435MHz UHF HAM手持八木天线设计制作

合集下载

八木天线的原理和制作tm

八木天线的原理和制作tm

八木天线的原理和制作t m公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]八木天线的原理和制作八木天线(YaGi Antenna)也叫引向天线或波导天线,因为八木秀次(YaGi)教授首先用详细的理论去解释了这种天线的工作原理,所以叫做八木天线,它是由HF,到VHF,UHF波段中最常用的方向性天线。

八木天线是由一个有源激励振子(Driver Element)和若干无源振子组成,所有振子都平行装制在同一平面上,其中心通常用一铅通(也可用非金属──木方)固定。

有源振子就是一个基本半波偶极天线(Dipole),商品八木天线──尤其是用在电视接收时,则多用折合式半段偶极天线做有源振子,好处是阻抗较高,匹配容易频率亦较宽阔,适合电视讯号的8MHz通频带。

但折合式振子在业余条件下,制作较难,而宽带带亦会引入较大噪音,因此常见的八木天线多用基本半波偶极型式的有源振子。

至于无源振子根据它的功能可以分为反射器(Reflecto r)和导向器(Director)两种。

通常反射器的长度比有源振子长4~5%,而导向器可以有多个,第1~4个导向器的长度通常比有源振子顺序递减2~5%。

由反射器至最前的一个导向器的距离叫做这个八木天线长度。

通常收发机的天线输出端,都只是接到八木天线的有源振子。

反射器和导向器通常与收发机没有任何电气连接,但在有源振子作用下,两者都会产生感应电压表,电流,其幅度各相位则与无源振子间的距离有关,亦和无源振子的长度有关。

因为当振子间的距离不同时,电源走过的途径距离也不同,就会形成不同的相位差。

当无源振子的长度不同时,呈现的阻抗也不同。

适当地安排反射器的长度,和它与有源振子的距离,便可使反射器和有源振子产生的电磁场在反射器后方相互抵消,而在有源振子前方上相加。

同样,适当地安排导向器的长度和它到有源振子的距离,可以使导向器和有源振子在主方向上产生的电磁场相加。

这样由有源振子幅射的电波,在加入反射器和导向器后,将沿着导各器的方向形成较强的电磁场,亦即单方向的幅射了。

八木天线课程设计报告

八木天线课程设计报告

八木天线的仿真设计一、八木天线简介:上个世纪二十年代,日本东北大学的八木秀次和宇田太郞两人发明了这种天线,被称为“八木宇田天线”,简称“八木天线”。

八木天线(YaGi Antenna)也叫引向天线或波导天线,它是由HF,到VHF,UHF波段中最常用的方向性天线。

八木天线是由一个有源激励振子和若干无源振子组成,所有振子都平行装制在同一平面上。

有源振子可以是半波振子,也可以是折合振子,一般常用折合振子,以提高八木天线的输入阻抗,便于和馈电线匹配。

主要作用是提高辐射能量。

至于无源振子根据它的功能可以分为反射器和引向器两种。

通常反射器的长度比有源振子长4~5%,而引向器可以有多个,第1~4个导向器的长度通常比有源振子顺序递减2~5%。

二、工作原理:有源振子被馈电后,向空间辐射电磁波,使无源振子中产生感应电流,从而也产生辐射。

引向器略短于二分之一波长,主振子等于二分之一波长,反射器略长于二分之一波长,两振子间距四分之一波长。

此时,引向器对感应信号呈“容性”,电流超前电压90°;引向器感应的电磁波会向主振子辐射,辐射信号经过四分之一波长的路程使其滞后于从空中直接到达主振子的信号90°,恰好抵消了前面引起的“超前”,两者相位相同,于是信号迭加,得到加强。

反射器略长于二分之一波长,呈感性,电流滞后90°,再加上辐射到主振子过程中又滞后90°,与从反射器方向直接加到主振子上的信号正好相差了180°,起到了抵消作用。

一个方向加强,一个方向削弱,便有了强方向性。

发射状态作用过程亦然。

三、设计要求:1、引向器的间距选择引向器间距的选择有两种方案:一种是引向器间距不相等,随着引向器数量序号的增加,相邻引向器的间距加大;另一种是引向器间距相等。

前一种方案调整麻烦,后一种方案调整简便,因此一般都采用等间距方案。

引向器间距一般在0.15-0.4波长范围内选择。

间距较大时,方向图主瓣较窄,输入阻抗的频率响应较平稳,但副瓣较大;间距选得小时,副瓣较低,抗干扰性能较好,但是增益和方向性差些。

八木天线的原理和自制教程分享

八木天线的原理和自制教程分享

八木天线的原理和自制教程分享作为电磁换能元件,天线在整个无线电通信系统中位置十分重要,质量好坏直接影响着收发信距离的远近和通联效果,可以说没有了天线也就没有了无线电通信。

作为一款经典的定向天线,八木天线在HF、VHF以及UHF波段应用十分广泛。

八木天线由一个有源振子(一般用折合振子)、一个无源反射器和若干个无源引向器平行排列而成的端射式天线。

在二十世纪20年代,由日本东北大学的八木秀次和宇田太郞两人发明了这种天线,被称为“八木宇田天线”,简称“八木天线”。

本文首先介绍了八木天线的原理,其次阐述了自制八木天线的过程,具体的跟随小编一起来了解一下吧。

八木天线的原理八木天线定向工作的原理,可依据电磁学理论进行详尽地数学推导,但是比较繁琐复杂,普通读者也不易理解,这里只做定性的简单分析:我们知道,与天线电气指标密切相关的是波长λ,长度略长于λ/4整数倍的导线呈电感性,长度略短于λ/4整数倍的导线呈电容性。

由于主振子L采用长约λ/2的半波对称振子或半波折合振子,在中心频点工作时处于谐振状态,阻抗呈现为纯电阻,而反射器A比主振子略长,呈现感性,假设两者间距a为λ/4,以接收状态为例,从天线前方某点过来的电磁波将先到达主振子,并产生感应电动势ε1和感应电流I1,再经λ/4的距离后电磁波方到达反射器,产生感应电动势ε2和感应电流I2,因空间上相差λ/4的路程,故ε2比ε1滞后90°,又因反射器呈感性I2比ε2滞后90°,所以I2比ε1滞后180°,反射器感应电流I2产生辐射到达主振子形成的磁场H2又比I2滞后90°,根据电磁感应定律H2在主振子上产生的感应电动势ε1‘比H2滞后90°,也就是ε1比ε1滞后360°,即反射器在主振子产生的感应电动势ε1‘与电磁信号源直接产生的感应电动势ε1是同相的,天线输出电压为两者之和。

同理可推导出,对天线后方某点来的信号,反射器在主振子产生的感应电动势与信号直接产生的感应电动势是反相的,起到了抵消输出的作用。

435八木天线制作方法

435八木天线制作方法

435八木天线制作方法(实用版3篇)篇1 目录1.引言2.八木天线的基本概念和特点3.八木天线的制作材料和工具4.八木天线的制作步骤5.八木天线的应用领域6.结语篇1正文【引言】在无线通信和广播领域,天线技术起着至关重要的作用。

其中,八木天线由于其独特的结构和性能,在众多天线类型中脱颖而出。

本文将为您介绍八木天线的制作方法。

【八木天线的基本概念和特点】八木天线,又称为八木宇田天线,是由日本工程师八木宇田发明的一种定向天线。

其主要特点是增益高、指向性强、副瓣抑制性能好,因此在通信和广播领域有着广泛的应用。

【八木天线的制作材料和工具】制作八木天线需要以下材料:1.铜线或铝线:作为天线的主体,可以选择铜线或铝线,其截面积根据所需频段和功率来选择。

2.反射器:通常采用铜板或铝板制作,其尺寸和形状需要根据天线的工作频率来设计。

3.绝缘材料:用于隔离天线元件,防止短路。

4.其他辅助材料:如绑扎带、电焊条等。

制作八木天线所需的工具有:1.钳子:用于剪切和连接电线。

2.焊锡和电焊条:用于焊接天线元件。

3.尺子:用于测量天线元件的尺寸。

4.小刀:用于切割绝缘材料。

【八木天线的制作步骤】1.根据所需频段和功率,选择合适的铜线或铝线,并剪切成适当长度。

2.制作反射器:根据天线的工作频率,设计反射器的尺寸和形状,然后用铜板或铝板制作。

3.准备绝缘材料,将天线主体和反射器隔离,防止短路。

4.将天线主体和反射器按照设计好的布局焊接在一起。

5.检查天线的连接和焊接质量,确保天线性能稳定。

【八木天线的应用领域】八木天线广泛应用于通信、广播、导航等领域,如电视广播天线、无线通信基站天线等。

其高增益、指向性强和副瓣抑制性能好的特点,使得八木天线在众多天线类型中具有较高的竞争优势。

【结语】通过以上介绍,相信您已经了解了八木天线的制作方法。

篇2 目录1.引言2.八木天线的概述3.八木天线的制作材料和工具4.八木天线的制作步骤5.八木天线的调试与使用6.结论篇2正文【引言】在无线通信和广播领域,天线是非常重要的设备,它们可以将电磁波从一个介质传输到另一个介质。

八木天线的设计方案

八木天线的设计方案

八木天线设计方案指导老师:***单位:长沙航空职业技术学院组员分工(见表一):表一背景分析:在当今社会中天线不仅仅只是应用在电视接收系统中应用,而在很多电子产品都用到天线,比如(对讲机、无线路由器、手机等),所以掌握天线的知识,对以后做别的无线产品开发打下了很好基础,本次制作八木天线可以掌握无线通讯的原理和相关只是。

关键词:八木天线一、设计说明:作为电磁换能元件,天线在整个无线电通信系统中位置十分重要,质量好坏直接影响着收发信距离的远近和通联效果,可以说没有了天线也就没有了无线电通信。

作为一款经典的定向天线,八木天线在HF、VHF以及UHF波段应用十分广泛,它全称为“八木/宇田天线”,英文名YAGI,是由上世纪二十年代日本东北帝国大学的电机工程学教授八木秀次,在与他的学生宇田新太郎研究短波束时发明的。

相对于基本的半波对称振子或者折合振子天线,八木天线增益高、方向性强、抗干扰、作用距离远,并且构造简单、材料易得、价格低廉、挡风面小、轻巧牢固、架设方便。

通常八木天线由一个激励振子(也称主振子)、一个反射振子(又称反射器)和若干个引向振子(又称引向器)组成,相比之下反射器最长,位于紧邻主振子的一侧,引向器都较短,并悉数位于主振子的另一侧,全部振子加起来的数目即为天线的单元数,譬如一副五单元的八木天线就包括一个主振子、一个反射器和三个引向器,结构如图1所示。

主振子直接与馈电系统相连,属于有源振子,反射器和引向器都属无源振子,所有振子均处于同一个平面内,并按照一定间距平行固定在一根横贯各振子中心的金属横梁上。

在无线通讯中八木天线占据了很重要的位置,对于我们刚刚进入无线电的初学者来说,掌握八木天线的原理和安装是非常必要的。

二、系统规划传输方式:单向传输节目源:本系统电视节目包括无线电视和自办节目(一套)等。

无线电视:通过八木天线接收到的信号送到电视机,收看电视机节目。

示意图如下(图一):(图一)自办节目:本系统自办节目采用DVD播放或摄像机录制节目播放等方式。

八木天线-论文

八木天线-论文

电波与天线课程设计系部:电子通信工程系专业:通信技术班级:通技092姓名:余坤朋学号:091415207时间:2011年12月30日河南机电高等专科学校八木天线的制作设计时间:2011年12月26日—2011年12月30日八木天线简介:八木天线也叫引向天线或波导天线,因为他是由日本的八木秀次教授首先用详细的理论去解释了这种天线的工作原理,所以叫做八木天线,它是由HF,到VHF,UHF波段中最常用的方向性天线。

八木天线是一种引向天线,由一个有源振子和多个无源振子放置在同一平面上,并且垂直于连接它们中心的金属杆。

一般一个无源振子为反射器,其余的无源振子为引向器。

因为金属杆通过振子上的电压波节点,并垂直于天线,所以,金属杆对天线的近场影响很小。

而有源振子必须与金属杆绝缘。

八木天线的增益高于垂直天线及偶极天线。

八木天线的单元越多,方向性越强。

但是单元的增加不与方向性成正比。

单元过多时,导致工作频带变窄,整个天线尺寸也将偏大。

在短波波段,波长较长,自制八木天线比较困难,在超短波波段(V/U),因波长短,可以比较方便的自制低成本的八木天线。

虽然八木天线的数学计算复杂,但是很多工程或理论书籍都给出它的尺寸,只要依照这些数据,就可以自制出一副不错的八木天线。

一、确定振子数目N振子数目可根据天线的主瓣宽度或天线的增益算出,若选择前者,则可查阅相关资料,由八木天线参数关系图可的振子数目N,若选择后者,则可谓根据八木天线增益表,查表得出,由于设计题目已经给出此次设计的单元数为5,经查表正好与八木天线增益表所得振子数目相等,所以此处振子数目为5。

二、引向器的间距、反射器与有源振子的间距选择引向器间距的选择有两种方案:一种是引向器间距不相等,随着引向器数量序号的增加,相邻引向器的间距加大;另一种是引向器间距相等。

前一种方案调整麻烦,后一种方案调整简便,因此一般都采用等间距方案。

引向器间距一般在0.15-0.4波长范围内选择。

自制简易手持式双波段业余卫星通信八木天线

自制简易手持式双波段业余卫星通信八木天线
驻波比反映了天线和收发信机之间信号传输的效率,理想驻波比的理论值是 1.0:1,性能良好的天线的驻波比小于 1.5:1,他表明 96%以上的能量能够在天线 和收发信机之间正确传输。驻波比小于 2.0:1 的天线通常能够满足正常使用,而 当天线的驻波比大于 3.0:1 时,则有四分之一以上的能量不能被正常传输,对于 发射天线,这部分能量会转化为热能,对发射机产生危害,这样的天线需要进行 调整。
测量天线驻波可使用功率驻波表或天线分析仪,先把 2 米天线接到测试仪器 上,微调 2 米天线激励单元 A 端的长度,使驻波比在 145MHz 时最小;然后连接 和 70 厘米波段天线到测试仪器上,微调 70 厘米天线激励单元 A 端的长度,使驻 波比在 435MHz 时最小。
把 2 米天线和 70 厘米天线连接到合路器,在合路后的端口上测量 145MHz 和 435MHz 频率下的驻波比,若驻波比与之前测量单天线时增大较多则应检查合路 器的元器件和焊接。
至此,一种简单实用的手持式业余卫星通信天线已经制作成功,这是个良好 的开端,你可以使用他来体验业余无线电卫星通信的无穷乐趣。
5
自制简易手持式双波段业余卫星通信八木天线
-- 2010 年全国青少年无线电通信锦标赛卫星通信制作项目
BA1DU,龚万骢
手持式 VHF/UHF 双波段八木天线是一种常用的低地球轨道(LEO)业余卫星 通信天线。目前大多数业余卫星工作在 2 米和 70 厘米波段,本文介绍的天线是一 种 145MHz 两单元和 435MHz 五单元的线极化组合式八木天线,天线长度只有大约 0.8 米,很轻便,可以用来与 HO-68、AO-51、VO-52、SO-50、FO-29、AO-27 和 AO-7 等业余卫星通联,下面介绍如何自制这种简单实用的天线。

八木天线_图文概要

八木天线_图文概要

八木天线,据介绍是日本人宇田所创,八木仅做了介绍。

英文叫”Yagi“,也叫寄生天线,引向天线。

一般由一根反射元,一根激励元(发射体)和多根引向元组成。

由于八木天线具有很好的方向性,增益也比较高。

用它来测向、远距离通信效果特别好,不仅被专业通讯电台广泛使用,也受到我们业余无线电通讯爱好者的欢迎。

有关它的工作原理和计算公式可以在不少书刊和网站上找到,在次不再赘述。

这里主要介绍我们爱好者如何来自制430八木天线。

那年,我们有位朋友得到了一副从境外带来的成品五单元430八木天线,凡是见到的人都感到相见恨晚、爱不释手!于是,一位DIY能力比较强的朋友发挥自己的特长,借去精心仿制了一副。

这样这种八木天线就在我们中间传开来了。

当然,可能有的朋友觉得在今天的条件下DIY的天线比较“土”,完全可以去买成品,没有必要去DIY。

但是,要知道DIY是我们HAM的一个传统,是一个开发自己的智慧、提高心灵手巧水平和创新能力的过程,真所谓“其乐无穷”,我们有不少HAM都乐此不疲。

DIY不仅要求达到效果相仿,而且,还要求制作简便,充分利用手边可替代的物品,讲求费用低廉。

我自制的430八木天线是在其他朋友的基础上又有自己的发挥,就有价廉物美的效果。

〔图1就是自制的430八木天线〕【图1】从左边起1—3根(3根铜梗)为引向元,记作A、B、C;第4根(即环型体)为激励元(发射体),记作D;第5根为反射元,记作E。

具体尺寸:A=30.2cm B=31cm C=31.8cm D(环型两端中心)=32cm E=34.5cm各单元之间的间距:A—B:13.5cm B—C:14.3cm C—D(环型不开口的一边):8.7cmD(环型不开口的一边)—E:7.5cmD发射元环型间距:2cm 环型开口处间距:1cm【图 2】【图 3】【图 4】所用材料:1.支架:我用的是铝合金工字型窗帘轨道,约55cm长。

也可用其他材料。

一般五金装潢商店有售。

(见图2)这种材料价格便宜,容易搞到,制作时钻孔打洞也方便。

八木天线的原理和制作tm3901

八木天线的原理和制作tm3901

八木天线的原理和制作八木天线(YaGiAntenna)也叫引向天线或波导天线,因为八木秀次(YaGi)教授首先用详细的理论去解释了这种天线的工作原理,所以叫做八木天线,它是由HF,到VHF,UHF波段中最常用的方向性天线。

八木天线是由一个有源激励振子(DriverElement)和若干无源振子组成,所有振子都平行装制在同一平面上,其中心通常用一铅通(也可用非金属──木方)固定。

有源振子就是一个基本半波偶极天线(Dipole),商品八木天线──尤其是用在电视接收时,则多用折合式半段偶极天线做有源振子,好处是阻抗较高,匹配容易频率亦较宽阔,适合电视讯号的8MHz通频带。

但折合式振子在业余条件下,制作较难,而宽带带亦会引入较大噪音,因此常见的八木天线多用基本半波偶极型式的有源振子。

至于无源振子根据它的功能可以分为反射器(Reflector)和导向器(Director)两种。

通常反射器的长度比有源振子长4~5%,而导向器可以有多个,第1~4个导向器的长度通常比有源振子顺序递减2~5%。

由反射器至最前的一个导向器的距离叫做这个八木天线长度。

通常收发机的天线输出端,都只是接到八木天线的有源振子。

反射器和导向器通常与收发机没有任何电气连接,但在有源振子作用下,两者都会产生感应电压表,电流,其幅度各相位则与无源振子间的距离有关,亦和无源振子的长度有关。

因为当振子间的距离不同时,电源走过的途径距离也不同,就会形成不同的相位差。

当无源振子的长度不同时,呈现的阻抗也不同。

适当地安排反射器的长度,和它与有源振子的距离,便可使反射器和有源振子产生的电磁场在反射器后方相互抵消,而在有源振子前方上相加。

同样,适当地安排导向器的长度和它到有源振子的距离,可以使导向器和有源振子在主方向上产生的电磁场相加。

这样由有源振子幅射的电波,在加入反射器和导向器后,将沿着导各器的方向形成较强的电磁场,亦即单方向的幅射了。

导向器的长度相同,间距相等的八木天线称为均匀导向八木天线,特点是天线的主办窄,方向系数大,整个频带内增益均匀。

八木天线的原理和制作

八木天线的原理和制作

八木天線的原理和製作八木天线(YaGi Antenna)也叫引向天线或波导天线,因为八木秀次(YaGi)教授首先用详细的理论去解释了这种天线的工作原理,所以叫做八木天线,它是由HF,到VHF,UHF波段中最常用的方向性天线。

八木天线是由一个有源激励振子(Driver Element)和若干无源振子组成,所有振子都平行装制在同一平面上,其中心通常用一铅通(也可用非金属──木方)固定。

有源振子就是一个基本半波偶极天线(Dipole),商品八木天线──尤其是用在电视接收时,则多用折合式半段偶极天线做有源振子,好处是阻抗较高,匹配容易频率亦较宽阔,适合电视讯号的8MHz通频带。

但折合式振子在业余条件下,制作较难,而宽带带亦会引入较大噪音,因此常见的八木天线多用基本半波偶极型式的有源振子。

至于无源振子根据它的功能可以分为反射器(Reflector)和导向器(Director)两种。

通常反射器的长度比有源振子长4~5%,而导向器可以有多个,第1~4个导向器的长度通常比有源振子顺序递减2~5%。

由反射器至最前的一个导向器的距离叫做这个八木天线长度。

通常收发机的天线输出端,都只是接到八木天线的有源振子。

反射器和导向器通常与收发机没有任何电气连接,但在有源振子作用下,两者都会产生感应电压表,电流,其幅度各相位则与无源振子间的距离有关,亦和无源振子的长度有关。

因为当振子间的距离不同时,电源走过的途径距离也不同,就会形成不同的相位差。

当无源振子的长度不同时,呈现的阻抗也不同。

适当地安排反射器的长度,和它与有源振子的距离,便可使反射器和有源振子产生的电磁场在反射器后方相互抵消,而在有源振子前方上相加。

同样,适当地安排导向器的长度和它到有源振子的距离,可以使导向器和有源振子在主方向上产生的电磁场相加。

这样由有源振子幅射的电波,在加入反射器和导向器后,将沿着导各器的方向形成较强的电磁场,亦即单方向的幅射了。

导向器的长度相同,间距相等的八木天线称为均匀导向八木天线,特点是天线的主办窄,方向系数大,整个频带内增益均匀。

八木天线的原理和制作

八木天线的原理和制作

八木天線的原理和製作八木天线(YaGi Antenna)也叫引向天线或波导天线,因为八木秀次(YaGi)教授首先用详细的理论去解释了这种天线的工作原理,所以叫做八木天线,它是由HF,到VHF,UHF波段中最常用的方向性天线。

八木天线是由一个有源激励振子(Driver Element)和若干无源振子组成,所有振子都平行装制在同一平面上,其中心通常用一铅通(也可用非金属──木方)固定。

有源振子就是一个基本半波偶极天线(Dipole),商品八木天线──尤其是用在电视接收时,则多用折合式半段偶极天线做有源振子,好处是阻抗较高,匹配容易频率亦较宽阔,适合电视讯号的8MHz通频带。

但折合式振子在业余条件下,制作较难,而宽带带亦会引入较大噪音,因此常见的八木天线多用基本半波偶极型式的有源振子。

至于无源振子根据它的功能可以分为反射器(Reflector)和导向器(Director)两种。

通常反射器的长度比有源振子长4~5%,而导向器可以有多个,第1~4个导向器的长度通常比有源振子顺序递减2~5%。

由反射器至最前的一个导向器的距离叫做这个八木天线长度。

通常收发机的天线输出端,都只是接到八木天线的有源振子。

反射器和导向器通常与收发机没有任何电气连接,但在有源振子作用下,两者都会产生感应电压表,电流,其幅度各相位则与无源振子间的距离有关,亦和无源振子的长度有关。

因为当振子间的距离不同时,电源走过的途径距离也不同,就会形成不同的相位差。

当无源振子的长度不同时,呈现的阻抗也不同。

适当地安排反射器的长度,和它与有源振子的距离,便可使反射器和有源振子产生的电磁场在反射器后方相互抵消,而在有源振子前方上相加。

同样,适当地安排导向器的长度和它到有源振子的距离,可以使导向器和有源振子在主方向上产生的电磁场相加。

这样由有源振子幅射的电波,在加入反射器和导向器后,将沿着导各器的方向形成较强的电磁场,亦即单方向的幅射了。

导向器的长度相同,间距相等的八木天线称为均匀导向八木天线,特点是天线的主办窄,方向系数大,整个频带内增益均匀。

八木天线的原理和制作tm

八木天线的原理和制作tm

八木天线的原理和制作八木天线(YaGiAntenna)也叫引向天线或波导天线,因为八木秀次(YaGi)教授首先用详细的理论去解释了这种天线的工作原理,所以叫做八木天线,它是由HF,到VHF,UHF波段中最常用的方向性天线。

八木天线是由一个有源激励振子(DriverElement)和若干无源振子组成,所有振子都平行装制在同一平面上,其中心通常用一铅通(也可用非金属──木方)固定。

有源振子就是一个基本半波偶极天线(Dipole),商品八木天线──尤其是用在电视接收时,则多用折合式半段偶极天线做有源振子,好处是阻抗较高,匹配容易频率亦较宽阔,适合电视讯号的8MHz通频带。

但折合式振子在业余条件下,制作较难,而宽带带亦会引入较大噪音,因此常见的八木天线多用基本半波偶极型式的有源振子。

至于无源振子根据它的功能可以分为反射器(Reflector)和导向器(Director)两种。

通常反射器的长度比有源振子长4~5%,而导向器可以有多个,第1~4个导向器的长度通常比有源振子顺序递减2~5%。

由反射器至最前的一个导向器的距离叫做这个八木天线长度。

通常收发机的天线输出端,都只是接到八木天线的有源振子。

反射器和导向器通常与收发机没有任何电气连接,但在有源振子作用下,两者都会产生感应电压表,电流,其幅度各相位则与无源振子间的距离有关,亦和无源振子的长度有关。

因为当振子间的距离不同时,电源走过的途径距离也不同,就会形成不同的相位差。

当无源振子的长度不同时,呈现的阻抗也不同。

适当地安排反射器的长度,和它与有源振子的距离,便可使反射器和有源振子产生的电磁场在反射器后方相互抵消,而在有源振子前方上相加。

同样,适当地安排导向器的长度和它到有源振子的距离,可以使导向器和有源振子在主方向上产生的电磁场相加。

这样由有源振子幅射的电波,在加入反射器和导向器后,将沿着导各器的方向形成较强的电磁场,亦即单方向的幅射了。

导向器的长度相同,间距相等的八木天线称为均匀导向八木天线,特点是天线的主办窄,方向系数大,整个频带内增益均匀。

八木天线制作原理

八木天线制作原理

八木天线制作原理八木天线上个世纪二十年代日本东北大学的八木秀次和宇田太郞两人发明了这种天线被称为“八木宇田天线”简称“八木天线”。

它是由HF到VHFUHF波段中最常用的方向性天线。

相对于基本的半波对称振子或折合振子天线八木天线增益高、方向性强、抗干扰、作用距离远并且构造简单、材料易得、价格低廉、挡风面小、轻巧牢固、架设方便。

八木天线有很好的方向性较偶极天线有高的增益。

用它来测向、远距离通信效果特别好。

如果再配上仰角和方位旋转控制装置更可以随心所欲与包括空间飞行器在内的各个方向上的电台联络这种感受从直立天线上是得不到的。

一、八木天线的基本结构和工作原理通常八木天线由一个激励振子也称主振子、一个反射振子又称反射器和若干个引向振子又称引向器组成整个结构呈“王”字形。

主振子居三对振子之中“王”字的中间一横。

反射器最长位于紧邻主振子的一侧起着削弱从这个方向传来的电波或从本天线发射去的电波的作用引向器都较短并悉数位于主振子的另一侧它能增强从这一侧方向传来的或向这个方向发射出去的电波。

引向器可以有许多个每根长度都要比其相邻的并靠近主振子的那根略短一点。

引向器越多方向越尖锐、增益越高但实际上超过四、五个引向器之后这种“好处”增加就不太明显了而体积大、自重增加、对材料强度要求提高、成本加大等问题却渐突出。

全部振子加起来的数目即为天线的单元数通常情况下有一副五单元八木即有三个引向器一个反射器和一个主振子就够用了。

主振子直接与馈电系统相连属于有源振子反射器和引向器都属于无源振子所有振子均处于同一个平面内并按照一定间距平行固定在一根横贯各振子中心的金属横梁上。

下图为五单元的八木天线。

每个引向器和反射器都是用一根金属棒做成。

无论有多少“单元”所有的振子都是按一定的间距平行固定在一根“大梁”上。

大梁也用金属材料做成。

因为电波“行走”在这些约为半个波长长度的振子上时振子的中点正好位于感应信号电压的零点零点接“地”一点也没问题。

八木天线的设计仿真与测试

八木天线的设计仿真与测试

八木天线的设计仿真与测试一、本文概述本文旨在深入探讨八木天线的设计、仿真与测试。

八木天线,又称作Yagi-Uda天线,是一种广泛应用于无线通信、雷达、卫星通信等领域的定向天线。

其高效、紧凑和易于调整的特性使得它在众多天线类型中脱颖而出。

本文首先将对八木天线的基本原理和结构进行概述,接着详细介绍其设计过程,包括天线元素的选择、尺寸优化以及馈电方式等。

随后,本文将阐述如何利用仿真软件对八木天线进行性能预测和优化,这包括电磁场仿真、S参数分析、辐射方向图计算等关键步骤。

本文将介绍八木天线的实际测试方法,包括测试环境的搭建、测试设备的选择以及测试结果的分析和解读。

通过本文的阐述,读者将对八木天线的设计、仿真与测试有一个全面而深入的理解,为实际工程应用提供有力的技术支持。

二、八木天线设计基础八木天线,也称为Yagi-Uda天线,是一种定向天线,以其高效、紧凑和易于构造的特性而广泛应用于无线通信系统中。

其设计基础主要包括天线振子的排列、相位控制和馈电方式等方面。

八木天线由一根驱动振子(Driven Element)和若干根反射振子(Reflector)与引向振子(Director)组成。

驱动振子负责接收或发射电磁波,而反射振子和引向振子则通过调整与驱动振子的相对位置和相位,来改变天线的辐射特性。

反射振子通常位于驱动振子的后方,用于抑制后向辐射,提高天线的前向增益。

引向振子则位于驱动振子的前方,用于增强前向辐射。

相位控制在八木天线设计中至关重要。

通过调整各振子间的相位关系,可以控制天线的波束指向和宽度。

通常情况下,反射振子与驱动振子之间的相位差为180度,以产生反向电流,抵消后向辐射。

而引向振子与驱动振子之间的相位差则逐渐减小,以产生同向电流,增强前向辐射。

八木天线的馈电方式通常采用同轴电缆或波导。

馈电点的位置对天线的性能有重要影响。

通常,馈电点位于驱动振子的中点,以保证电流的均匀分布。

馈电线的阻抗匹配也是设计的关键,以确保最大功率的传输。

435八木天线制作方法

435八木天线制作方法

435八木天线制作方法八木天线,也称为Yagi-Uda天线,是一种常用的定向天线,广泛应用于通信和无线电传输领域。

本文将介绍制作一种435八木天线的方法,包括所需材料、步骤和注意事项,帮助读者了解如何制作这种天线。

1. 铝管:直径为0.5英寸,长度为一根八木天线的总长度。

2. 绝缘尺子:用于测量和标记长度。

3. 电线:直径为14号,长度为一根八木天线总长度加上额外的电源线。

4. 电缆连接器:根据实际需要,选择适合你的设备的连接器。

5. 螺钉和螺母:用于固定器件的连接。

6. 天线支架:可根据需要选择自行购买或制作。

1. 测量和标记:首先,使用绝缘尺子测量和标记所需的铝管长度。

根据435八木天线的设计规格,绘制一条中央导体线和一系列辐射子元素线的位置。

将每个元素的长度计算好,并标记在铝管上。

2. 切割铝管:使用合适的工具,根据标记线的位置,将铝管切割为相应的长度。

确保切割平整、直线,并尽量减少残留的锯齿边缘。

3. 准备辐射子元素:根据设计规格,在铝管上钻孔以安装辐射子元素。

将每个辐射子元素的一个端点与中央导体线连接,另一个端点朝向发射方向。

4. 组装和固定:将切割好的铝管和已经准备好的辐射子元素进行组装。

使用螺钉和螺母将辐射子元素固定在铝管上。

确保每个辐射子元素之间的距离和角度与设计规格一致。

5. 连接电线:为八木天线提供电源,将一根电线连接到中央导体线的一端,并将其固定到铝管上。

将另一端的电线延伸到天线外部的适当位置,以便与设备连接。

6. 安装支架:选择合适的天线支架,并根据实际需要进行安装。

确保安装时天线的朝向和角度符合设计规格,并紧固螺母以保持稳定。

7. 连接设备:在八木天线的另一端连接选择的电缆连接器,以便将天线与通信设备或无线电设备连接。

1. 在制作过程中,一定要仔细测量和标记,确保每个元件的长度和位置准确无误。

2. 切割铝管时要小心操作,确保切割平整且无锯齿边缘。

3. 组装和固定辐射子元素时,注意确保每个辐射子元素之间的距离和角度符合设计规格。

八木天线制作方法

八木天线制作方法

在电视信号较弱,收看效果比较差的地区,要进一步提高产品电视机接收信号的灵敏度,关键在于正确选择电视接收天线的尺寸。

本文以常用的电视室外定向接收天线为例(如图1所示)进行介绍。

结构图1所示,这种天线又称八木天线或波渠天线。

它的优点是结构简单、增益高。

整个天线可以用金属管或金属棒也可以用金属条等制成。

除支架外,每一根金属管(棒)称为振子。

其中与馈线相接的振子,称馈电振子或称有源振子(图1形状的馈电振子又称折合振子);比馈电振子长的一根振子,称反射器;比馈电振子短的一根振子,称引向器。

反射器和引向器统称无源振子。

反射器与最远的一根引向器之间的距离称为天线长度。

天线接收信号能力最强的方向(又称最大接收方向)是由反射器指向引向器。

对这种天线的尺寸选择得当时,天线本身就可以提供10分贝左右的增益。

选择方法合理的选择天线总长(包括引向器个数),应该是在了解接收机实际灵敏度、欲接收的频道及接收点的电视信号场强的情况下,确定对天线总增益的要求之后再进行。

当接收点场强未知时,可以放宽增益余量来确定引向器的个数。

天线尺寸选择的具体步骤如下:1.根据确定的天线总增益值。

参考表一,找出要求的引向器的个数n。

由表一可以看出:振子数超过五个之后,其增益增加得不多;十单元与双层五单元天线的增益相同,而在VHF频段,双层五单元天线比十单元天线容易架设,因此,需要VHF频段的高增益天线时,可用双层五单元天线。

2.确定引向器的间距。

若采用多个引向器,一般采用等间距的方案比较好,即每个引向器之间的距离dl相等。

但是,第一个引向器与馈电振子的间距d′l应取得小一些,如图2所示。

dl=(0.15~0.40)λ2;d′l=(0.6~0.7)dl。

式中λ2,如果要同时接收几个相近频道,应为高频道高端波长。

若dl取大的数值,优点:增益高,方向性尖锐;缺点:容易接收干扰信号,尺寸较大。

采用多单元时,支撑复杂。

若dl取值小,优点:抗干扰性较好;缺点:增益低,方向性弱。

UV双段八木天线制作概要

UV双段八木天线制作概要

144/430 L-S3/5M 便携式天线为方便在144MHz 和430MHz 两个业余频段的移动通讯,经过借鉴很多成品天线数据以及朋友们的经验总结,近日试验成功了一款天线。

在设计加工天线之前归纳了几项需要达到的目标,首先其重量和拆卸后的尺寸要便于携带,可以放入背包中;组装后的电气性能要稳定;电缆信号传输接口要简单,单根电缆传输两个频段的信号。

经过一段时间的准备,在多次试验比较的基础上达到了预期目的,V 段增益9dBi ,U段为11dBi ,现将在制作过程中的具体数据和调试方法以及注意事项进行说明。

材料准备:1.天线横梁用截面为八边形的铝合金伸缩杆,伸展长度为1200mm 左右,稍有差异无妨;2. M6通孔螺丝及蝶形螺母,通孔螺丝上要有定位顶丝(M4),材质要求具有一定的抗腐蚀性,因为是非标产品需要定制,参看图1;图1(通孔螺丝材质为铜,表面镀镊,定位顶丝材质为304)3.直径3mm 的冷拔钢丝,材质用普通的65Mn 就行,铜材质的不建议使用,容易变形;4.匹配器盒的尺寸要求不是很严格,长度在64mm 左右,宽度与天线横梁直径尺寸相近,建议用64mm¡23mm ¡23mm 铝合金的盒子;5.还有一些小东西,如匹配器振子插口、M3螺丝及蝶形螺母、MSA 接口等。

制作过程:根据下面的振子间距及振子长度表在天线横梁上转直径6mm 的通孔,匹配器的安装定位孔为3mm ,之后用小锉刀进行修整,以使振子安装后在同一个平面上。

振子间距及振子长度表:长度(mm )间距(mm )备注V11044 U1380 300 V2952 100 U2 330 40 U3 316 106U4 312 133U5 310 170V3 932 56振子具体长度,尤其是主振子在实际制作中可以进行适当的修剪。

在剪裁U 段振子时可直接剪取,因V 段振子较长,不易携带,所以要将约大于二分之一长的振子从螺纹方向插入通孔螺丝约20mm 用焊锡焊牢。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档