山东省优质课比赛一等奖---《勾股定理》教学设计

合集下载

认识勾股定理 公开课获奖【一等奖教案】

认识勾股定理  公开课获奖【一等奖教案】

第一章勾股定理1.1 探索勾股定理第1课时认识勾股定理第一环节:创设情境,引入新课内容:2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.(板书课题)第二环节:探索发现勾股定理1.探究活动一内容:投影显示如下地板砖示意图,引导学生从面积角度观察图形:问:你能发现各图中三个正方形的面积之间有何关系吗?学生通过观察,归纳发现:结论1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边.通过对特殊情形的探究得到结论1,为探究活动二作铺垫.效果:1.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力;2.通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望. 2.探究活动二内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?(1)观察下面两幅图:(2)填表:(3)你是怎样得到正方形C 的面积的?与同伴交流.(学生可能会做出多种方法,教师应给予充分肯定.)图1 图2 图3 学生的方法可能有: 方法一:如图1,将正方形C 分割为四个全等的直角三角形和一个小正方形,13132214=+⨯⨯⨯=C S .方法二:如图2,在正方形C 外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积,133221452=⨯⨯⨯-=C S .方法三:如图3,正方形C中除去中间5个小正方形外,将周围部分适当拼接可成为正方形,如图3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法,13542=+⨯=C S .(4)分析填表的数据,你发现了什么? 学生通过分析数据,归纳出:结论2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.意图:探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质.由于正方形C 的面积计算是一个难点,为此设计了一个交流环节.效果:学生通过充分讨论探究,在突破正方形C 的面积计算这一难点后得出结论2. 3.议一议内容:(1)你能用直角三角形的边长a ,b ,c 来表示上图中正方形的面积吗?(2)你能发现直角三角形三边长度之间存在什么关系吗?(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用a ,b ,c 分别表示直角三角形的两直角边和斜边,那么222c b a =+.数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名.(在西方文献中又称为毕达哥拉斯定理)意图:议一议意在让学生在结论2的基础上,进一步发现直角三角形三边关系,得到勾股定理.效果:1.让学生归纳表述结论,可培养学生的抽象概括能力及语言表达能力;2.通过作图培养学生的动手实践能力.第三环节:勾股定理的简单应用内容:例题 如图所示,一棵大树在一次强烈台风中于离地面10m 处折断倒下,树顶落在离树根24m 处. 大树在折断之前高多少?弦股勾(教师板演解题过程) 练习:1.基础巩固练习:求下列图形中未知正方形的面积或未知边的长度(口答):2.生活中的应用:小明妈妈买了一部29 in (74 cm )的电视机. 小明量了电视机的屏幕后,发现屏幕只有58 cm 长和46 cm 宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?意图:练习第1题是勾股定理的直接运用,意在巩固基础知识.效果:例题和练习第2题是实际应用问题,体现了数学来源于生活,又服务于生活,意在培养学生“用数学”的意识.运用数学知识解决实际问题是数学教学的重要内容.第四环节:课堂小结内容: 教师提问:1.这一节课我们一起学习了哪些知识和思想方法? 2.对这些内容你有什么体会?与同伴进行交流. 在学生自由发言的基础上,师生共同总结:1.知识:勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用a ,b ,c 分别表示直角三角形的两直角边和斜边,那么222c b a =+.2.方法:(1) 观察—探索—猜想—验证—归纳—应用; (2)“割、补、拼、接”法.3.思想:(1) 特殊—一般—特殊; (2) 数形结合思想.225100x1517意图:鼓励学生积极大胆发言,可增进师生、生生之间的交流、互动. 效果:通过畅谈收获和体会,意在培养学生口头表达和交流的能力,增强不断反思总结的意识.第五环节:布置作业内容:布置作业:1.教科书习题1.1.2.观察下图,探究图中三角形的三边长是否满足222c b a =+?意图:课后作业设计包括了三个层面:作业1是为了巩固基础知识而设计;作业2是为了扩展学生的知识面;作业3是为了拓广知识,进行课后探究而设计,通过此题可让学生进一步认识勾股定理的前提条件.效果:学生进一步加强对本课知识的理解和掌握.教学设计反思 (一)设计理念依据“学生是学习的主体”这一理念,在探索勾股定理的整个过程中,本节课始终采用学生自主探索和与同伴合作交流相结合的方式进行主动学习.教师只在学生遇到困难时,进行引导或组织学生通过讨论来突破难点.(二)突出重点、突破难点的策略为了让学生在学习过程中自我发现勾股定理,本节课首先情景创设激发兴趣,再通过几个探究活动引导学生从探究等腰直角三角形这一特殊情形入手,自然过渡到探究一般直角三角形,学生通过观察图形,计算面积,分析数据,发现直角三角形三边的关系,进而得到勾股定理.a bcabc4.4一次函数的应用第1课时确定一次函数的表达式1.会确定正比例函数的表达式;(重点)2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y与x之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y=(m-4)m2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m2-15=1且m-4≠0,∴m=-4,∴y=-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0.探究点二:确定一次函数的表达式【类型一】根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y=kx+b,因为它的图象经过(0,5)、(2,-5)两点,所以当x=0时,y=5;当x=2时,y=-5.由此可以得到两个关于k、b的方程,通过解方程即可求出待定系数k和b的值,再代回原设即可.解:设一次函数的表达式为y =kx +b ,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.数量x/千克售价y/元 1 8+0.4 2 16+0.8 3 24+1.2 4 32+1.6 5 40+2.0 ……解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、…… 解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.2.2 平方根 第1课时 算术平方根1.了解算术平方根的概念,会用根号表示一个数的算术平方根;(重点) 2.根据算术平方根的概念求出非负数的算术平方根;(重点) 3.了解算术平方根的性质.(难点)一、情境导入上一节课我们做过:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大正方形,那么有a 2=2,a =________,2是有理数,而a 是无理数.在前面我们学过若x 2=a ,则a 叫做x 的平方,反过来x 叫做a 的什么呢?二、合作探究探究点一:算术平方根的概念【类型一】 求一个数的算术平方根求下列各数的算术平方根:(1)64;(2)214;(3)0.36;(4)412-402.解析:根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可.解:(1)∵82=64,∴64的算术平方根是8;(2)∵(32)2=94=214,∴214的算术平方根是32;(3)∵0.62=0.36,∴0.36的算术平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算术平方根是3.方法总结:(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑.(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.【类型二】 利用算术平方根的定义求值3+a 的算术平方根是5,求a 的值.解析:先根据算术平方根的定义,求出3+a 的值,再求a.解:因为52=25,所以25的算术平方根是5,即3+a =25,所以a =22.方法总结:已知一个数的算术平方根,可以根据平方运算来解题.探究点二:算术平方根的性质【类型一】 含算术平方根式子的运算计算:49+9+16-225.解析:首先根据算术平方根的定义进行开方运算,再进行加减运算. 解:49+9+16-225=7+5-15=-3.方法总结:解题时容易出现如9+16=9+16的错误.【类型二】 算术平方根的非负性已知x ,y 为有理数,且x -1+3(y -2)2=0,求x -y 的值.解析:算术平方根和完全平方式都具有非负性,即a ≥0,a 2≥0,由几个非负数相加和为0,可得每一个非负数都为0,由此可求出x 和y 的值,进而求得答案.解:由题意可得x -1=0,y -2=0,所以x =1,y =2.所以x -y =1-2=-1. 方法总结:算术平方根、绝对值和完全平方式都具有非负性,即a ≥0,|a|≥0,a 2≥0,当几个非负数的和为0时,各数均为0.三、板书设计算术平方根⎩⎨⎧概念:非负数a 的算术平方根记作a 性质:双重非负性⎩⎨⎧a≥0,a ≥0让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.4.4 一次函数的应用 第1课时 确定一次函数的表达式1.会确定正比例函数的表达式;(重点) 2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y 与x 之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y =(m -4)m 2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m 2-15=1且m -4≠0,∴m =-4,∴y =-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0. 探究点二:确定一次函数的表达式【类型一】 根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.解:设一次函数的表达式为y =kx +b ,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.数量x/千克售价y/元 1 8+0.4 2 16+0.8 3 24+1.2 4 32+1.6 5 40+2.0 ……解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、…… 解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.。

11 勾股定理》一等奖创新教学设计_2

11 勾股定理》一等奖创新教学设计_2

11 勾股定理》一等奖创新教学设计勾股定理(1)一、教材分析:勾股定理历史悠久,不仅被认为是平面几何中最重要的定理之一,也被认为是数学中最重要的定理之一,它揭示的是直角三角形三边的数量关系,在现实世界中也有着广泛的应用。

学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

也为后面学习直角三角形的相似、锐角三角函数、解直角三角形的学习打下坚实的基础。

2、学情分析:初二学生已经具备一定的几何证明基础,但是思维偏重于直观。

而勾股定理的证明是先构造图形,数形结合,再进行证明。

与以往的几何题目证明相差甚远,有很大的难度。

由此本课的设计注重从学生的动手操作开始,从作图猜想再由特殊到一般的验证,证明层层递进,引导学生亲历定理的产生和证明过程,且能初步运用,为以后相关知识的继续学习奠定良好的基础。

三、教学目标:认知目标:了解勾股定理的发现过程。

会用面积法证明勾股定理。

并且能初步运用勾股定理解决问题。

技能目标:在探索过程中,让学生亲历“观察—猜想—归纳—证明”的过程,并且能体会特殊到一般、数形结合的数学思想和方法。

情感目标:通过了解与定理有关的中外数学史,激发学生的学习兴趣和研究精神。

特别是通过了解中国古代的数学成就,激发学生的民族自豪感。

教学重点:勾股定理的证明和运用教学难点:勾股定理的证明教学方法:小组合作、教师点拨教学准备:已剪好的4个全等的直角三角形、课件教学过程:教学内容教师活动学生活动设计意图一、探究新知:活动一、尺规作直角边分别为为3cm、4cm和6cm、8cm和5cm、12cm三个直角三角形,用刻度尺量出斜边的长并观察三边数量上有什么规律?(课下完成作图)活动二:探究等腰直角三角形的情况(图1)如图1 如图2 (图2)由上面你得到的结论:一般的直角三角形是否也具有该性质呢?猜想:直角三角形两直角边的平方和等于斜边的平方。

活动三:拼图证明:1.用4个全等的直角三角形来拼成一个正方形(中间可以留白)2.能用不同的方法表示这个正方形的面积吗?证明方法一:大正方形的面积可以表为;也可以表示为___ 。

勾股定理教学设计省一等奖

勾股定理教学设计省一等奖

勾股定理教学设计省一等奖《勾股定理教学设计省一等奖》这是优秀的教学设计一等奖文章,希望可以对您的学习工作中带来帮助!第1篇勾股定理教学设计省一等奖教学目标:一知识技能1.理解勾股定理的逆定理的证明方法和证明过程;2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是直角三角形;二数学思考1.通过勾股定理的逆定理的探索,经历知识的发生发展与形成的过程;2.通过三角形三边的数量关系来判断三角形的形状,体验数形结合法的应用.三解决问题通过勾股定理的逆定理的证明及其应用,体会数形结合法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题.四情感态度1.通过三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一关系;2.在探究勾股定理的逆定理的证明及应用的活动中,通过一系列富有探究性的问题,渗透与他人交流合作的意识和探究精神.教学重难点:一重点:勾股定理的逆定理及其应用.二难点:勾股定理的逆定理的.证明.教学方法启发引导分组讨论合作交流等。

教学媒体多媒体课件演示。

教学过程:一复习孕新,引入课题问题:(1) 勾股定理的内容是什么?(2) 求以线段ab为直角边的直角三角形的斜边c的长:① a=3,b=4② a=2.5,b=6③ a=4,b=7.5(3) 分别以上述abc为边的三角形的形状会是什么样的呢?二动手实践,检验推测1.把准备好的一根打了13个等距离结的绳子,按3个结4个结5个结的长度为边摆放成一个三角形,请观察并说出此三角形的形状?学生分组活动,动手操作,并在组内进行交流讨论的基础上,作出实践性预测.教师深入小组参与活动,并帮助指导部分学生完成任务,得出勾股定理的逆命题.在此基础上,介绍:古埃及和我国古代大禹治水都是用这种方法来确定直角的.2.分别以2.5cm6cm6.5cm和4cm7.5cm8.5cm为三边画出两个三角形,请观察并说出此三角形的形状?3.结合三角形三边长度的平方关系,你能猜一猜三角形的三边长度与三角形的形状之间有怎样的关系吗?三探索归纳,证明猜想问题1.三边长度分别为3 cm4 cm5 cm的三角形与以3 cm4 cm为直角边的直角三角形之间有什么关系?你是怎样得到的?2.你能证明以2.5cm6cm6.5cm和4cm7.5cm8.5cm为三边长的三角形是直角三角形吗?3.如图18.2-2,若△ABC的三边长满足,试证明△ABC是直角三角形,请简要地写出证明过程.教师提出问题,并适时诱导,指导学生完成问题3的证明.之后,归纳得出勾股定理的逆定理.四尝试运用,熟悉定理问题1例1:判断由线段组成的三角形是不是直角三角形:(1)(2)2三角形的两边长分别为3和4,要使这个三角形是直角三角形,则第三条边长是多少?教师巡视,了解学生对知识的掌握情况.特别关注学生在练习中反映出的问题,有针对性地讲解,学生能否熟练地应用勾股定理的逆定理去分析和解决问题五类比模仿,巩固新知1.练习:练习题13.2.思考:习题18.2第5题.部分学生演板,剩余学生在课堂练习本上独立完成.小结梳理,内化新知六1.小结:教师引导学生回忆本节课所学的知识.2.作业:(1)必做题:习题18.2第1题(2)(4)和第3题;(2)选做题:习题18.2第46题.第2篇勾股定理教学设计省一等奖在教学工作者开展教学活动前,时常需要用到教案,教案是教学蓝图,可以有效提高教学效率。

初中数学 教学设计2:勾股定理 省赛一等奖

初中数学 教学设计2:勾股定理  省赛一等奖

c b
a c
b a
E D
B A
C 5、如图,这是美国第20届总统加菲尔德的构图,其中Rt △ABC 和Rt △BDE 是完全相同的.AC=BD=b,CB=DE=a,∠C=∠D=90°, AB=BE=c.。

请你试用此图形验证勾股定理的正确性.
四、 谈谈你的体会:
五、 自我检测:
1、填空
在Rt ΔABC 中,∠C=900.
①若a=6,c=10 ,则b=____.
②若a:b=3:4,c=10,则a=____,b=____.
③若a=6,b=8,则斜边c 上的高h=______.
2、选择:
①若直角三角形的三边为6、8、x ,则x 的长为 ( )
.8 C D.以上答案均不对
②如图,△ABC 中,∠B=90°,两直角边AB=7,BC=24,三角形内有一点P 到各边的距离相等,则这个距离为
( ) A .1 B .3
C .4
D .5 ③如图所示,有一块直角三角形纸片,两直角边AB=6,BC=8,将三角形ABC 折叠,使AB 落在斜边AC 上,折痕为AD,则BD 的长为
( ) A .3
B .4
C .5
D .6
3、①如图3,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长是7cm,则正方形A 、B 、C 、D 的面积之和是______。

②如图4,小方格的面积为1,找出图中以格点为端点且长度为5的线段。

3解答题
1、如图 ,以ΔABC 的三边为直径的3个半圆的面积有什么关系?请你说明理由。

B
A C 图4 A D 7cm C
B 图3。

勾股定理教学设计(优秀3篇)

勾股定理教学设计(优秀3篇)

勾股定理教学设计(优秀3篇)《勾股定理》教学设计篇一教学目标具体要求:1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。

2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。

3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。

重点:勾股定理的应用难点:勾股定理的应用教案设计一、知识点讲解知识点1:(已知两边求第三边)1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。

2.已知直角三角形的两边长为3、4,则另一条边长是______________。

3.三角形ABC中,AB=10,AC=一qi,BC边上的高线AD=8,求BC的长?知识点2:利用方程求线段长1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=壹五km,CB=10km,现在要在公路AB上建一车站E,(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?(2)DE与CE的位置关系(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?利用方程解决翻折问题2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。

4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF 的长是多少?5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。

求点F和点E坐标。

6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式。

(最新)数学八年级下册第十七章《勾股定理》省优质课一等奖教案

(最新)数学八年级下册第十七章《勾股定理》省优质课一等奖教案

(最新)数学⼋年级下册第⼗七章《勾股定理》省优质课⼀等奖教案《勾股定理》教学设计第⼀课时⼀、教学⽬标1.了解勾股定理的发现过程,掌握勾股定理的内容,会⽤⾯积法证明勾股定理. 2.培养在实际⽣活中发现问题总结规律的意识和能⼒.3.介绍我国古代在勾股定理研究⽅⾯所取得的成就,激发学⽣的爱国热情,促其勤奋学习.⼆、重点、难点1.重点:勾股定理的内容及证明.2.难点:勾股定理的证明.三、例题的意图分析例1(补充)通过对定理的证明,让学⽣确信定理的正确性;通过拼图,发散学⽣的思维,锻炼学⽣的动⼿实践能⼒;这个古⽼的精彩的证法,出⾃我国古代⽆名数学家之⼿.激发学⽣的民族⾃豪感,和爱国情怀.例2使学⽣明确,图形经过割补拼接后,只要没有重叠,没有空隙,⾯积不会改变.进⼀步让学⽣确信勾股定理的正确性.四、课堂引⼊⽬前世界上许多科学家正在试图寻找其他星球的“⼈”,为此向宇宙发出了许多信号,如地球上⼈类的语⾔、⾳乐、各种图形等.我国数学家华罗庚曾建议,发射⼀种反映勾股定理的图形,如果宇宙⼈是“⽂明⼈”,那么他们⼀定会识别这种语⾔的.这个事实可以说明勾股定理的重⼤意义.尤其是在两千年前,是⾮常了不起的成就.让学⽣画⼀个直⾓边为3cm和4cm的直⾓△ABC,⽤刻度尺量出AB的长.以上这个事实是我国古代3000多年前有⼀个叫商⾼的⼈发现的,他说:“把⼀根直尺折成直⾓,两段连结得⼀直⾓三⾓形,勾⼴三,股修四,弦隅五.”这句话意思是说⼀个直⾓三⾓形较短直⾓边(勾)的长是3,长的直⾓边(股)的长是4,那么斜边(弦)的长是5.再画⼀个两直⾓边为5和12的直⾓△ABC ,⽤刻度尺量AB 的长.你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2.对于任意的直⾓三⾓形也有这个性质吗?五、例习题分析例1(补充)已知:在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边为a 、b 、c . 求证:a 2+b 2=c 2.分析:(1)让学⽣准备多个三⾓形模型,最好是有颜⾊的吹塑纸,让学⽣拼摆不同的形状,利⽤⾯积相等进⾏证明.(2)拼成如图所⽰,其等量关系为:4S △+S ⼩正=S ⼤正 4×21ab +(b -a )2=c 2,化简可证.(3)发挥学⽣的想象能⼒拼出不同的图形,进⾏证明.(4)勾股定理的证明⽅法,达300余种.这个古⽼的精彩的证法,出⾃我国古代⽆名数学家之⼿.激发学⽣的民族⾃豪感,和爱国情怀.例2已知:在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边为a 、b 、c .AB求证:a 2+b 2=c 2.分析:左右两边的正⽅形边长相等,则两个正⽅形的⾯积相等. 左边S =4×21ab +c 2 右边S =(a +b )2 左边和右边⾯积相等,即 4×21ab +c 2=(a +b )2 化简可证. 六、课堂练习 1.勾股定理的具体内容是: . 2.如图,直⾓△ABC 的主要性质是:∠C =90°.(⽤⼏何语⾔表⽰)(1)两锐⾓之间的关系:;(2)若D 为斜边中点,则斜边中线;(3)若∠B =30°,则∠B 的对边和斜边:;(4)三边之间的关系: .bbbaAB3.△ABC 的三边a 、b 、c ,若满⾜b 2= a 2+c 2,则 =90°;若满⾜b 2>c 2+a 2,则∠B 是⾓;若满⾜b 2<c 2+a 2,则∠B 是⾓. 4.根据如图所⽰,利⽤⾯积法证明勾股定理.七、课后练习1.已知在Rt △ABC 中,∠B =90°,a 、b 、c 是△ABC 的三边,则(1)c = .(已知a 、b ,求c )(2)a = .(已知b 、c ,求a )(3)b = .(已知a 、c ,求b )2.如下表,表中所给的每⾏的三个数a 、b 、c ,有a <b <c ,试根据表中已有数的规律,写出当a =19时,b ,c 的值,并把b 、c ⽤含a 的代数式表⽰出来.3.在△从B 向C 以每秒2cm 的速度移动,问当P 点移动多少秒时,PA 与腰垂直. 4.已知:如图,在△ABC 中,AB =AC ,D 在CB 的延长线上.b EB求证:(1)AD 2-AB 2=BD ·CD(2)若D 在CB 上,结论如何,试证明你的结论.第⼆课时⼀、教学⽬标1.会⽤勾股定理进⾏简单的计算. 2.树⽴数形结合的思想、分类讨论思想. ⼆、重点、难点1.重点:勾股定理的简单计算. 2.难点:勾股定理的灵活运⽤. 三、例题的意图分析例1(补充)使学⽣熟悉定理的使⽤,刚开始使⽤定理,让学⽣画好图形,并标好图形,理清边之间的关系.让学⽣明确在直⾓三⾓形中,已知任意两边都可以求出第三边.并学会利⽤不同的条件转化为已知两边求第三边.例2(补充)让学⽣注意所给条件的不确定性,知道考虑问题要全⾯,体会分类讨论思想.例3(补充)勾股定理的使⽤范围是在直⾓三⾓形中,因此注意要创造直⾓三⾓形,作⾼是常⽤的创造直⾓三⾓形的辅助线做法.让学⽣把前⾯学过的知识和新知识综合运⽤,提⾼综合能⼒. 四、课堂引⼊复习勾股定理的⽂字叙述;勾股定理的符号语⾔及变形.学习勾股定理重在应⽤. 五、例习题分析DCB例1(补充)在Rt △ABC ,∠C =90°. (1)已知a =b =5,求c . (2)已知a =1,c =2, 求b . (3)已知c =17,b =8, 求a . (4)已知a :b =1:2,c =5, 求a . (5)已知b =15,∠A =30°,求a ,c .分析:刚开始使⽤定理,让学⽣画好图形,并标好图形,理清边之间的关系.(1)已知两直⾓边,求斜边直接⽤勾股定理.(2)已知斜边和⼀直⾓边,求另⼀直⾓边,⽤勾股定理的简便形式.(3)已知⼀边和两边⽐,求未知边.通过前三题让学⽣明确在直⾓三⾓形中,已知任意两边都可以求出第三边.后两题让学⽣明确已知⼀边和两边关系,也可以求出未知边,学会见⽐设参的数学⽅法,体会由⾓转化为边的关系的转化思想.例2(补充)已知直⾓三⾓形的两边长分别为5和12,求第三边.分析:已知两边中较⼤边12可能是直⾓边,也可能是斜边,因此应分两种情况分别进⾏计算.让学⽣知道考虑问题要全⾯,体会分类讨论思想. 例3(补充)已知:如图,等边△ABC 的边长是6cm .DBA(1)求等边△ABC 的⾼. (2)求S △ABC .分析:勾股定理的使⽤范围是在直⾓三⾓形中,因此注意要创造直⾓三⾓形,作⾼是常⽤的创造直⾓三⾓形的辅助线做法.欲求⾼CD ,可将其置⾝于Rt △ADC 或Rt △BDC 中,但只有⼀边已知,根据等腰三⾓形三线合⼀性质,可求AD =CD =21AB =3cm ,则此题可解.六、课堂练习 1.填空题(1)在Rt △ABC ,∠C =90°,a =8,b =15,则c = . (2)在Rt △ABC ,∠B =90°,a =3,b =4,则c = .(3)在Rt △ABC ,∠C =90°,c =10,a :b =3:4,则a = ,b = . (4)⼀个直⾓三⾓形的三边为三个连续偶数,则它的三边长分别为 .(5)已知直⾓三⾓形的两边长分别为3cm 和5cm ,则第三边长为 . (6)已知等边三⾓形的边长为2cm ,则它的⾼为,⾯积为 . 2.已知:如图,在△ABC 中,∠C =60°,AB =34,AC =4,AD 是BC 边上的⾼,求BC 的长.3.已知等腰三⾓形腰长是10,底边长是16,求这个等腰三⾓形的⾯积. 七、课后练习 1.填空题.在Rt △ABC ,∠C =90°,(1)如果a =7,c =25,则b = . (2)如果∠A =30°,a =4,则b = . (3)如果∠A =45°,a =3,则c = . (4)如果c =10,a -b =2,则b = .(5)如果a 、b 、c 是连续整数,则a +b +c = .AB(6)如果b =8,a :c =3:5,则c = .2.已知:如图,四边形ABCD 中,AD ∥BC ,AD ⊥DC ,AB ⊥AC ,∠B =60°,CD =1cm ,求BC 的长.第三课时⼀、教学⽬标1.会⽤勾股定理解决较综合的问题. 2.树⽴数形结合的思想. ⼆、重点、难点1.重点:勾股定理的综合应⽤. 2.难点:勾股定理的综合应⽤. 三、例题的意图分析例1(补充)“双垂图”是中考重要的考点,熟练掌握“双垂图”的图形结构和图形性质,通过讨论、计算等使学⽣能够灵活应⽤.⽬前“双垂图”需要掌握的知识点有:3个直⾓三⾓形,三个勾股定理及推导式BC 2-BD 2=AC 2-AD 2,两对相等锐⾓,四对互余⾓,及30°或45°特殊⾓的特殊性质等.例2(补充)让学⽣注意所求结论的开放性,根据已知条件,作适当辅助线求出三⾓形中的边和⾓.让学⽣掌握解⼀般三⾓形的问题常常通过作⾼转化为直⾓三⾓形的问题.使学⽣清楚作辅助线不能破坏已知⾓.例3(补充)让学⽣掌握不规则图形的⾯积,可转化为特殊图形求解,本题通过将图形转化为直⾓三⾓形的⽅法,把四边形⾯积转化为三⾓形⾯积之差.在转化的过程中注意条件的合理运⽤.让学⽣把前⾯学过的知识和新知识综合运⽤,提⾼解题的综合能⼒.B例4(教材P 76页探究3)让学⽣利⽤尺规作图和勾股定理画出数轴上的⽆理数点,进⼀步体会数轴上的点与实数⼀⼀对应的理论. 四、课堂引⼊复习勾股定理的内容.本节课探究勾股定理的综合应⽤. 五、例习题分析例1(补充)1.已知:在Rt △ABC 中,∠C =90°,CD ⊥BC 于D ,∠A =60°,CD =3,求线段AB 的长.分析:本题是“双垂图”的计算题,“双垂图”是中考重要的考点,所以要求学⽣对图形及性质掌握⾮常熟练,能够灵活应⽤.⽬前“双垂图”需要掌握的知识点有:3个直⾓三⾓形,三个勾股定理及推导式BC 2-BD 2=AC 2-AD 2,两对相等锐⾓,四对互余⾓,及30°或45°特殊⾓的特殊性质等.要求学⽣能够⾃⼰画图,并正确标图.引导学⽣分析:欲求AB ,可由AB =BD +CD ,分别在两个三⾓形中利⽤勾股定理和特殊⾓,求出BD =3和AD =1.或欲求AB ,可由22BC AC AB +=,分别在两个三⾓形中利⽤勾股定理和特殊⾓,求出AC =2和BC =6.例2(补充)已知:如图,△ABC 中,AC =4,∠B =45°,∠A =60°,根据题设可知什么?分析:由于本题中的△ABC 不是直⾓三⾓形,所以根据题设只能直接求得∠CDDACB =75°.在学⽣充分思考和讨论后,发现添置AB 边上的⾼这条辅助线,就可以求得AD ,CD ,BD ,AB ,BC 及S △ABC .让学⽣充分讨论还可以作其它辅助线吗?为什么?⼩结:可见解⼀般三⾓形的问题常常通过作⾼转化为直⾓三⾓形的问题.并指出如何作辅助线?解略.例3(补充)已知:如图,∠B =∠D =90°,∠A =60°,AB =4,CD =2.求:四边形ABCD 的⾯积.分析:如何构造直⾓三⾓形是解本题的关键,可以连结AC ,或延长AB 、DC 交于F ,或延长AD 、BC 交于E ,根据本题给定的⾓应选后两种,进⼀步根据本题给定的边选第三种较为简单.教学中要逐层展⽰给学⽣,让学⽣深⼊体会. 解:延长AD 、BC 交于E .∵∠A =∠60°,∠B =90°,∴∠E =30°. ∴AE =2AB =8,CE =2CD =4,∴BE 2=AE 2-AB 2=82-42=48,BE =48=34. ∵DE 2= CE 2-CD 2=42-22=12,∴DE =12=32. ∴S 四边形ABCD =S △ABE -S△CDE =21AB ·BE -21CD ·DE =36.⼩结:不规则图形的⾯积,可转化为特殊图形求解,本题通过将图形转化为直⾓三⾓形的⽅法,把四边形⾯积转化为三⾓形⾯积之差. 例4(教材P 76页探究3).分析:利⽤尺规作图和勾股定理画出数轴上的⽆理数点,进⼀步体会数轴上的点BC与实数⼀⼀对应的理论. 六、课堂练习1.△ABC 中,AB =AC =25cm ,⾼AD =20cm ,则BC = ,S △ABC = . 2.△ABC 中,若∠A =2∠B =3∠C ,AC =32cm ,则∠A = 度,∠B = 度,∠C = 度,BC = ,S △ABC = .3.△ABC 中,∠C =90°,AB =4,BC =32,CD ⊥AB 于D ,则AC = ,CD = ,BD = ,AD = ,S △ABC = .4.已知:如图,△ABC 中,AB =26,BC =25,AC =17,求S △ABC .七、课后练习.1.在Rt △ABC 中,∠C =90°,CD ⊥BC 于D ,∠A =60°,CD =3,AB = . 2.在Rt △ABC 中,∠C =90°,S △ABC =30,c =13,且a <b ,则a = ,b = . 3.已知:如图,在△ABC 中,∠B =30°,∠C =45°,AC =22,求(1)AB 的长;(2)S△ABC .C C。

1.1勾股定理 一等奖创新教学设计

1.1勾股定理 一等奖创新教学设计

1.1勾股定理一等奖创新教学设计《17.1 勾股定理》第一课时教学设计教学内容:人教版八年级数学下册《17.1 勾股定理》第1课时.教材分析:勾股定理是学生在掌握了直角三角形有关性质的基础上进行学习的,在学习中起到承上启下的作用。

勾股定理是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了直角三角形三边之间的数量关系,可以解决直角三角形中的计算问题,是解直角三角形的主要依据之一。

勾股定理的探索和证明蕴含着丰富的数学思想和科学方法,是培养学生良好思想品质的载体,它在数学的发展过程中起着重要的作用,勾股定理是数与形结合的优美典范。

学情分析:从学生的身心发展特点以及认知水平来看,八年级的学生逻辑思维还是比较薄弱的,但是他们已经具备一定的观察、归纳、探索和推理的能力。

因此本节课需要通过形象直观的图形去感受发现新知识。

在小学,他们已经学习了一些几何图形面积的计算方法(包括割补法),但运用面积法和割补法解决问题的意识和能力还远远不够,因此我采用直观教具、学具,多媒体演示等手段,让学生动手、动口、动脑,化难为易,深入浅出,让学生感受学习知识的乐趣。

教学目标分析:初中数学课程标准中对勾股定理部分提出如下要求:在研究图形性质和运动等过程中,进一步发展空间观念在多种形式的数学活动中,发展合情推理能力经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。

依据对课标、教材及学生的认知特点,确定本节课的教学目标如下:知识与技能目标:了解勾股定理的文化背景,经历探索发现并验证勾股定理的过程。

过程与方法目标:在勾股定理的探索过程中,发展合情推理能力,体会数学思维的严谨性数形结合的数学思想,发展形象思维。

同时,在探究活动中感受解决问题方法的多样性。

情感态度与价值观目标:通过对勾股定理发展历史的了解,尤其是对中国古代数学家对勾股定理的研究,使学生感受数学文化的魅力,激发学生的民族自豪感和学习热情。

山东省优质课比赛一等奖勾股定理教学设计

山东省优质课比赛一等奖勾股定理教学设计

义务教育课程标准实验教科书(人教版)18.1.1勾股定理(说案)临沂市苍山县实验中学宋宁课题:18.1.1 勾股定理临沂市苍山县实验中学宋宁一、教材分析1、地位和作用本节课选自人教版《数学》八年级下册第十八章第一节勾股定理第一课时爱国主义教育的良好素材。

2、 学习目标【知识技能】 1、经历勾股定理的探索过程,理解并掌握勾股定理;2、学会运用勾股定理进行简单的计算。

【数学思考】 1、让学生切实经历“观察-探索-猜想-验证-归纳”的探索过程;2、发展合情推理能力,并体会数形结合、由特殊到一般、转化的思想方法。

【问题解决】 1、通过拼图活动,体验解决问题方法的多样性;2、在探索活动中,培养学生的自主性与合作性。

【情感态度】 激发学生热爱祖国悠久文化的情感。

3、重点、难点重点:勾股定理的探索过程;难点:面积法(拼图法)发现勾股定理。

二、教法与学法分析学法指导动手实践、自主探索、合作交流三、教学过程几何直观引导实验思想方法探索验证 直角三角形三边之间数量关系 解直角三角形 广泛应用形 数 几何 代数教学方法活动1:等腰入手发现新知等腰直角三角形三边满足什么关系?方案二:4、学生总结归纳勾股定理,板书勾股定理并给出字母表示。

教师对“勾股弦”的含义以及3、台风来袭,一棵大树在离地面9米处断裂,树的顶部四、评价分析五、设计说明1、探究体验贯穿始终2、展示交流贯穿始终3、习惯养成贯穿始终4、情感教育贯穿始终5、文化育人贯穿始终。

山东省优质课比赛一等奖---《勾股定理》教学设计

山东省优质课比赛一等奖---《勾股定理》教学设计

义务教育课程标准实验教科书(人教版)18.1.1勾股定理(说案)临沂市苍山县实验中学宋宁课题:18.1.1 勾股定理临沂市苍山县实验中学 宋 宁一、教材分析1、地位和作用本节课选自人教版《数学》八年级下册第十八章第一节勾股定理第一课时爱国主义教育的良好素材。

2、 学习目标【知识技能】 1、经历勾股定理的探索过程,理解并掌握勾股定理;2、学会运用勾股定理进行简单的计算。

【数学思考】 1、让学生切实经历“观察-探索-猜想-验证-归纳”的探索过程;2、发展合情推理能力,并体会数形结合、由特殊到一般、转化的思想方法。

【问题解决】 1、通过拼图活动,体验解决问题方法的多样性;2、在探索活动中,培养学生的自主性与合作性。

【情感态度】 激发学生热爱祖国悠久文化的情感。

3、重点、难点重点:勾股定理的探索过程;难点:面积法(拼图法)发现勾股定理。

直角三角形三边之间数量关系 解直角三角形广泛应用形 数 几何代数二、教法与学法分析学法指导动手实践、自主探索、合作交流三、教学过程教学环节教学内容师生互动设计意图情境导入古韵今风拼图游戏一千多年前,中国人发明了七巧板,外国人管它叫“中国魔板”、“唐图”。

1、教师出示《七巧八分图》.2、学生利用两组七巧板进行合作拼图。

3、学生利用几何直观进行合情推理并大胆猜测。

通过情景创设,寓教于乐,激发学生好奇、探究的欲望。

活动1:等腰入手发现新知等腰直角三角形三边满足什么关系?1、教师展示图片并提出问题。

2、学生观察图形,在自主探究的基础上合作交流。

完成表格A的面积B的面积C的面积图1将面积的关系转化为边长之间的关系体现了转化的思想。

将图形转化为问题几何直观引导实验思想方法探索验证教学方法命题1,学生充分交流、表达、总结。

言表达能力。

推陈出新借古鼎新用准备好的四个全等的直角三角形拼成一个正方形。

(内部可以中空)(1)你能求出大正方形的面积吗?(2)你又有什么发现?勾股定理1、教师提出问题,学生自主探究并小组合作交流,动手验证。

初中数学 勾股定理教案 省赛一等奖

初中数学 勾股定理教案  省赛一等奖

勾股定理(2)一、教学目标1.教学目标●知识与技能目标掌握勾股定理及其验证,并能应用勾股定理解决一些实际问题.●过程与方法目标在上节课对具体的直角三角形探索发现了勾股定理的基础上,经历勾股定理的验证过程,体会数形结合的思想和从特殊到一般的思想.●情感与态度目标在勾股定理的验证活动中,培养探究能力和合作精神;通过对勾股定理历史的了解,感受数学文化,增强爱国情感,并通过应用勾股定理解决实际问题,培养应用数学的意识.2.教学重点用面积法验证勾股定理,应用勾股定理解决简单的实际问题.3.教学难点验证勾股定理.二、教法学法1.教学方法:引导——探究——应用.2.课前准备:教具:教材,课件,电脑.学具:教材,铅笔,直尺,练习本.三、教学过程本节课设计了七个教学环节:(一)复习设疑,激趣引入;(二)小组活动,拼图验证;(三)追溯历史,激发情感;(四)例题讲解,初步应用;(五)拓展练习,能力提升;(六)回顾反思,提炼升华;(七)布置作业,课堂延伸.第一环节:复习设疑,激趣引入内容:教师提出问题:(1)勾股定理的内容是什么?(请一名学生回答)(2)上节课我们仅仅是通过测量和数格子,对具体的直角三角形探索发现了勾股定理,对一般的直角三角形,勾股定理是否成立呢?这需要进一步验证,如何验证勾股定理呢?事实上,现在已经有几百种勾股定理的验证方法,这节课我们也将去验证勾股定理.意图:(1)复习勾股定理内容;(2)回顾上节课探索过程,强调仍需对一般的直角三角形进行验证,培养学生严谨的科学态度;(3)介绍世界上有数百种验证方法,激发学生兴趣.效果:通过这一环节,学生明确了:仅仅探索得到勾股定理还不够,还需进行验证.当学生听到有数百种验证方法时,马上就有了去寻求属于自己的方法的渴望.第二环节:小组活动,拼图验证.内容: 活动1: 教师导入,小组拼图.教师:今天我们将研究利用拼图的方法验证勾股定理,请你利用自己准备的四个全等的直角三角形,拼出一个以斜边为边长的正方形.(请每位同学用2分钟时间独立拼图,然后再4人小组讨论.)活动2:层层设问,完成验证一.学生通过自主探究,小组讨论得到两个图形:图2 在此基础上教师提问: (1)如图1你能表示大正方形的面积吗?能用两种方法吗?(学生先独立思考,再4人小组交流);(2)你能由此得到勾股定理吗?为什么?(在学生回答的基础上板书(a+b)2=4×21ab+c 2.并得到222c b a =+) 从而利用图1验证了勾股定理.活动3 : 自主探究,完成验证二.教师小结:我们利用拼图的方法,将形的问题与数的问题结合起来,联系整式运算的有关知识,从理论上验证了勾股定理,你还能利用图2验证勾股定理吗?(学生先独立探究,再小组交流,最后请一个小组同学上台讲解验证方法二)意图:设计活动1的目的是为了让学生在活动中体会图形的构成,既为勾股定理的验图1证作铺垫,同时也培养学生的动手、创新能力.在活动2中,学生在教师的层层设问引导下完成对勾股定理的验证,完成本节课的一个重点内容.设计活动3,让学生利用另一个拼图独立验证勾股定理的目的是让学生再次体会数形结合的思想并体会成功的快乐.效果:学生通过先拼图从形上感知,再分析面积验证,比较容易地掌握了本节课的重点内容之一,并突破了本节课的难点.第三环节:追溯历史激发情感活动内容:由学生利用所搜集的与勾股定理相关的资料进行介绍.国内调查组报告:用图2验证勾股定理的方法,据载最早是三国时期数学家赵爽在为《周髀算经》作注时给出的,我国历史上将图2弦上的正方形称为弦图 .2002年的数学家大会(ICM-2002)在北京召开,这届大会会标的中央图案正是经过艺术处理的弦图,这既标志着中国古代的数学成就,又像一只转动的风车,欢迎来自世界各地的数学家们!国际调查组报告:勾股定理与第一次数学危机.约公元前500年,毕达哥拉斯学派的弟子希帕索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线的长度是不可公度的.按照毕达哥拉斯定理(勾股定理),若正方形边长是1,则对角线的长不是一个有理数,它不能表示成两个整数之比,这一事实不但与毕氏学派的哲学信念大相径庭,而且建立在任何两个线段都可以公度基础上的几何学面临被推翻的威胁,第一次数学危机由此爆发.据说,毕达哥拉斯学派对希帕索斯的发现十分惶恐、恼怒,为了保守秘密,最后将希帕索斯投入大海.不能表示成两个整数之比的数,15世纪意大利著名画家达.芬奇称之为“无理的数”,无理数的英文“irrational”原义就是“不可比”.第一次数学危机一直持续到19世纪实数的基础建立以后才圆满解决.我们将在下一章学习有关实数的知识 .趣闻调查组报告:勾股定理的总统证法.在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景……他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈a论着什么,时而大声争论,时而小声探讨.由于好奇心驱使他循声向两个小孩走去,想搞清楚两个小孩到底在干什么.只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形……于是这位中年人不再散步,立即回家,潜心探讨小男孩给他留下的难题.他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法.1876年4月1日,他在《新英格兰教育日志》上发表了他对勾股定理的这一证法.1881年,这位中年人—伽菲尔德就任美国第二十任总统.后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法.说明:这个环节完全由学生来组织开展,教师可在两天前布置任务,让部分同学收集勾股定理的资料,并在上课前拷贝到教师用的课件中便于展示,内容可灵活安排.意图:(1)介绍与勾股定理有关的历史,激发学生的爱国热情;(2)学生加强了对数学史的了解,培养学习数学的兴趣;(3)通过让部分学生搜集材料,展示材料,既让学生得到充分的锻炼,同时也活跃了课堂气氛.效果:学生热情高涨,对勾股定理的历史充满了浓厚的兴趣,同时也为中国古代数学的成就感到自豪.也有同学提出:当代中国数学成就不够强,还应发奋努力.有同学能意识这一点,这让我喜出望外.第四环节:例题讲解初步应用内容:例题:飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩子头顶5000米,飞机每小时飞行多少千米?意图:(1)初步运用勾股定理解决实际问题,培养学生应用数学的意识和能力;(2)体会勾股定理的应用价值.效果:学生对这样的实际问题很感兴趣,基本能把实际问题转化为数学问题并顺利解决. 第五环节:拓展练习能力提升内容:一组生活中勾股定理的应用练习,共3道题(1)教材 P10练习题.(2)一个25m长的梯子AB,斜靠在一竖直的墙AO上,这时的AO距离为24m,如果梯子的顶端A沿墙下滑4m,那么梯子底端B也外移4m吗?(3)受台风麦莎影响,一棵高18m的大树断裂,树的顶部落在离树根底部6米处,这棵树折断后有多高?说明:这一环节设计了3道题,设计时注意了题目的梯度,由浅入深,第一题为书上练习题,学生容易解决,第二道题虽然计算难度不大,但考查学生的实际应用能力,第三道题是应用勾股定理建立方程求解,有一定难度.意图:在例题的基础上进行拓展,训练学生将实际问题转化为数学问题,再运用勾股定理解决问题.效果:小部分学生在完成第二题时,由于欠缺生活常识时,不能准确地理解题意,约有一半同学对第3道题束手无策,主要是缺乏利用勾股定理建立方程求解的这种思路,经同学点拨,教师引导,绝大部分同学最后都能解决这个问题,通过3个小题的训练,总体感觉学生对勾股定理的应用更加熟练,并对勾股定理的应用价值体会更深.第六环节:回顾反思提炼升华内容:教师提问:通过这节课的学习,你有什么样的收获?师生共同畅谈收获.目的:(1)归纳出本节课的知识要点,数形结合的思想方法;(2)教师了解学生对本节课的感受并进行总结;(3)培养学生的归纳概括能力.效果:由于这节课自始至终都注意了调动学生学习的积极性,所以学生谈的收获很多,包括利用拼图验证勾股定理中蕴含的数形结合思想,学生对勾股定理的历史的感悟及对勾股定理应用的认识等等.第七环节:布置作业,课堂延伸内容:教师布置作业1.习题1.2 1,2,32.上网或查阅有关书籍,搜集至少1种勾股定理的其它证法,至少1个勾股定理的应用问题,一周后进行展评.意图:(1)巩固本节课的内容.(2)充分发挥勾股定理的育人价值.四、教学设计反思(1)设计理念在课堂教学中,始终注意了调动学生的积极性.兴趣是最好的老师,所以无论是引入、拼图,还是历史回顾,我都注意去调动学生,让学生满怀激情地投入到活动中.因此,课堂效率较高.勾股定理作为“千古第一定理”,其魅力在于其历史价值和应用价值,因此我注意充分挖掘了其内涵.特别是让学生事先进行调查,再在课堂上进行展示,这极大地调动了学生,既加深了对勾股定理文化的理解,又培养了他们收集、整理资料的能力.(2)突出重点、突破难点的策略勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,我设计了拼图活动,先让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究得到方法1,最后由学生独立探究得到方法2.这样学生较容易地突破了本节课的难点.(3)分层教学根据本班学生及教学情况可在教学过程中选择下述内容进行补充或拓展.。

(最新)数学八年级下册第十七章《勾股定理 》省优质课一等奖教案

(最新)数学八年级下册第十七章《勾股定理 》省优质课一等奖教案

《勾股定理》教学设计【课时安排】4课时【第一课时】【教学目标】1.知识与技能:(1)了解勾股定理的发现过程。

(2)掌握勾股定理的内容。

(3)会用面积法证明勾股定理。

(4)会应用勾股定理进行简单的计算。

2.过程与方法:(1)经历利用等腰直角三角形探索勾股定理的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

(2)探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。

3.情感、态度与价值观:(1)介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。

(2)培养在实际生活中发现问题、总结规律的意识和能力。

【教学重点】勾股定理的内容及证明。

【教学难点】勾股定理的证明。

【教学过程】一、引入新课。

教师活动:目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。

我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。

这个事实可以说明勾股定理的重大意义。

尤其是在两千年前,更是非常了不起的成就。

二、进行新课。

1.勾股定理的内容及其证明。

教师活动:引导学生阅读课本相关的内容。

相传2500年前,毕达哥拉斯又一次在朋友家做客时,发现朋友家的用砖铺成的地面中反映了直角三角形三边的某种数量关系。

我们也来观察下图中的地面,看看能发现些什么?思考:你能发现下面图中的直角三角形有什么性质吗?可以发现,以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积。

即我们惊奇的发现,等腰三角形的三边之间有一种特殊的关系:斜边的平方等于两直角边的平方和。

探究:等腰直角三角形有上述性质,其他的直角三角形也有这个性质吗?上图中,每个小方格的面积均为1,请分别算出图中正方形A,B,C,'A,'B,'C的面积,看看能得出什么结论。

(最新)数学八年级下册第十七章《勾股定理 》省优质课一等奖教案

(最新)数学八年级下册第十七章《勾股定理 》省优质课一等奖教案
例1、(教材P26页思考)
例2(教材P26.....27页探究)
3、交流展示:
例3(补充)1.已知:在Rt△ABC中,∠C=90°,CD⊥BC于D,∠A=60°,CD= ,求线段AB的长
分析:本题是“双垂图”的计算题,“双垂图”是中考重要的考点,所以要求学生对图形及性质掌握非常熟练,能够灵活应用。目前“双垂图”需要掌握的知识点有:3个直角三角形,三个勾股定理及推导式BC2-BD2=AC2-AD2,两对相等锐角,四对互余角,及30°或45°特殊角的特殊性质等。
2、发展合情推理的能力,体会数形结合和由特殊到一般的数学思想.树立数形 结合的思想、分类讨论思想
情感态度与价值观:通过对勾股定理历史的了解和实例应用,体会勾股定理的文化价值;通过获得成功的经验和克服困难的经历,增进数学学习的信心.激发学生的民族自豪感,和爱国情怀。
教学重点
勾股定理的简单计算。
教学难点
1.小明和爸爸妈妈十一登香山,他们沿着45度的坡路走了500米,看到了一棵红叶树,这棵红叶树的离地面的高度是米。
2.如图,山坡上两株树木之间的坡面距离是4 米,则这两株树之间的垂直距离是米,水平距离是米。
2题3题4题
3.如图,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点之间的距离是。
二、选做题:
五、当堂训练:
一、必作题:
1.填空题
⑴在Rt△ABC,∠C=90°,a=8,b=15,则c=。
⑵在Rt△ABC,∠B=90°,a=3,b=4,则c=。
⑶在Rt△ABC,∠C=90°,c=10,a:b=3:4,则a=,b=。
⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为。
⑸已知直角三角形的两边长分别为3cm和5cm,,则第三边长为。

(最新)数学八年级下册第十七章《勾股定理 》省优质课一等奖教案

(最新)数学八年级下册第十七章《勾股定理 》省优质课一等奖教案

《勾股定理》教学设计第一课时教学目标1.经历探索和验证勾股定理的过程,了解勾股定理的概念.2.利用拼图法验证勾股定理,并会利用两边求直角三角形的另一边长,发展学生的推理能力,体会数形结合和从特殊到一般的思想.3.对比介绍我国古代和西方数学家关于勾股定理的研究,激发学生热爱数学的情感,激励学生发奋学习的欲望.教学重难点重点:经历探索和验证勾股定理的过程,会利用两边求直角三角形的另一边长.难点:用拼图法验证勾股定理,会利用两边求直角三角形的另一边长.教学过程一、情境引入请同学们观察图17.1-1(见教材P22),你能从中发现什么数量关系?教师用多媒体播放“毕达哥拉斯观察地面图案发现勾股定理”的传说:相传两千五百多年前,毕达哥拉斯有一次在朋友家作客时,发现朋友家用砖铺成的地面图案反映了直角三角形的三边的某种数量关系.毕达哥拉斯到底发现了什么?这就是本节课我们要学的知识——勾股定理.二、互动新授【思考】图17.1-2(见教材P22)中三个正方形的面积有什么关系?等腰直角三角形的三边之间有什么关系?学生独立思考,计算后交流讨论.教师讲评:我们可以发现,以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的大正方形的面积.即等腰直角三角形的三边之间有一种特殊的关系:斜边的平方等于两直角边的平方和.【探究】等腰三角形具有上述性质,其他的直角三角形也有这个性质吗?请同学们根据图17.1-3(见教材P23),(1)计算各个正方形的面积;(2)探究S A+S B与S C,S A′+S B′与S C′的关系,看看能得到什么结论?学生交流、讨论,计算后容易得出:对于一般以整数为边长的直角三角形,也有两直角边的平方和等于斜边的平方.从上面的几个例子中,我们猜想(教材图17.1-4):教材图17.1-4命题1:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.证明命题1的方法有很多,下面介绍我国古人赵爽的证法.1.多媒体演示教材图17.1-5、教材图17.1-6.2.学生利用学具拼一拼,摆一摆,体验古人赵爽的证明方法.3.教师讲解赵爽利用弦图证明命题1的基本思路:赵爽利用弦图证明命题1的基本思路如下:如教材图17.1-6(1),把边长为a,b的两个正方形连在一起,它的面积是a2+b2;另一方面,这个图形可分割成四个全等的直角三角形(红色)和一个正方形(黄色),把教材图17.1-6(1)中左、右两个三角形移到教材图17.1-6(2)中所示的位置,就会形成一个以c为边长的正方形(教材图17.1-6(3)).因为教材图17.1-6(1)与教材图17.1-6(3)都由四个全等的直角形(红色)和一个正方形(黄色)组成,所以它们的面积相等.因此,a2+b2=c2.教材图17.1-5(1)(2)(3)教材图17.1-6教师总结:命题1与直角三角形的边有关,我国把它称为勾股定理.“赵爽弦图”通过对图形的切割、拼接,巧妙地利用面积关系证明了勾股定理,它表现了我国古人对数学的钻研精神和聪明才智,是我国古代数学的骄傲.因此,这个图案(教材图17.1-5)被选为2002年在北京召开的国际数学大会的会徽.三、课堂小结通过本节课的学习,你有什么收获?本节课主要学习了勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方.四、板书设计五、教学反思本节课以讲故事开始,提出问题让学生思考,设计问题引导学生探究、归纳.在整个教学中,教师的作用在于组织、点拨、引导,促进学生主动探索、积极思考、大胆想象、总结规律,充分发挥学生的主体作用,让学生真正成为数学活动的主人.教学中充分体现了知识的发生、形成和发展过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合思想,引导学生利用实验由特殊到一般对直角三角形三边关系进行研究,得出结论.通过教学让学生初步掌握这种方法,对于学生良好思维品质的形成有重要作用.在教学中,教师应着重强调学生易忽略的两点:(1)使用勾股定理的前提条件是这个三角形必须是直角三角形,解题时只有在直角三角形中,才能运用它来求第三边长;(2)式子a2=c2-b2,b2=c2-a2,c=a2+b2,a=c2-b2,b=c2-a2,在具体解题中,应灵活应用.第二课时教学目标1.能运用勾股定理解决简单的实际问题.2.通过例题的分析与解决,让学生感受勾股定理在实际生活中的应用.3.在数学学习过程中,体验数学来源于生活实践,并为生活实践服务.教学重难点重点:运用勾股定理解决简单的实际问题.难点:勾股定理的灵活应用.教学过程一、情境引入上节课我们已经学习了勾股定理.其实,勾股定理有广泛的应用,下面我们用它来解决几个问题.【例1】一个门框的尺寸如教材图17.1-7所示,一块长3m,宽2.2m的长方形薄木板能否从门框内通过?为什么?教材图17.1-7学生小组交流讨论后,形成共识.【分析】可以看出,木板横着进,竖着进,都不能从门框内通过,只能试试斜着能否通过.门框对角线AC的长度是斜着能通过的最大长度.求出AC,再与木板的宽比较,就能知道木板能否通过.【解】在Rt△ABC中,根据勾股定理,AC2=AB2+BC2=12+22=5.AC=5≈2.24.因为AC大于木板的宽2.2m,所以木板能从门框内通过.二、互动新授【例2】如教材图17.1-8,一架2.6m长的梯子AB斜靠在一竖直的墙AO 上,这时AO为2.4m,如果梯子的顶端A沿墙下滑0.5m,那么梯子底端B也外移0.5m吗?教材图17.1-8组织学生思考,讨论:(1)根据生活经验,要求梯子底端B外移多少必须知道哪两个量?(2)梯子滑动的过程中谁是常量?谁是变量?引导学生将实际问题转化成数学问题,也就是“已知一个直角三角形的两边,如何求第三边?”的问题.引导学生探寻解题思路,提高分析问题的能力,这是完成数学建模的关键.【解】可以看出,BD=OD-OB.在Rt△AOB中,根据勾股定理,OB2=AB2-OA2=2.62-2.42=1.OB=1=1.在Rt△COD中,根据勾股定理,OD2=CD2-OC2=2.62-(2.4-0.5)2=3.15.OD= 3.15≈1.77,BD=OD-OB≈1.77-1=0.77.所以梯子的顶端沿墙下滑0.5m,梯子底端并不是也外移0.5m,而是外端约0.77m.三、课堂小结通过本节课的学习,你有什么收获?本节课主要学习了运用勾股定理解决实际问题,其关键是运用转化思想将实际问题转化为数学模型,再运用勾股定理来解.四、板书设计五、教学反思本节课以教材例1引入,引发学生学习的兴趣,通过学生对熟悉的实例的探究,激活学生的思维,整节课力求以学生探究、交流、合作贯彻始终,在教学过程中给学生的思考提供足够的时间和空间.使学生在经历“将实际问题转化成数学问题”的过程中,对勾股定理有更深刻的认识,体验数学离不开生活,数学就在我们身边,激发学生应用数学的兴趣.勾股定理的应用非常广泛,在日常生活中,有许多问题都可以运用勾股定理来解决的.但学生在学习过程中没有很好地运用勾股定理解决实际问题,在这个方面还有待于进一步提高.。

(最新)数学八年级下册第十七章《勾股定理 》省优质课一等奖教案

(最新)数学八年级下册第十七章《勾股定理 》省优质课一等奖教案

《勾股定理》教学设计一、【教材分析】(一)【课程标准分析】勾股定理可以解决许多直角三角形中的计算问题;可以进行几何计算如求边长、周长、面积等,可以利用勾股定理作图如在数轴上作出表示无理数的点;它在日常生活中有着广泛的应用,诸如用于无法直接实现的测量;它在物理学中的力学、光学的学习中都有所应用,科学家们甚至试图利用勾股定理探索宇宙奥秘。

(二) 【教材分析】本节课是勾股定理,它是数形结合的代表,是用代数知识解决几何问题的基础桥梁。

通过本节课的学习为下节课学习勾股定理在实际生活中的应用奠定了基础,也是后续学习解直角三角形、余弦定理的基础,是三角形知识的深化。

利用(三) 【学生分析】八年级的学生已经具备了一定的观察、分析能力和几何证明的理论思维能力,能够独立的思考问题,但要能发现自然界中的规律还是有一定的困难,还需要教师的引导启发。

教学班级是八年级(3)(4)班学生,他们学习热情高,兴趣浓厚,善于思考问题,他们希望老师创设便于他们进行观察的几何环境,给他们发表自己见解和表现自己才华的机会,希望老师满足他们的创造愿望,让他们实际操作,使他们获得施展自己创造才能的机会。

但对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用数学思想的意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。

二、【教学目标】【知识与能力】1.理解并掌握勾股定理的内容和证明,能够运用勾股定理进行简单计算; 2.通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

【过程与方法】1.通过拼图活动,体验数学思维的严谨性,发展形象思维。

2.在探究活动中,学会与人合作并能与他人交流思维的过程。

3.初步渗透运用勾股定理解决直角三角形相关的问题的数学方法。

【情感态度与价值观】通过网络了解古代勾股方面的成就,激发学生热爱祖国悠久文化的思想感情,培养学生的民族自豪感和民族精神。

勾股定理优质课教学设计一等奖及点评

勾股定理优质课教学设计一等奖及点评

《24.1勾股定理》教学设计一、教学内容及其解析勾股定理是直角三角形特有的一条重要性质,也是平面几何的一个基本定理.它揭示了三角形中一个直角的“形”的特点决定了三边之间的“数”的关系,是用代数思想解决几何问题的重要手段,是解决四边形问题及圆的问题和解三角形的主要依据,充分体现了数学知识承前启后的紧密相关性和连续性.本节课的教学重点是勾股定理的发现和辨析.勾股定理不仅促进了数学的发展,而且在科技进步中也发挥了不可估量的作用.二、教学目标及其解析1.掌握勾股定理的内容;能够使用勾股定理进行简单的几何计算;理解勾股定理的证明方法.2.经历观察,计算,辨析,证明,应用的探究过程,感受知识的发生,发展. 体会数形结合,转化,由特殊到一般的数学思想,并获得研究问题的方法.3.通过亲身参与数学活动,获得成功的体验;在小组探究中学会合作与分享.4.通过了解中国古代在勾股定理研究方面的伟大成就,激发爱国情怀.三、学生学情分析从年龄特点上看,虽然八年级学生不及低学段学生那样活泼富有激情,但他们已经具备了一定的动手能力,对知识的迁移能力,以及理性的分析问题,用多种方法解决问题的能力.能在老师的引导下,针对某一问题展开讨论并归纳总结,但是受年龄特征的影响,他们探索问题的方法和角度还需进一步培养.所以勾股定理的证明是本节课的难点.从知识储备上看,学生已经掌握了直角三角形的一部分性质及三角形全等和轴对称的相关知识;会通过作简单的辅助线解决几何问题.教学中利用学生已有的知识和经验,让学生积极参与到课堂的讨论与探究中来,大胆发表见解,发挥其主动性、积极性,优化课堂效果.四、教学策略分析通过故事,以问题为载体给学生提供思考,研讨,探索的空间,引导学生积极参与课堂活动.教学环节的设计与展开,都以问题的讨论与解决为中心,使教学过程成为在教师指导下学生的一种研讨,探索的学习活动过程,在讨论和交流中逐步发现,辨析,证明,应用勾股定理.五、教学过程设计(一)创设情境引出课题观看PPT,播放沙画还原第24届数学家大会的申办和召开,介绍大会会徽,指出该会徽是我国数学发展史上的伟大成就,代表我国古代对勾股定理的研究成果,从而引出课题和研究内容.【师生活动】共同观看PPT,教师介绍大会会徽的含义.【设计意图】明确学习的知识内容和目标.(二)漫话勾股感知发现1.观看PPT,播放毕达哥拉斯参加政要的餐会,凝视地砖出神,教师引导学生观察,引发学生思考.初步探索等腰直角三角形中两条直角边的平方和等于斜边的平方.【师生活动】共同观看PPT,当学生观察受阻时,教师引导学生观察以等腰直角三角形三边为边向外作的三个正方形,利用正方形所覆盖的等腰直角三角形的个数,探究三个正方形的面积关系:P Q M S S S +=,从而得到三边关系:222AC BC AB +=.【设计意图】初步体会边的关系可以通过研究面积关系获得.2.将生活问题转化为数学问题.在网格中,通过计算进一步探索等腰直角三角形的三边关系.【设计意图】通过数学计算,验证P Q M S S S +=仍然成立,根据三个正方形的面积关系,依然能得到三边关系为:222AC BC AB +=.(三)条件辨析 直观验证教师提出问题:“等腰直角三角形是特殊的三角形,它有两个特殊条件,等腰和直角,等腰直角三角形的三边能具有这样特殊的数量关系,这两个特殊条件是否缺一不可呢?如果缺少其中一个条件,或者两个特殊条件都不存在了,那这样的三角形的三边还存在以上特殊的数量关系吗?”【师生活动】教师提出问题,引发学生思考.【设计意图】辨析决定“两条直角边的平方和等于斜边的平方”这一关系的重要条件到底是“等腰”还是“直角”.学生通过思考获得以下争论:争论1:两个条件缺一不可,因为已经验证过等腰直角三角形的三边是满足222+=.AC BC AB争论2:等腰这个特殊条件不能少,因为等腰是边的关系,222+=也AC BC AB是边的关系.争论3:可能与直角关,因为我们曾经学习过“直角三角形中30°角所对的直角边等于斜边的一半”,这种边的关系就是与30°角有关.由此推断,等腰直角三角形这种特殊的三边关系可能与直角有关.争论4:可能与两个条件都没有关系.争论5:应该分别验证一下.学生总结具体的验证方案:已经验证了同时有两个特殊条件的等腰直角三角形的三边存在特殊的数量关系.接下来,继续验证减少其中一个特殊条件的等腰三角形和直角三角形的三边是否存在以上特殊关系;再验证两个特殊条件都不存在的任意三角形的三边是否也存在以上特殊关系.【师生活动】分别研究直角三角形,等腰三角形,任意三角形的三边是否也具有以上的特殊关系.教师提出问题:“如何验证呢?”学生根据刚刚获得的经验找到解决问题的方法:以三边为边向外作正方形,分别求三个正方形的面积.通过研究正方形的面积关系从而研究三角形三边关系.在研究任意三角形的三边是否存在以上特殊关系时,引导学生思考得到“因为去掉‘直角’这一个条件三边关系已经不存在了,那去掉‘等腰’和‘直角’这两个条件,三边关系就一定不存在”的结论,从而提升学生的思维.【设计意图】引导学生从已有的经验方法出发,确立研究问题的方法.(四)归纳总结猜想结论通过辨析猜想结论,引导学生说出:“如果直角三角形两条直角边分别为a,b,斜边为c,那么a,b,c满足222+=”.a b c(五)动手操作推理证明特殊给我们启示,而一般才具有代表性.我们验证过的直角三角形的三边都是特殊值,那一般的直角三角形的三边是否仍然存在以上特殊的数量关系.方法1观点1:放回网格中.观点2:不行.因为任意三角形的顶点不一定在格点上.观点3:如果三个顶点都在格点上,那边长就又是特殊值了.方法2观点1:以直角三角形的三边为边向外作三个正方形.观点2:无法求出P 、Q 、M 这三个正方形的面积. 观点3:三个正方形的面积分别是222,,a b c .观点4:即使能表示面积,但没有具体数据仍然无法证明222a b c +=. 【师生活动】教师引导学生试一试用以前的方法能否进行证明.学生经历了失败,教师再引导学生思考222a b c +=的特点,继续引导学生由边长的平方想到正方形的面积,在本节课研究面积的方法的启示下,请同学们参考前面解决问题的方法,完成探究任务.在小组活动中,教师参与并指导.【设计意图】教师引导学生采取先独立思考,自主探究、再合作交流的学习方式,让学生的手动起来,思维也动起来.在合作中交换数学方法,升华数学思想.(六)呼应引入 升华感情向学生介绍3世纪数学家赵爽通过对图形的分割和拼接,利用面积相等证明勾股定理的方法,以及“勾股弦图”重要的历史意义,紧扣引入环节,升华爱国情怀.(七)应用新知 解决问题1.求下列图中字母所代表的正方形的面积.2.直角三角形的两条直角边分别为a ,b ,斜边为c .完成下列表格.例 一个门框的尺寸如图所示,一块长3m ,宽2.5m 的 长方形薄木板能否从门框内通过?为什么?【师生活动】师生共同解决问题.【设计意图】夯实勾股定理的内容,通过书写过程,强化勾股定理的内容和几何语言的表达,并培养学生的说理习惯,树立数形结合解决问题的意识.(八)梳理提升 反思小结本节课,我们经历了观察,计算,辨析,猜想,证明,应用的探究过程,从特殊的等腰直角三角形入手,通过减少条件,过渡到一般的直角三角形进行研究;由有网格的直观计算到无网格的逻辑推理,体验了勾股定理的发现和证明,也感受了我国古人的智慧.亲爱的同学们,我们今天研究的勾股定理是一个基本的几何定理,是用代数思想解决几何问题的重要工具之一,它不仅为我们解决生活问题提供了方法,也为科学创新提供了思路.【设计意图】梳理本节课学习的过程,以及研究问题的方法,体会“从特殊到一般”,“从有序到无序”,“从直观到抽象”的数学思想.(九)布置作业延伸课堂课本第8页,第1,2,3题.六、课堂教学目标检测1.求下列用字母表示的正方形的面积.2.直角三角形的两条直角边分别为5,12.则斜边长为 .3.直角三角形的斜边长为17,一条直角边长为15,另一条直角边长为 .4.直角三角形的两条直角边分别为6,8,则斜边上的高为 .5.如图,等腰三角形ABC中,若AB=AC=17,BC=16.则三角形ABC的面积是多少?B评课——《勾股定理》《勾股定理》是义务教育阶段人教版八年级下册第24章第一课时的内容.勾股定理是几何学中重要的基本定理之一,它揭示了直角三角形三边特殊的数量关系,将“形”与“数”紧密的联系起来了纵观郝金芝老师的课堂主要有以下几方面的特点:1.课堂内容的呈现体现了多样性和层次性郝老师能够灵活的把握教材,创造性的使用教材,重点设计了勾股定理的“辨析”和证明的过程.首先从最特殊的等腰直角三角形入手研究,发现三边存在特殊的数量关系,之后,郝老师并没有照搬教材直接验证直角三角形的三边,而是创造性的处理,让学生思考“等腰直角三角形中两条直角边的平方和等于斜边的平方”这一结论是与“等腰”还是“直角”有关,引发学生的争论,试图通过网格计算分别验证直角三角形,等腰三角形和任意三角形的三边是否具有以上特殊的数量关系.学生在解决问题中也得出“去掉直角这个条件,三边关系已经不存在了,所以去掉等腰和直角两个条件,三边关系就更不存在了”的结论,这样自然而然的课堂生成说明了教师问题的设计引发了学生深刻的思考.这个辨析的环节一下子拓展了课堂的宽度,让学生更深入的认识到勾股定理是直角三角形独具的性质,这样的认识过程和结果的形成过程才是学生最大的收获,而且这样过程教会学生的是一种“去伪存真”的思想,是一种研究问题的方法.在勾股定理一般性证明的环节,郝老师也通过不断的追问引发学生思考,学生从已有经验“放入网格”“以三边为边向外作正方形”出发进行尝试,当学生遇到困难时,教师适时引导学生“借助前面研究面积问题的方法”进行尝试验证.这两处有效的争论,让学生在争论中认识问题,拓展思路,交流思想和方法,让学生受益良多.2.教学活动的设计郝老师在设计课堂活动时也特别用心,从生活现象过渡到数学问题,再从有网格的直观计算到无网格的逻辑推理,让学生的思维经历了“感性具体→理性具体→理性一般”的过程,符合学生认识新知识的过程.教师的教学以学生的认知水平和已有经验为基础,引导学生独立思考,主动探索,使学生理解和掌握基本的数学知识与技能,体会和运用数学思想与方法,获得基本的数学活动经验.3.信息技术与课程内容整合本节课,郝老师合理的使用现代信息技术,作为学生学习数学和解决问题的有力工具,有效地改进了教与学的方式.4.学科德育渗透通过有关数学史料,让学生了解勾股定理在我国数学发展史上的重要意义,激发学生的民族自尊心,增强民族自豪感,对学生进行爱国主义教育.5.课堂节奏的把握本节课在应用勾股定理解决问题这一环节节奏有点儿快,如果能再多给学生思考时间,效果会更好.。

初中数学 教案: 勾股定理 省赛一等奖

初中数学 教案: 勾股定理  省赛一等奖
书面练习,学生独立完成,上黑板,学生互评,同桌互检几何推理过程.
(问题1落实到笔头考验学生几何合情推理书写功底,板书与互评、及学生互检有效解决几何书写的严谨性问题)
1.让学生在训练中反思基础,认识规律,熟练掌握其应用方法,明确应用的条件
2.能从有多个直角三角形的较复杂的图形中找到可列勾股定理求解的直角三角形.即:能从复杂图形 中寻找出基本图形.
教学策略选择与设计
数形结合,引导学生在现实情境中捕捉直角三角形,然后应用勾股定理、方程思想针对性解决.
教学重点及难点
重点:运用方程思想解决与勾股定理有关的问题
难点:当几何图形中多个直角三角形时,寻找或构造合适的直角三角形,利用勾股定理解决问题.
教学过程
教师活动
预设学生活动
设计意图
(一)复习引入
1.回答勾股定理内容
多媒体展示课件1、2、题复习巩固勾股定理,2问题利用勾股定理通过简单计算求斜边,进而解决实际问题,学生回答容易.
问题3是感知新知的过程,学生通过合情推理感知一条边长及另两边的数量关系,能否求各边长,激发学生的求知欲望.)
通过给学生提供现实背景及生活素材,激发学生为解决问题而生成的求知欲.并体会数学来源于生活.
板书设计
勾股定理的应用(2)
在直角三角形中(已知两边的数量关系)
设其中一边为x
利用勾股定理列方程
解方程
求各边长
实践反思
可以从如下角度进行反思(不必面面俱到,不少于200字):
本课从教学内容上看调整为勾股定理应用的第二课时,在本节内容之前,学生已经准确的理解了勾股定理的内容,并能运用它解决一些实际问题,如已知直角三角形两边求第三边的问题,能结合具体情景构建几何模型,与原教学设计相比条理更加清晰,能给学生提供更多的时间与空间交流讨论、互相激辩,在讨论辨析中明辨事理,突破疑点和难点.本节课的教学中主要需引导学生掌握两种数学思想方法:一是数形结合的思想方法.数学学习中,数和形是两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透.在本节课的教学中,我们将探索直角三角形的三边之间的关系与解方程有机结合,并解决实际问题,如引入中问题3、探究中1、2,巩固训练中1、2都用到了“数形”结合的思想,学生在解决问题的过程中实现了思想的建构.二是方程的思想方法.在求有关线段的长度时,利用直角三角形这一基本图形,运用勾股定理及其逆定理巧设未知数,建立方程达到解决问题的目的.同时利用小组交流的教学方法,辅之以评价量化,鼓励每个学生积极参与,给每个学生展示自己的机会,调动中下等学生,给他们机会发言.使每个学生都有成功的体验.

教学设计《勾股定理》优秀精品一等奖

教学设计《勾股定理》优秀精品一等奖

勾股定理教学设计(市优质课一等奖教案韩信春)(四)知识应用回归生活巩固运用、培养实践技能。

(五)总结反思布置作业总结知识,总结方法,强化重点,培养能力。

设计说明1、充分运用计算机强大的拼图能力和动画特效突破难点,这是本节课的最大特点。

运用四个全等的Rt△拼图、平移,巧妙地进行勾股定理的演示与证明,方法独特,容易理解。

使学生更容易体会数形结合思想,发展了学生的创造性思维能力和动手操作能力。

这是平时教学所不能达到的。

另外的,课件插入了丰富的勾股知识和美丽的图片,如“美丽的勾股树”,加强了学生爱国主义教育和对美的熏陶教育。

2、根据学生的知识结构,我采用的教学流程是:创设情境导入新课—实验操作探求新知—动手操作证明定理—知识应用回归生活—总结反思布置作业五部分,这一流程体现了知识发生、形成和发展的过程,体现了让学生观察、猜想、归纳、验证的思想和数形结合的思想。

3、探索定理采用了面积法,引导学生利用实验由特殊到一般,再到更一般,对直角三角形三边关系进行了探索和研究,得出结论。

这种一般化的思想是认识事物的重要方法,通过教学让学生初步掌握这种方法,对学生良好思维品质的形成起着重要的作用。

4、课件中勾股定理的证明方法,做了最优化处理,证明的方法很多,为什么拼图就选择了这四种呢?原因就是这四个全等的直角三角形,学生很容易就能找到,而且用这四个直角三角形就能拼成多种不同的图案,学生拿着反复拼凑,揣摩,这不仅培养学生的观察能力、动手能力,还培养了学生的创新思维能力。

教学过程设计问题与情境师生行为设计意图受台风影响,一棵树在离地面5米处断裂,树的顶部落在离树跟底部12米处,这棵树折断前有多高?(1)让学生观看台风吹倒大树的课件,设疑激思、引入课题。

通过欣赏课件,激发学生学习兴趣,引出本节课的课题。

活动1探究:最简单的等腰直角三角形三边关系。

正方形A,B,C的面积是多少?它们之间有怎样的关系?这个直角三角形的三边有怎样关系?(2)学生观察得出面积。

17.1 勾股定理 获奖【一等奖教案】

17.1  勾股定理  获奖【一等奖教案】

17.1勾股定理第1课时勾股定理1.经历探索及验证勾股定理的过程,体会数形结合的思想;(重点)2.掌握勾股定理,并运用它解决简单的计算题;(重点)3.了解利用拼图验证勾股定理的方法.(难点)一、情境导入如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗?二、合作探究探究点一:勾股定理【类型一】直接运用勾股定理如图,在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,CD⊥AB于D,求:(1)AC的长;(2)S△ABC;(3)CD的长.解析:(1)由于在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,根据勾股定理即可求出AC的长;(2)直接利用三角形的面积公式即可求出S△ABC;(3)根据面积公式得到CD·AB=BC·AC即可求出CD.解:(1)∵在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,∴AC=AB2-BC2=12cm;(2)S△ABC=12CB·AC=12×5×12=30(cm2);(3)∵S△ABC=12AC·BC=12CD·AB,∴CD =AC·BCAB=6013cm.方法总结:解答此类问题,一般是先利用勾股定理求出第三边,然后利用两种方法表示出同一个直角三角形的面积,然后根据面积相等得出一个方程,再解这个方程即可.【类型二】分类讨论思想在勾股定理中的应用在△ABC中,AB=15,AC=13,BC边上的高AD=12,试求△ABC的周长.解析:本题应分△ABC为锐角三角形和钝角三角形两种情况进行讨论.解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,如图①所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=5+9=14,∴△ABC的周长为15+13+14=42;(2)当△ABC为钝角三角形时,如图②所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=9-5=4,∴△ABC的周长为15+13+4=32.∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC 的周长为32.方法总结:解题时要考虑全面,对于存在的可能情况,可作出相应的图形,判断是否符合题意.【类型三】勾股定理的证明探索与研究:方法1:如图:对任意的符合条件的直角三角形ABC 绕其顶点A旋转90°得直角三角形AED,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE的面积相等,而四边形ABFE的面积等于Rt△BAE和Rt△BFE的面积之和.根据图示写出证明勾股定理的过程;方法2:如图:该图形是由任意的符合条件的两个全等的Rt△BEA和Rt△ACD拼成的,你能根据图示再写出一种证明勾股定理的方法吗?解析:方法1:根据四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和进行解答;方法2:根据△ABC和Rt△ACD的面积之和等于Rt△ABD和△BCD的面积之和解答.解:方法1:S正方形ACFD=S四边形ABFE=S△BAE+S△BFE,即b2=12c2+12(b+a)(b-a),整理得2b2=c2+b2-a2,∴a2+b2=c2;方法2:此图也可以看成Rt△BEA绕其直角顶点E顺时针旋转90°,再向下平移得到.∵S四边形ABCD=S△ABC+S△ACD,S四边形ABCD =S△ABD+S△BCD,∴S△ABC+S△ACD=S△ABD+S△BCD,即12b2+12ab=12c2+12a(b-a),整理得b2+ab=c2+a(b-a),b2+ab=c2+ab-a2,∴a2+b2=c2.方法总结:证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理证明勾股定理.探究点二:勾股定理与图形的面积如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是________.解析:根据勾股定理的几何意义,可得正方形A、B的面积和为S1,正方形C、D 的面积和为S2,S1+S2=S3,即S3=2+5+1+2=10.故答案为10.方法总结:能够发现正方形A、B、C、D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A、B、C、D的面积和即是最大正方形的面积.三、板书设计1.勾股定理如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.2.勾股定理的证明“赵爽弦图”、“刘徽青朱出入图”、“詹姆斯·加菲尔德拼图”、“毕达哥拉斯图”.3.勾股定理与图形的面积课堂教学中,要注意调动学生的积极性.让学生满怀激情地投入到学习中,提高课堂效率.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,设计一些拼图活动,并自制精巧的课件让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究突破本节课的难点.第2课时勾股定理的逆定理的应用1.进一步理解勾股定理的逆定理;(重点)2.灵活运用勾股定理及逆定理解决实际问题.(难点)一、情境导入某港口位于东西方向的海岸线上,“远望号”“海天号”两艘轮船同时离开港口,各自沿一固定的方向航行,“远望号”每小时航行16海里,“海天号”每小时航行12海里,它们离开港口1个半小时后相距30海里,如果知道“远望号”沿东北方向航行,能知道“海天号”沿哪个方向航行吗?二、合作探究探究点:勾股定理的逆定理的应用【类型一】运用勾股定理的逆定理求角度如图,已知点P是等边△ABC内一点,P A=3,PB=4,PC=5,求∠APB的度数.解析:将△BPC绕点B逆时针旋转60°得△BEA,连接EP,判断△APE为直角三角形,且∠APE=90°,即可得到∠APB的度数.解:∵△ABC为等边三角形,∴BA=BC.可将△BPC绕点B逆时针旋转60°得△BEA,连EP,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE =PB=4,∠BPE=60°.在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+P A2,∴△APE 为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.方法总结:本题考查了等边三角形的判定与性质以及勾股定理的逆定理.解决问题的关键是根据题意构造△APE为直角三角形.【类型二】运用勾股定理的逆定理求边长在△ABC中,D为BC边上的点,AB=13,AD=12,CD=9,AC=15,求BD 的长.解析:根据勾股定理的逆定理可判断出△ACD为直角三角形,即∠ADC=∠ADB =90°.在Rt△ABD中利用勾股定理可得出BD的长度.解:∵在△ADC中,AD=12,CD=9,AC=15,∴AC2=AD2+CD2,∴△ADC是直角三角形,∠ADC=∠ADB=90°,∴△ADB是直角三角形.在Rt△ADB中,∵AD=12,AB=13,∴BD=AB2-AD2=5,∴BD的长为5.方法总结:解题时可先通过勾股定理的逆定理证明一个三角形是直角三角形,然后再进行转化,最后求解,这种方法常用在解有公共直角或两直角互为邻补角的两个直角三角形的图形中.【类型三】勾股定理逆定理的实际应用如图,是一农民建房时挖地基的平面图,按标准应为长方形,他在挖完后测量了一下,发现AB=DC=8m,AD=BC=6m,AC=9m,请你运用所学知识帮他检验一下挖的是否合格?解析:把实际问题转化成数学问题来解决,运用直角三角形的判别条件,验证它是否为直角三角形.解:∵AB=DC=8m,AD=BC=6m,∴AB2+BC2=82+62=64+36=100.又∵AC2=92=81,∴AB2+BC2≠AC2,∴∠ABC≠90°,∴该农民挖的不合格.方法总结:解答此类问题,一般是根据已知的数据先运用勾股定理的逆定理判断一个三角形是否是直角三角形,然后再作进一步解答.【类型四】运用勾股定理的逆定理解决方位角问题如图,南北向MN为我国领海线,即MN以西为我国领海,以东为公海,上午9时50分,我国反走私A艇发现正东方有一走私艇以13海里/时的速度偷偷向我领海开来,便立即通知正在MN线上巡逻的我国反走私艇B密切注意.反走私艇A和走私艇C的距离是13海里,A、B两艇的距离是5海里;反走私艇B测得距离C艇12海里,若走私艇C的速度不变,最早会在什么时候进入我国领海?解析:已知走私船的速度,求出走私船所走的路程即可得出走私船所用的时间,即可得出走私船何时能进入我国领海.解题的关键是得出走私船所走的路程,根据题意,CE即为走私船所走的路程.由题意可知,△ABE和△ABC均为直角三角形,可分别解这两个直角三角形即可得出.解:设MN与AC相交于E,则∠BEC =90°.∵AB2+BC2=52+122=132=AC2,∴△ABC为直角三角形,且∠ABC=90°.∵MN⊥CE,∴走私艇C进入我国领海的最短距离是CE.由S△ABC=12AB·BC=12 AC·BE,得BE=6013海里.由CE2+BE2=122,得CE=14413海里,∴14413÷13=144169≈0.85(小时)=51(分钟),9时50分+51分=10时41分.答:走私艇C最早在10时41分进入我国领海.方法总结:用数学几何知识解决实际问题的关键是建立合适的数学模型,注意提炼题干中的有效信息,并转化成数学语言.三、板书设计1.利用勾股定理逆定理求角的度数2.利用勾股定理逆定理求线段的长3.利用勾股定理逆定理解决实际问题在本节课的教学活动中,尽量给学生充足的时间和空间,让学生以平等的身份参与到学习活动中去,教师要帮助、指导学生进行实践活动,这样既锻炼了学生的实践、观察能力,又在教学中渗透了人文和探究精神,体现了“数学源于生活、寓于生活、用于生活”的教育思想.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

义务教育课程标准实验教科书(人教版)
18.1.1勾股定理
(说案)
临沂市苍山县实验中学
宋宁
课题:18.1.1 勾股定理
临沂市苍山县实验中学 宋 宁
一、教材分析
1、地位和作用
本节课选自人教版《数学》八年级下册第十八章第一节勾股定理第一课时
爱国主义教育的良好素材。

2、 学习目标
【知识技能】 1、经历勾股定理的探索过程,理解并掌握勾股定理;
2、学会运用勾股定理进行简单的计算。

【数学思考】 1、让学生切实经历“观察-探索-猜想-验证-归纳”的探索过程;
2、发展合情推理能力,并体会数形结合、由特殊到一般、转化的思想方法。

【问题解决】 1、通过拼图活动,体验解决问题方法的多样性;
2、在探索活动中,培养学生的自主性与合作性。

【情感态度】 激发学生热爱祖国悠久文化的情感。

3、重点、难点
重点:勾股定理的探索过程;
难点:面积法(拼图法)发现勾股定理。

二、教法与学法分析
几何直观
引导
实验
思想方法
探索
验证
直角三角形三边之间数量关系 解直角三角形 广泛应用
形 数 几何 代数
教学方法
学法指导
动手实践、自主探索、合作交流
三、教学过程
教学
环节
教学内容师生互动设计意图
情境导入
古韵今风拼图游戏
一千多年前,中国人发
明了七巧板,外国人管它叫
“中国魔板”、“唐图”。

1、教师出示《七巧八分图》.
2、学生利用两组七巧板进行合
作拼图。

3、学生利用几何直观进行合情
推理并大胆猜测。

通过情景创
设,寓教于乐,激
发学生好奇、探究
的欲望。

追溯历史
解密真相活动1:等腰入手发现新知
等腰直角三角形三边满足
什么关系?
图1(每个小方格代表1个单位
面积)
1、教师展示图片并提出问题。

2、学生观察图形,在自主探究的
基础上合作交流。

完成表格
边的关系:
3、引导学生利用“割”“补”思
想计算正方形C的面积。

A的
面积
B的
面积
C的
面积
图1
三者
关系
将面积的关系
转化为边长之间的
关系体现了转化的
思想。

将图形转化为
边在格线上的图
形,以便于计算图
形面积,体现了数
形结合的思想。

为下一步探索
复杂图形的面积做
铺垫。

活动2:探究一般构建模型
一般的直角三角形是否
存在这一结论?
图2(每个小方格代表1个单位
面积)
1、教师出示图片并提出问题
2、学生自主探究,小组间合作交
流,并完成表格。

3、教师鼓励学生用尽可能多的方
法求正方形C的面积。

A的
面积
B的
面积
C的
面积
图2
三者
关系
渗透“从特殊
到一般”的认知规
律,
为“勾三、股
四、弦五”的提出
埋下伏笔。

培养学生的类
比、迁移及探索问
题的能力。

A
B
C
B
C
A
活动3:实验演示加深认识
利用几何画板动态演示。

教师操作演示,改变三边的长,
改变∠α的度数,让学生观察边长
之间的关系。

加深学生对勾
股定理理解的同时
也拓展了学生的视
野。

形成猜想教师引导学生分别从文字语
言、符号语言、数学图形语言归纳
命题1,学生充分交流、表达、总
结。

培养学生的合情推理能力以及语言表达能力。

推陈出新
借古鼎新
用准备好的四个全等的
直角三角形拼成一个正方
形。

(内部可以中空)
(1)你能求出大正方形的面
积吗?
(2)你又有什么发现?
勾股定理
1、教师提出问题,学生自主探究
并小组合作交流,动手验证。

2、教师深入到学生中间,参与小
组活动,用心倾听学生意见,关注
不同认知水平的学生。

3、学生展示两种不同的方案:
方案一:
方案二:
4、学生总结归纳勾股定理,教师
板书勾股定理并给出字母表示。

教师创新使用
教材,利用拼图活
动解放学生的大
脑,让学生发挥自
己的聪明才智证明
勾股定理。

让学生经历由
表面到本质,由合
情推理到演绎推理
的发掘过程,体会
数学的严谨性。

培养学生符号
意识。

勾股史话教师对“勾股弦”的含义以及
古今中外对勾股定理的研究作一介

动态演示勾股树
使学生感受数
学文化,培养民族
自豪感和爱国主义
精神。

体会数学的精
巧、优美。

a
b c
取其精华
古为今用1、求图中字母A、B所代表
的正方形的面积.
教师出示题目,学生思考并抢
答。

这组题由本节
课的难点演变而
来,巩固了所学,
又对知识进行了延
伸。

2、求下列直角三角形中未知
边的长.
1、教师规范板书一题.
2、学生板演解答另外两题。

这组题考察本
节课的重点勾股定
理,使学生的知识
进一步深化。

3、台风来袭,一棵大树在离
地面9米处断裂,树的顶部
落在离树根底部12米处。


棵树原来有多高?
学生板演并由学生纠错这道题是实际
问题,让学生感受
勾股定理在生活中
的广泛应用。

温故反思
任务后延
一个定理
两个方案
三种思想
四种经验
教师鼓励学生从基本知识、基
本技能、基本数学思想和方法、基
本数学活动经验四个方面对本节课
进行小结。

鼓励学生畅所
欲言,补充、完善
本节课的知识脉
络,进而总结出本
节课的知识要点。

分层作业学生课后完成。

分层作业体现
了教育面向全体学
生的理念。

9

12米
B
A
c
四、评价分析
五、设计说明
1、探究体验贯穿始终
2、展示交流贯穿始终
3、习惯养成贯穿始终
4、情感教育贯穿始终
5、文化育人贯穿始终。

相关文档
最新文档