求出算式的值是多少即可.【解答】解:(2x +y )2+(x ﹣y )(x +y )﹣5x (x ﹣y )=4x 2+4xy +y 2+x 2﹣y 2﹣5x 2+5xy=9xy22当x=+1,y=﹣1时,22原式=9(+1)(﹣1)=9×(2﹣1)=9×1=9【点评】此题主要考查了整式的混合运算﹣化简求值问题,要熟练掌握,解答此题的关键是要明确:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.17.(9分)(2017•河南)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A0≤x<304B30≤x<6016C60≤x<90aD90≤x<120bE x≥1202请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有 50 人,a+b= 28 ,m= 8 ;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.【考点】VB :扇形统计图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据B 组的频数是16,对应的百分比是32%,据此求得调查的总人数,利用百分比的意义求得b ,然后求得a 的值,m 的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数1000乘以对应的比例即可求解.【解答】解:(1)调查的总人数是16÷32%=50(人),则b=50×16%=8,a=50﹣4﹣16﹣8﹣2=20,A 组所占的百分比是=8%,则m=8.450a +b=8+20=28.故答案是:50,28,8;(2)扇形统计图中扇形C 的圆心角度数是360°×=144°;2050(3)每月零花钱的数额x 在60≤x <120范围的人数是1000×=560(人).2850【点评】本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小. 18.(9分)(2017•河南)如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 交AC 边于点D ,过点C 作CF ∥AB ,与过点B 的切线交于点F ,连接BD .(1)求证:BD=BF ;(2)若AB=10,CD=4,求BC 的长.【考点】MC:切线的性质;KH:等腰三角形的性质.【分析】(1)根据圆周角定理求出BD⊥AC,∠BDC=90°,根据切线的性质得出AB⊥BF,求出∠ACB=∠FCB,根据角平分线性质得出即可;(2)求出AC=10,AD=6,根据勾股定理求出BD,再根据勾股定理求出BC即可.【解答】(1)证明:∵AB是⊙O的直径,∴∠BDA=90°,∴BD⊥AC,∠BDC=90°,∵BF切⊙O于B,∴AB⊥BF,∵CF∥AB,∴CF⊥BF,∠FCB=∠ABC,∵AB=AC,∴∠ACB=∠ABC,∴∠ACB=∠FCB,∵BD⊥AC,BF⊥CF,∴BD=BF;(2)解:∵AB=10,AB=AC,∴AC=10,∵CD=4,∴AD=10﹣4=6,在Rt △ADB 中,由勾股定理得:BD==8,102‒62在Rt △BDC 中,由勾股定理得:BC==4.82+425【点评】本题考查了切线的性质,勾股定理,角平分线性质,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.19.(9分)(2017•河南)如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C ,此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45°方向,B 船测得渔船C 在其南偏东53°方向,已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)4535432【考点】TB :解直角三角形的应用﹣方向角问题.【分析】如图作CE ⊥AB 于E .设AE=EC=x ,则BE=x ﹣5,在Rt △BCE 中,根据tan53°=,可得=,求出x ,再求出BC 、AC ,分别求出A 、B 两船到C 的EC BE 43xx ‒5时间,即可解决问题.【解答】解:如图作CE ⊥AB 于E .g在Rt △ACE 中,∵∠A=45°,∴AE=EC ,设AE=EC=x ,则BE=x ﹣5,在Rt △BCE 中,∵tan53°=,ECBE ∴=,43x x ‒5解得x=20,∴AE=EC=20,∴AC=20=28.2,2BC==25,ECsin 53°∴A 船到C 的时间≈=0.94小时,B 船到C 的时间==1小时,28.2302525∴C 船至少要等待0.94小时才能得到救援.【点评】本题考查解直角三角形的应用﹣方向角问题、锐角三角函数、速度、时间、路程之间的关系等知识,解题的关键是学会构建方程解决问题,属于中考常考题型. 20.(9分)(2017•河南)如图,一次函数y=﹣x +b 与反比例函数y=(x >0)的kx 图象交于点A (m ,3)和B (3,1).th (1)填空:一次函数的解析式为 y=﹣x +4 ,反比例函数的解析式为 y= ;3x (2)点P 是线段AB 上一点,过点P 作PD ⊥x 轴于点D ,连接OP ,若△POD 的面积为S ,求S的取值范围.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)先将B (3,1)代入反比例函数即可求出k 的值,然后将A 代入反比例函数即可求出m 的,再根据B 两点的坐标即可求出一次函数的解析式.(2)设P 的坐标为(x ,y ),由于点P 在直线AB 上,从而可知PD=y ,OD=x ,由题意可知:1≤x ≤3,从而可求出S 的范围【解答】解:(1)将B (3,1)代入y=,k x ∴k=3,将A (m ,3)代入y=,3x ∴m=1,∴A (1,3),将A (1,3)代入代入y=﹣x +b ,∴b=4,∴y=﹣x +4(2)设P (x ,y ),由(1)可知:1≤x ≤3,∴PD=y=﹣x +4,OD=x ,∴S=x (﹣x +4),12∴由二次函数的图象可知:S 的取值范围为:≤S ≤232故答案为:(1)y=﹣x +4;y=.3x 【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是求出一次函数与反比例函数的解析式,本题属于中等题型.21.(10分)(2017•河南)学校“百变魔方”社团准备购买A ,B 两种魔方,已知购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A ,B 两种魔方共100个(其中A 种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.【考点】9A :二元一次方程组的应用.【分析】(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个,根据“购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B种魔方所需款数相同”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设购进A 种魔方m 个(0≤m ≤50),总价格为w 元,则购进B 种魔方(100﹣m )个,根据两种活动方案即可得出w 活动一、w 活动二关于m 的函数关系式,再分别令w 活动一<w 活动二、w 活动一=w 活动二和w 活动一>w 活动二,解出m 的取值范围,此题得解.【解答】解:(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个,根据题意得:,{2x +6y =1303x =4y 解得:.{x =20y =15答:A 种魔方的单价为20元/个,B 种魔方的单价为15元/个.(2)设购进A 种魔方m 个(0≤m ≤50),总价格为w 元,则购进B 种魔方(100﹣m )个,根据题意得:w 活动一=20m ×0.8+15(100﹣m )×0.4=10m +600;w 活动二=20m +15(100﹣m ﹣m )=﹣10m +1500.当w 活动一<w 活动二时,有10m +600<﹣10m +1500,解得:m <45;当w 活动一=w 活动二时,有10m +600=﹣10m +1500,解得:m=45;当w 活动一>w 活动二时,有10m +600>﹣10m +1500,解得:45<m ≤50.综上所述:当m <45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m >45时,选择活动二购买魔方更实惠.【点评】本题考查了二元一次方程组的应用、一次函数的应用、解一元一次不等式以及解一元一次方程,解题的关键是:(1)找准等量关系,列出关于x 、y 的二元一次方程组;(2)根据两种活动方案找出w 活动一、w 活动二关于m的函数关系式.22.(10分)(2017•河南)如图1,在Rt △ABC 中,∠A=90°,AB=AC ,点D ,Eb分别在边AB ,AC 上,AD=AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想图1中,线段PM 与PN 的数量关系是 PM=PN ,位置关系是 PM ⊥PN ;(2)探究证明把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸把△ADE 绕点A 在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.【考点】RB :几何变换综合题.【分析】(1)利用三角形的中位线得出PM=CE ,PN=BD ,进而判断出1212BD=CE ,即可得出结论,另为利用三角形的中位线得出平行线即可得出结论;(2)先判断出△ABD ≌△ACE ,得出BD=CE ,同(1)的方法得出PM=BD ,PN=BD ,即可得出PM=PN ,同(1)的方法即可得出结论;1212(3)先判断出MN 最大时,△PMN 的面积最大,进而求出AN ,AM ,即可得出MN 最大=AM +AN ,最后用面积公式即可得出结论.【解答】解:(1)∵点P ,N 是BC ,CD 的中点,∴PN ∥BD ,PN=BD ,12∵点P ,M 是CD ,DE 的中点,∴PM ∥CE ,PM=CE ,12∵AB=AC ,AD=AE ,∴BD=CE ,∴PM=PN ,∵PN ∥BD ,∴∠DPN=∠ADC ,∵PM ∥CE ,∴∠DPM=∠DCA ,∵∠BAC=90°,∴∠ADC +∠ACD=90°,∴∠MPN=∠DPM +∠DPN=∠DCA +∠ADC=90°,∴PM ⊥PN ,故答案为:PM=PN ,PM ⊥PN ,(2)由旋转知,∠BAD=∠CAE ,∵AB=AC ,AD=AE ,∴△ABD ≌△ACE (SAS ),∴∠ABD=∠ACE ,BD=CE ,同(1)的方法,利用三角形的中位线得,PN=BD ,PM=CE ,1212∴PM=PN ,∴△PMN 是等腰三角形,同(1)的方法得,PM ∥CE ,∴∠DPM=∠DCE ,同(1)的方法得,PN ∥BD ,∴∠PNC=∠DBC ,∵∠DPN=∠DCB +∠PNC=∠DCB +∠DBC ,∴∠MPN=∠DPM +∠DPN=∠DCE +∠DCB +∠DBC =∠BCE +∠DBC=∠ACB +∠ACE +∠DBC =∠ACB +∠ABD +∠DBC=∠ACB +∠ABC ,∵∠BAC=90°,∴∠ACB +∠ABC=90°,∴∠MPN=90°,∴△PMN 是等腰直角三角形,(3)如图2,同(2)的方法得,△PMN 是等腰直角三角形,∴MN 最大时,△PMN 的面积最大,∴DE ∥BC 且DE 在顶点A 上面,∴MN 最大=AM +AN ,连接AM ,AN ,在△ADE 中,AD=AE=4,∠DAE=90°,∴AM=2,2在Rt △ABC 中,AB=AC=10,AN=5,2∴MN 最大=2+5=7,222∴S △PMN 最大=PM 2=×MN 2=×(7)2=.121212142492【点评】此题是几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质,解(1)的关键是判断出PM=CE ,PN=BD ,解(2)的关键是判断出△ABD ≌△ACE ,1212解(3)的关键是判断出MN 最大时,△PMN 的面积最大,是一道基础题目. 23.(11分)(2017•河南)如图,直线y=﹣x +c 与x 轴交于点A (3,0),与y 轴23交于点B ,抛物线y=﹣x 2+bx +c 经过点A ,B .43(1)求点B 的坐标和抛物线的解析式;(2)M (m ,0)为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P ,N .①点M 在线段OA 上运动,若以B ,P ,N 为顶点的三角形与△APM 相似,求点M 的坐标;②点M 在x 轴上自由运动,若三个点M ,P ,N 中恰有一点是其它两点所连线段的中点(三点重合除外),则称M ,P ,N 三点为“共谐点”.请直接写出使得M ,P ,N 三点成为“共谐点”的m 的值.【考点】HF :二次函数综合题.【分析】(1)把A 点坐标代入直线解析式可求得c ,则可求得B 点坐标,由A 、B 的坐标,利用待定系数法可求得抛物线解析式;(2)①由M 点坐标可表示P 、N 的坐标,从而可表示出MA 、MP 、PN 、PB 的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m 的方程,可求得m 的值;②用m 可表示出M 、P 、N 的坐标,由题意可知有P 为线段MN 的中点、M 为线段PN 的中点或N 为线段PM 的中点,可分别得到关于m 的方程,可求得m 的值.【解答】解:(1)∵y=﹣x +c 与x 轴交于点A (3,0),与y 轴交于点B ,23∴0=﹣2+c ,解得c=2,∴B (0,2),∵抛物线y=﹣x 2+bx +c 经过点A ,B ,43∴,解得,{‒12+3b +c =0c =2{b =103c =2∴抛物线解析式为y=﹣x 2+x +2;43103(2)①由(1)可知直线解析式为y=﹣x +2,23∵M (m ,0)为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P ,N ,∴P (m ,﹣m +2),N (m ,﹣m 2+m +2),2343103∴PM=﹣m +2,PA=3﹣m ,PN=﹣m 2+m +2﹣(﹣m +2)=﹣m 2+4m ,23431032343∵△BPN 和△APM 相似,且∠BPN=∠APM ,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN ⊥MN ,∴BN=OM=m ,∴=,即=,解得m=0(舍去)或m=2,BN AM PN PM m3‒m ‒43m 2+4m‒23m +2∴M (2,0);当∠NBP=90°时,则有=,PN PA BPMP ∵A (3,0),B (0,2),P (m ,﹣m +2),23∴BP==m ,AP==(3﹣m ),m 2+(‒23m +2‒2)2133(m ‒3)2+(‒23m +2)2133∴=,解得m=0(舍去)或m=,‒43m 2+4m 133(3‒m )133m‒23m +2118∴M (,0);118综上可知当以B ,P ,N 为顶点的三角形与△APM 相似时,点M 的坐标为(2,0)或(,0);118②由①可知M (m ,0),P (m ,﹣m +2),N (m ,﹣m 2+m +2),2343103∵M ,P ,N 三点为“共谐点”,∴有P 为线段MN 的中点、M 为线段PN 的中点或N 为线段PM 的中点,当P 为线段MN 的中点时,则有2(﹣m +2)=﹣m 2+m +2,解得m=3(三点重2343103合,舍去)或m=;12当M 为线段PN 的中点时,则有﹣m +2+(﹣m 2+m +2)=0,解得m=3(舍去)2343103或m=﹣1;当N 为线段PM 的中点时,则有﹣m +2=2(﹣m 2+m +2),解得m=3(舍去)或2343103m=﹣;14综上可知当M ,P ,N 三点成为“共谐点”时m 的值为或﹣1或﹣.1214【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、相似三角形的判定和性质、勾股定理、线段的中点、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中利用相似三角形的性质得到关于m 的方程是解题的关键,注意分两种情况,在(2)②中利用“共谐点”的定义得到m 的方程是解题的关键,注意分情况讨论.本题考查知识点较多,综合性较强,分情况讨论比较多,难度较大.。

2017年河南省中考数学试卷和答案解析

2017年河南省中考数学试卷和答案解析

列条件不能判定□ ABCD 是菱形的只有
()
A. AC⊥BD
B. AB BC
C. AC BD 效
D. 1 2 数学试卷 第 1 页(共 6 页)
8.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区
域,并分别标有数字 1, 0 ,1 , 2 .若转动转盘两次,每次转盘停止后

.
14.如图 1,点 P 从△ABC 的顶点 B 出发,沿 B C A 匀速运动到点 A .图 2 是点 P 运 动时,线段 BP 的长度 y 随时间 x 变化的关系图象,其中 M 为曲线部分的最低点,则
△ABC 的面积是
.
数学试卷 第 2 页(共 6 页)
图1
图2
15. 如 图 , 在 Rt△ABC 中 , A 90 , AB AC ,
C. 1
() D. 3
2.2016 年,我国国内生产总值达到 74.4 万亿元.数据“ 74.4 万亿”用科学记数法表示为
()
A. 74.4 1012
B. 7.44 1013
C. 74.4 1013
D. 7.44 1014
3.某几何体的左视图如下图所示,则该几何体不可能是 上
()

A
B
C
(1)填空:这次被调查的同学共有
人, a b
,m

(2)求扇形统计图中扇形 C 的圆心角度数;
(3)该校共有学生1 000 人,请估计每月零花钱的数额 x 在 60≤x<120 范围的人数.
18.(本小题满分 9 分) 如 图 , 在 △ABC 中 , AB AC , 以 AB 为 直 径 的 O 交 AC 边 于 点 D , 过 点 C 作

2017年河南省中考数学试题及答案解析

2017年河南省中考数学试题及答案解析

2017年河南省中考数学试题及答案解析学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2017年)下列各数中比1大的数是()A.2 B.0 C.-1 D.-32.(2017年)2016年,我国国内生产总值达到74.4万亿元.数据“74.4万亿”用科学计数法表示为()A.B.C.D.3.(2017年)某几何体的左视图如图所示,则该几何体不可能是( )A.B.C.D.4.(2017年)解分式方程,去分母得()A.B.C.D.5.(2017年)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分6.(2017年)一元二次方程的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根7.(2017年)如图,在中,对角线AC,BD相交于点O,添加下列条件不能判定是菱形的只有()A.B.C.D.8.(2017年)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.9.(2017年)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形的边AB在轴上,AB的中点是坐标原点O固定点A,B,把正方形沿箭头方向推,使点D落在轴正半轴上点处,则点C的对应点的坐标为()A.B.C.D.10.(2017年)如图,将半径为2,圆心角为的扇形OAB绕点A逆时针旋转,点O,B的对应点分别为,,连接,则图中阴影部分的面积是()A.B.C.D.二、填空题11.(2017年)计算:_________.12.(2017年)不等式组的解集是_________.13.(2017年)已知点,在反比例函数的图象上,则与的大小关系为________14.(2017年)(题文)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是_____.15.(2017年)如图,在中,,,,点,分别是边,上的动点,沿所在的直线折叠,使点的对应点始终落在边上.若为直角三角形,则的长为_________.三、解答题16.(2017年)先化简,再求值:,其中,.17.(2017年)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有人,,;(2)求扇形统计图中扇形的圆心角度数;(3)该校共有1000人,请估计每月零花钱的数额在范围的人数. 18.(2017年)如图,在中,,以为直径的⊙交边于点,过点作,与过点的切线交于点,连接.(1)求证:;(2)若,,求的长.19.(2017年)如图所示,我国两艘海监船,在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船.此时,船在船的正南方向5海里处,船测得渔船在其南偏东方向,船测得渔船在其南偏东方向.已知船的航速为30海里/小时,船的航速为25海里/小时,问船至少要等待多长时间才能得到救援?(参考数据:,,,)20.(2017年)如图,一次函数与反比例函数的图象交于点和.(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点是线段上一点,过点作轴于点,连接,若的面积为,求的取值范围.21.(2017年)学校“百变魔方”社团准备购买A,B两种魔方.已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.(2017年)如图1,在中,,,点,分别在边,上,,连接,点,,分别为,,的中点.(1)观察猜想图1中,线段与的数量关系是,位置关系是;(2)探究证明把绕点逆时针方向旋转到图2的位置,连接,,,判断的形状,并说明理由;(3)拓展延伸把绕点在平面内自由旋转,若,,请直接写出面积的最大值.23.(2017年)如图,直线与轴交于点,与轴交于点,抛物线经过点,.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一个动点,过点M垂直于x轴的直线与直线AB和抛物线分别交于点P、N,①点在线段上运动,若以,,为顶点的三角形与相似,求点的②点在轴上自由运动,若三个点,,中恰有一点是其它两点所连线段的中点(三点重合除外),则称,,三点为“共谐点”.请直接写出使得,,三点成为“共谐点”的的值.参考答案1.A【解析】试题分析:根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.考点:有理数的大小比较.2.B【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数, n的值用所给的数的整数位数减1,所以74.4万亿=74400000000000=7.44×1013,故选 B.考点:科学记数法.3.D【详解】解:几何体的左视图是从左面看几何体所得到的图形,选项A、B、C的左视图均为从左往右正方形个数为2,1,符合题意,选项D的左视图从左往右正方形个数为2,1,1,故选D.【点睛】本题考查几何体的三视图.4.A【解析】试题分析:方程两边同乘以x-1得到,故选A.考点:解分式方程.5.A这组数据中95出现了3次,次数最多,为众数;中位数为第3和第4两个数的平均数为95,故选A.6.B【解析】试题分析:这里a=2,b=-5,c=-2,所以△=,即可得方程有有两个不相等的实数根,故选B.考点:根的判别式.7.C【解析】试题分析:根据对角线互相垂直的平行四边形为菱形可得选项A正确;根据一组邻边相等的平行四边形为菱形可得选项B正确;选项 C,对角线相等的平行四边形为矩形,选项C错误;选项D,因,可得∠2=∠DCA,再由,可得∠1=∠DCA,所以AD=CD,由一组邻边相等的平行四边形为菱形即可判定是菱形,选项D正确,故选C.考点:菱形的判定.8.C【详解】列表得,由表格可知,总共有16种结果,两个数都为正数的结果有4种,所以两个数都为正数的概率为41=164,故选C.考点:用列表法(或树形图法)求概率.9.D【解析】试题分析:由题意可知A=AD=2,CD==2,AO=OB=1,在Rt△AO中,根据勾股定理求得,由即可得点的坐标为,故选D.考点:图形与坐标.10.C【解析】试题分析:连接O、B,根据旋转的性质及已知条件易证四边形AOB为菱形,且∠OB=∠O B=60°,又因∠A=∠A B=120°,所以∠B=120°,因∠O B+∠B =120°+60°=180°,即可得O、、三点共线,又因=B,可得∠B=∠B,再由∠O B=∠B+∠B=60°,可得∠B=∠B=30°,所以△OB为Rt三角形,由锐角三角函数即可求得B=,所以,故选C.考点:扇形的面积计算.11.6.【解析】试题分析:原式=8-2=6.考点:实数的运算.12.-1<x≤2.【解析】试题分析:解不等式①得,x≤2;解不等式②得,x>-1;所以不等式组的解集为-1<x≤2. 考点:一元一次不等式组的解法.13.m<n.【解析】试题分析:把点,分别代入可得m=-2,n=-1,所以m<n.考点:反比例函数图象上点的特征.14.12【解析】根据题意观察图象可得BC=5,点P在AC上运动时,BP AC时,BP有最小值,观察图象可得,BP的最小值为4,即BP AC时BP=4,又勾股定理求得CP=3,因点P从点C运动到点A,根据函数的对称性可得CP=AP=3,所以的面积是=12.15.1或.【解析】试题分析:在中,,,可得∠B=∠C=45°,由折叠可知,BM=,若使为直角三角形,分两种情况:①,由∠C=45°可得=,设BM=x,则==x,MC=,所以x+=,解得x=1,即BM=1;②,此时点B和点C重合,BM=.所以BM的长为1或.考点:折叠(翻折变换).16.原式=,当,时,原式=9.【解析】试题分析:根据整式的运算法则化简后再代入求值即可.试题解析:原式=当,时,原式=9xy=.考点:整式的运算.17.(1)50,28,8;(2) 144°;(3)560.【解析】试题分析:(1)用B组的人数除以B组人数所占的百分比,即可得这次被调查的同学的人数,利用A组的人数除以这次被调查的同学的人数即可求得m的值,用总人数减去A、B、E的人数即可求得a+b的值;(2)先求得C组人数所占的百分比,乘以360°即可得扇形统计图中扇形的圆心角度数;(3)用总人数1000乘以每月零花钱的数额在范围的人数的百分比即可求得答案.试题解析:(1)50,28,8;(2)(1-8%-32%-16%-4%)×360°=40%×360°=144°,即扇形统计图中扇形的圆心角度数为144°.(3).即每月零花钱的数额在范围的人数为560人.考点:统计图.18.(1)详见解析;(2).【解析】试题分析:(1)根据已知条件已知CB平分∠DCF,再证得、,根据角平分线的性质定理即可证得结论;(2)已知=10,,可求得AD =6,在Rt △ABD中,根据勾股定理求得的值,在Rt△BDC中,根据勾股定理即可求得BC 的长. 试题解析:(1)∵∴∠ABC=∠ACB∵∴∠ABC=∠FCB∴∠ACB=∠FCB,即CB平分∠DCF∵为⊙直径∴∠ADB=90°,即∵BF为⊙的切线∴∵∴(2) ∵=10,,∴AD=AC-CD=10-4=6,在Rt△ABD中,,在Rt△BDC中,BC=即BC 的长为.考点:圆的综合题.19.C船至少要等待0.94小时才能得到救援.【解析】试题分析:过点C作交AB的延长线于点D,可得∠CDA=90°,根据题意可知∠CDA=45°,设CD=x,则AD=CD=x,在Rt△BDC中,根据三角函数求得CD、BC的长,在Rt△ADC中,求得AC的长,再分别计算出B船到达C船处约需时间和A船到达C船处约需时间,比较即可求解.试题解析:过点C作交AB的延长线于点D,则∠CDA=90°已知∠CDA=45°,设CD=x,则AD=CD=x∴BD=AD-AB=x-5在Rt△BDC中,CD=BD·tan53°,即x=(x-5)·tan53°∴∴BC=∴B船到达C船处约需时间:25÷25=1(小时)在Rt△ADC中,AC= 1.41×20=28.2∴A船到达C船处约需时间:28.2÷30=0.94(小时)而0.94<1,所以C船至少要等待0.94小时才能得到救援.考点:解直角三角形的应用.20.(1),;(2)的取值范围是.试题分析:(1)把分别代入和,即可求得b、k的值,直接写出对应的解析式即可;(2)把点代入求得m=1,即可得点A的坐标设点P(n,-n+4),,因点是线段上一点,可得1≤n≤3,根据三角形的面积公式,用n表示出的面积为,根据n的取值范围即可求得S的取值范围.试题解析:(1),;(2)∵点在的图象上,∴,即可得m=1.∴A (1,3)而点是线段上一点,设点P(n,-n+4),则1≤n≤3∴S=∵且1≤n≤3∴当n=2时,=2,当n=1或3时,,∴的取值范围是.考点:一次函数与反比例函数的综合题.21.(1) A、B两种魔方的单价分别为20元、15元;(2) 当45<m≤50时,活动二更实惠;当m=45时,活动一、二同样实惠;当0≤m<45(或0<;m<50)时,活动一更实惠.【分析】(1) 设A、B两种魔方的单价分别为x元、y元,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”列出方程组,解方程组即可;(2)设购买A 魔方m 个,按活动一和活动二购买所需费用分别为1w 元、2w 元,根据题意用m 表示出1w 、2w ,列不等式比较即可. 【详解】试题解析:(1) 设A 、B 两种魔方的单价分别为x 元、y 元,根据题意得2613034x y x y +=⎧⎨=⎩,解得2015x y =⎧⎨=⎩即A 、B 两种魔方的单价分别为20元、15元;(2)设购买A 魔方m 个,按活动一和活动二购买所需费用分别为1w 元、2w 元, 依题意得1w =20m ×0.8+15×0.4×(100-m )=10m+600,2w =20m+15(100-m-m )=-10m+1500,①1w >2w 时,10m+600>-10m+1500,所以m>45; ②1w =2w 时,10m+600=-10m+1500,所以m=45; ③1w <2w 时,10m+600<-10m+1500,所以m<45;∴当45<m ≤50时,活动二更实惠;当m=45时,活动一、二同样实惠;当0≤m<45(或0<m<50)时,活动一更实惠.考点:二元一次方程组的应用;一次函数的应用. 22.(1)PM=PN ,;(2)等腰直角三角形,理由详见解析;(3).【解析】试题分析:(1)已知 点,,分别为,,的中点,根据三角形的中位线定理可得,,,根据平行线的性质可得∠DPM=∠DCE ,∠NPD=∠ADC ,在中,,,,可得BD=EC ,∠DCE+∠ADC=90°,即可得PM=PN ,∠DPM+∠NPD=90°,即;(2)是等腰直角三角形,根据旋转的性质易证△BAD ≌△CAE ,即可得BD=CE ,∠ABD=∠ACE ,根据三角形的中位线定理及平行线的性质(方法可类比(1)的方法)可得PM="PN," ∠MPD=∠ECD ,∠PNC=∠DBC ,所以∠MPD=∠ECD=∠ACD+∠ACE=∠ACD+∠ABD ,∠DPN=∠PNC+∠PCN =∠DBC+∠PCN,即可得∠MPN=∠MPD+∠DPN=∠ACD+∠ABD+∠DBC+∠PCN=∠ABC+∠ACB=90°,即△PMN 为等腰直角三角形;(3)把绕点旋转到如图的位置,此时PN=(AD+AB)="7," PM= (AE+AC)=7,且PN、PM的值最长,由(2)可知PM=PN,,所以面积的最大值为.试题解析:(1)PM=PN,;(2)等腰直角三角形,理由如下:由旋转可得∠BAD=∠CAE,又AB=AC,AD=AE∴△BAD≌△CAE∴BD=CE,∠ABD=∠ACE,∵点,分别为,的中点∴PM是△DCE的中位线∴PM=CE,且,同理可证PN=BD,且∴PM="PN," ∠MPD=∠ECD,∠PNC=∠DBC,∴∠MPD=∠ECD=∠ACD+∠ACE=∠ACD+∠ABD,∠DPN=∠PNC+∠PCN =∠DBC+∠PCN,∴∠MPN=∠MPD+∠DPN=∠ACD+∠ABD+∠DBC+∠PCN=∠ABC+∠ACB=90°, 即△PMN 为等腰直角三角形. (3).考点: 旋转和三角形的综合题. 23.(1)B (0,2),2410233y x x =-++;(2)①点M 的坐标为(118,0)或M (52,0);②m=-1或m=14-或m=12.【分析】(1)把点(3,0)A 代入23y x c =-+求得c 值,即可得点B 的坐标;抛物线243y x bx c =-++经过点,即可求得b 值,从而求得抛物线的解析式;(2)由轴,M (m ,0),可得N(2410233z m m m -++),①分∠NBP=90°和∠BNP =90°两种情况求点M 的坐标;②分N 为PM 的中点、P 为NM 的中点、M 为PN 的中点3种情况求m 的值. 【详解】 (1)直线23y x c =-+与轴交于点(3,0)A , ∴2303c -⨯+=,解得c=2 ∴B (0,2),∵抛物线243y x bx c =-++经过点(3,0)A , ∴2433203b -⨯++=,∴b=103∴抛物线的解析式为2410233y x x =-++; (2)∵MN x ⊥轴,M (m ,0),∴N(2410233z m m m -++) ①有(1)知直线AB 的解析式为223y x =-+,OA=3,OB=2 ∵在△APM 中和△BPN 中,∠APM=∠BPN, ∠AMP=90°, 若使△APM 中和△BPN 相似,则必须∠NBP=90°或∠BNP =90°, 分两种情况讨论如下:(I )当∠NBP=90°时,过点N 作NC轴于点C ,则∠NBC+∠BNC=90°,NC=m , BC=22410410223333m m m m -++-=-+ ∵∠NBP=90°,∴∠NBC+∠ABO=90°, ∴∠BNC=∠ABO , ∴Rt △NCB ∽ Rt △BOA∴NC CB OB OA =,即24103323m mm -+=,解得m=0(舍去)或m=118∴M (118,0);(II )当∠BNP=90°时, BN MN ,∴点N 的纵坐标为2,∴24102233m m -++= 解得m=0(舍去)或m=52∴M (52,0);综上,点M 的坐标为(118,0)或M (52,0);②由①可知M(m,0),P(m,223m -+),N(m,2410233m m -++), ∵M ,P ,N 三点为“共谐点”,∴有P 为线段MN 的中点、M 为线段PN 的中点或N 为线段PM 的中点, 当P 为线段MN 的中点时,则有2(223m -+)=2410233m m -++,解得m=3(三点重合,舍去)或m=12; 当M 为线段PN 的中点时,则有223m -++(2410233m m -++)=0,解得m=3(舍去)或m=−1; 当N 为线段PM 的中点时,则有223m -+=2(2410233m m -++),解得m=3(舍去)或m=14-; 综上可知当M,P,N 三点成为“共谐点”时m 的值为12或−1或14-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学试卷 第1页(共18页) 数学试卷 第2页(共18页)
绝密★启用前
河南省2017年普通高中招生考试数学 .................................................................................. 1 河南省2017年普通高中招生考试数学答案解析 (5)
河南省2017年普通高中招生考试数学
(本试卷满分120分,考试时间100分钟)
第Ⅰ卷(选择题 共30分)
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有
一项是符合题目要求的) 1.下列各数中比1大的数是
( ) A .2 B .0 C .1- D .3- 2.2016年,我国国内生产总值达到74.4万亿元.数据“74.4万亿”用科学记数法表示为
( ) A .12
74.410⨯ B .13
7.4410⨯
C .13
74.410⨯
D .14
7.4410⨯ 3.某几何体的左视图如下图所示,则该几何体不可能是
( )
4.解分式方程13
211x x
-=
--,去分母得
( )
A .12(1)3x --=-
B .12(1)3x --=
C .1223x --=-
D .1223x -+=
5.八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是
( ) A .95分,95分 B .95分,90分
C .90分,95分
D .95分,85分 6.一元二次方程22520x x --=的根的情况是
( )
A .有两个相等的实数根
B .有两个不相等的实数根
C .只有一个实数根
D .没有实数根
7.如图,在□ABCD 中,对角线AC ,BD 相交于点O ,添加下
列条件不能判定□ABCD 是菱形的只有 ( )
A .AC BD ⊥
B .AB B
C = C .AC B
D =
D .12∠=∠
8.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字1-,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为
( ) A .1
8
B .
16
C .
14
D .
12
9.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O .固定点A ,B ,在正方形沿箭头方向推,使点D 落在y 轴正半轴上点D '处,则点C 的对应点C '的坐标为
( )
A
. B .(2,1) C
.
D
.
10.如图,将半径为2,圆心角为120的扇形OAB 绕A 逆时针旋转60,点O ,B 的对应点分别为O ',B ',连接BB ',则图中阴影部分的面积是
( ) A .
2π3
B
.π3 C
.2π3
D
.2π
3
第Ⅱ卷(非选择题 共90分)
A
B
C
D 毕业学校_____________ 姓名________________ 考生号________________
________________ _____________
-------------在
--------------------此--------------------
卷--------------------
上--------------------
答--------------------
题--------------------
无--------------------

----------------
数学试卷 第3页(共18页) 数学试卷 第4页(共18页)
二、填空题
(本大题共5小题,每小题3分,共15分.请把答案填在题中的横线上)
11.计算

32- .
12.不等式组20,12
x x x -⎧⎪
⎨-⎪⎩≤<的解集是 .
13.已知点(1,)A m ,(2,)B n 在反比例函数2
y x
=-
的图象上,则m 与n 的大小关系为 .
14.如图1,点P 从ABC △的顶点B 出发,沿B C A →→匀速运动到点A .图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则
ABC △的面积是 .
15.如图,在Rt ABC △中,90A ∠=,AB AC =
,1BC =,点M ,N 分别是BC ,AB 上的动点,沿MN 所在的直线折叠B ∠,使点B 的对应点B '始终落在边AC 上.若MB C '△为直角三角形,则BM 的长为 .
三、解答题(本大题共8小题,共75分.解答应写出必要的文字说明、证明过程或演算步
骤) 16.(本小题满分8分) 先化简,再求值:
2(2)()()5()x y x y x y x x y ++-+--,
其中1x
,1y .
17.(本小题满分9分)
为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.
调查结果统计表 调查结果扇形统计图
请根据以上图表,解答下列问题:
(1)填空:这次被调查的同学共有 人,a b += ,m = ; (2)求扇形统计图中扇形C 的圆心角度数;
(3)该校共有学生1000人,请估计每月零花钱的数额x 在60120x ≤<范围的人数.
18.(本小题满分9分)
如图,在ABC △中,AB AC =,以AB 为直径的O 交AC 边于点D ,过点C 作
CF AB ∥,与过点B 的切线交于点F ,连接
BD
. (1)求证:BD BF =;
(2
)若10AB =,4CD =,求BC 的长.
19.(本小题满分9分)
如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C .此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45方向,B 船测得渔船C 在其南偏东53方向.已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援? (参考数据:4sin535≈,3cos535≈,4tan533
≈ 1.41)
图1
图2
数学试卷 第5页(共18页) 数学试卷 第6页(共18页)
20.(本小题满分9分)
如图,一次函数y x b =-+与反比例函数(x )k
y x
=
>0的图象交于点(,3)A m 和(3,1)B .
(1)填空:一次函数的解析式为 ,反比例函数的解析式为 ;
(2)点P 是线段AB 上一点,过点P 作PD x ⊥轴于点D ,连接OP ,若POD △的面积为S ,求S 的取值范围.
21.(本小题满分10分)
学校“百变魔方”社团准备购买A ,B 两种魔方.已知购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同. (1)求这两种魔方的单价;
(2)结合社员们的需求,社团决定购买A ,B 两种魔方共100个(其中A 种魔方不超过50个).某商店有两种优惠活动,如图所示.
请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.
22.(本小题满分10分)
如图1,在Rt ABC △中,90A ∠=,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.
图1
图2
(1)观察猜想
图1中,线段PM 与PN 的数量关系是 ,位置关系是 ; (2)探究证明
把ADE △绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN △的形状,并说明理由; (3)拓展延伸
把ADE △绕点A 在平面内自由旋转,若4AD =,10AB =,请直接写出PMN △面积的最大值.
23.(本小题满分11分)
如图,直线23
y x c =-+与x 轴交于点(3,0)A ,与y 轴交于点B ,抛物线
24
3
y x b x c =-++经过点A ,B .
(1)求点B 的坐标和抛物线的解析式;
(2)(,0)M m 为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB
及抛物线分别
-------------在
--------------------此--------------------
卷--------------------
上--------------------
答--------------------
题--------------------
无--------------------效
----------------
毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________。

相关文档
最新文档