电路分析课件(邱关源)第一章.
合集下载
电路分析邱关源第五版第一章习题解答ppt课件
i1 6
+
u
-
S
a 5
+ 10V- i
4 0 .9 i1
5 a 20 c
- 2A + u 1 3V + 0.05u1
b
b
(a)
(b)
解:⑴
0.9i1
i
102A 5
i1
2 2.22A ห้องสมุดไป่ตู้ 0.9
⑵ ucb 2 00.0u 5 13
1253 13V
uab 4i10.9 i1 4 0 . .1 2 .2 2 0 .8 2V 89
i10mA
.
制作群
主 页 总目录 章目录 上一页 下一页 退 出
P26 1-5 试求图示各电路中电压源、电流源及电阻的 功率(须说明是吸收还是发出)。
解:电阻功率 52220W 吸收 电压源功率 1 523W 0 发出
电流源功率 1 5 2 5 2 1W 0吸收 2A
5 +
15V
-
(a)
电阻功率 152 45W 吸收
制作群
主 页 总目录 章目录 上一页 下一页 退 出
5
+
电流源功率 1 523W 0 吸收 电压源功率 1515275W 发出
5 .
5 15V
2A
-
(c)
制作群
主 页 总目录 章目录 上一页 下一页 退 出
P27 1-8 试求图示各电路的电压U,并讨论其功率平衡。
解:电阻功率 26223W 2 吸收 端口功率 2 62 2 1W 6吸收 电流源功率 6 2 2 64W 8释放
P26 1-4 在指定的电压 u 和电流 i 的参考方向下,写 出图示各元件的 u 和 i 的约束方程。
电路课件(邱关源五版)
视在功率是指电路中电压和电流的有效值的乘积, 用于衡量电源提供的总功率。
04
三相电路
三相电源
三相电源的组成
三相电源由三个频率相同、幅值相等、相位差互为120度的交流 电源组成。
星形连接与三角形连接
三相电源可以接成星形或三角形,两种连接方式下的电压和电流特 性不同。
三相电源的功率
三相电源的总功率等于各相功率之和,且总功率恒定。
产生原因
非正弦周期电压和电流的产生通常是由于电路中存在非线性元件,如电阻、电容、电感等 ,这些元件的伏安特性不是线性的,因此会导致电压或电流随时间变化呈现出非正弦周期 的特性。
特点
非正弦周期电压和电流具有随机性和复杂性,其波形通常由多个不同频率的正弦波叠加而 成,因此难以用简单的数学模型描述。
非正弦周期电路的谐波分析法
一阶电路的时域分析
一阶电路
由一个动态元件和电阻组成的简单电路。
一阶电路的响应特性
电压和电流随时间按指数规律变化,具有延 时、振荡和稳态等不同阶段。
时域分析方法
采用一阶常微分方程描述电路,通过求解微 分方程得到电压和电流的时域响应。
一阶电路的分析步骤
建立微分方程、求解微分方程、分析响应特 性。
二阶电路的时域分析
频率响应
频率响应分析电路在不同频率下 的性能表现,包括幅频特性和相
频特性。
一阶电路分析
一阶电路是指包含一个动态元件 的电路,其分析方法主要是三要
素法。
功率计算
有功功率
有功功率是指电路中实际消耗的功率,用于衡量 能量转换的效果。
无功功率
无功功率是指电路中交换的功率,用于衡量储能 元件的能量交换。
视在功率
电路课件(邱关源五版 )
04
三相电路
三相电源
三相电源的组成
三相电源由三个频率相同、幅值相等、相位差互为120度的交流 电源组成。
星形连接与三角形连接
三相电源可以接成星形或三角形,两种连接方式下的电压和电流特 性不同。
三相电源的功率
三相电源的总功率等于各相功率之和,且总功率恒定。
产生原因
非正弦周期电压和电流的产生通常是由于电路中存在非线性元件,如电阻、电容、电感等 ,这些元件的伏安特性不是线性的,因此会导致电压或电流随时间变化呈现出非正弦周期 的特性。
特点
非正弦周期电压和电流具有随机性和复杂性,其波形通常由多个不同频率的正弦波叠加而 成,因此难以用简单的数学模型描述。
非正弦周期电路的谐波分析法
一阶电路的时域分析
一阶电路
由一个动态元件和电阻组成的简单电路。
一阶电路的响应特性
电压和电流随时间按指数规律变化,具有延 时、振荡和稳态等不同阶段。
时域分析方法
采用一阶常微分方程描述电路,通过求解微 分方程得到电压和电流的时域响应。
一阶电路的分析步骤
建立微分方程、求解微分方程、分析响应特 性。
二阶电路的时域分析
频率响应
频率响应分析电路在不同频率下 的性能表现,包括幅频特性和相
频特性。
一阶电路分析
一阶电路是指包含一个动态元件 的电路,其分析方法主要是三要
素法。
功率计算
有功功率
有功功率是指电路中实际消耗的功率,用于衡量 能量转换的效果。
无功功率
无功功率是指电路中交换的功率,用于衡量储能 元件的能量交换。
视在功率
电路课件(邱关源五版 )
西安交通大学邱关源电路PPT课件
a
Wab q
8V2V 4
各值。
u a bab (2 0 )V 2 V
u b cbc [0 ( 3 )]V 3 V
cW qcbW qbc14V 23V
.
返 回 上 页 1下8 页
解 (2) c 0
a
b
c
a
Wac812V5V q4
b
Wbc q
12V3V 4
u a bab (5 3 )V 2V
u b cbc (3 0 )V 3 V
结论 电路中电位参考点可任意选择;参考点
一经选定,电路中各点的电位值就唯一确定;当 选择不同的电位参考点时,电路中各点电位值将 改变,但任意两点间电压保持不变。
.
返 回 上 页 1下9 页
问题 在复杂电路或交变电路中,两点间电压的
实际方向往往不易判别,给实际电路问题 的分析、计算带来困难。
电压(降)的参考方向
参考方向
+
u
–
假设高电位指向低电
位的方向。
参考方向
+
u
–
+ 实际方向 – – 实际方向 +
u >0
u <0
.
返 回 上 页 2下0 页
电压参考方向的三种表示方式: (1) 用箭头表示:
u
(2)用正、负极性表示:
+u
(3)用双下标表示:
A
uAB
.
B
返 回 上 页 2下1 页
3.关联参考方向
祝同学们 身体好 学习好 工作好
.
1
电路
教材:《电路》 罗先觉修订 邱关源主编
主讲: 范敏
.
2
绪论
电路邱关源课件PPT第1章
q I = t
电流方向
正电荷运动的方向
元件
A
i>0
B
A
元件
B
i<0
−i
对于复杂电路或电路中的电流随时间变化时, 对于复杂电路或电路中的电流随时间变化时,电 流的实际方向往往很难事先判断。 流的实际方向往往很难事先判断。
电路模型和电路定律
2.电压
电位ϕ 电压U 单位正电荷q 从电路中一点移至参考 时电场力做功的大小。 点(ϕ=0)时电场力做功的大小 。 单位正电荷q 从电路中一点移至另 一点时电场力做功(W)的大小。 的大小。
t= -∞时,u(-∞ )=0
1 2 Wc = Cu (t ) 2
电容吸收的能量以电场能量的形式储存在元件中
电路模型和电路定律
t1--t2 电容吸收的能量
WC = C ∫
u ( t2 )
u ( t1 )
1 2 1 2 udu = Cu (t 2 ) − Cu (t1 ) 2 2
= Wc (t2 ) −Wc (t1)
电路模型和电路定律
功率 -∞到t
t
du (t ) p = u (t )i (t ) = Cu (t ) dt
吸收的能量
t
du (ξ) dξ = C Wc = ∫ u (ξ )i (ξ )dξ = ∫ Cu(ξ) −∞ −∞ dξ
∫
u(t )
u ( −∞ )
udu
1 2 1 2 = Cu (t ) − Cu (−∞) 2 2
电路模型和电路定律
例:已知 U a = −4V ,U b = 0, 求
u1 = ?, u2 = ?
+
A
u1
−
B
电路分析基础第五版邱关源通用课件
一阶动态电路的微分方程及其响应
总结词
求解微分方程
详细描述
根据微分方程的特性和初始条件,求 解微分方程以获得电路元件的状态变 量随时间变化的规律。常用的求解方 法包括分离变量法、常数变易法、线 性化法等。
一阶动态电路的微分方程及其响应
总结词:分析响应
详细描述:根据求解出的状态变量,分析电路元件的响应特性。响应特性包括稳 态响应和暂态响应,其中暂态响应指的是电路从初始状态达到稳态的过程。
电路分析基础第五版邱关源 通用课件
目录
• 绪论 • 电路的基本定律和定理 • 电阻电路的分析 • 一阶动态电路的分析 • 二阶动态电路的分析 • 正弦稳态电路的分析 • 三相电路的分析 • 非正弦周期电流电路的分析
01
绪论
电路分析的目的和任务
目的
电路分析是电子工程和电气工程学科中的基础课程,其目的是理解和掌握电路的基本原理、基本概念 和基本分析方法,为后续专业课程的学习打下基础。
)
三相电源或三相负载的端点相互 连接,每相负载承受的电压为电 源线电压。
混合连接
在某些情况下,电路中可能同时 存在星形和三角形连接的负载, 这称为混合连接。
三相电路的电压和电流分析
1 2
相电压与线电压
在星形连接中,相电压等于电源电压;在三角形 连接中,线电压等于电源电压。
对称三相电路
当三相电源和三相负载对称时,各相的电压和电 流大小相等,相位互差120°。
一阶电路的阶跃响应和冲激响应
总结词:阶跃响应
详细描述:阶跃响应是指当输入信号为一个阶跃函数时,电路的输出响应。阶跃响应的特点是初始时刻电路输出突然跳变到 某一值,然后逐渐趋近于稳态值。
一阶电路的阶跃响应和冲激响应
1.1电路邱关源
+ U – a R
若 U= –5V,则电压的实际方向 从 b 指向 a 。
第1篇 电路 电工技术 对于二端元件而言,电压的参考极性和电流参考方向
的选择有四种可能的方式,如图下所示。
习惯的取法:取关联参考方向
电工技术
第1篇 电路
功率的概念:设电路任意两点间的电压为 U ,流入此 部分电路的电流为 I, 则这部分电路消耗的功率为: I U b 功率有无正负? 如果U I方向不一 致结果如何? R
I5电流方向
AB?
I5电流方向
BA?
A
I5 R5 R2
B
+ R1 -E1
R4
+ E2 -
电工技术
第1篇 电路
2. 电路基本物理量的参考方向
(1) 参考方向 在分析与计算电路时,对 电压、电流任意假定的方向。 I a R
+ E _
+ U _ b
(2) 参考方向的表示方法
电流: 箭 标 双下标 I 电压:
发电机
电工技术
第1篇 电路
电能的输送和分配
三 相 单相 发电厂
升压
主传输线 500 kV
降压
电压分配 10 kV
降压 变电站
单 相
返 回 上一页 下一页
电工技术
第1篇 电路
1. 电路的作用 作用之二:实现信号的传递与处理,例 如对信号进行测量、存储、控制和计算 话筒 扬声器 弱电电路 的作用
放 大 器
ui O
u0 i
t
O
t
电工技术
第1篇 电路
2. 电路的组成部分(强电)
电源: 提供 电能的装置
升压 变压器 输电线
电路课件_第1章(第五版_邱关源_高等教育出版社)
+
+
_
(2) 电压、电流的参考方向关联;
+
u
P uS i
吸收功率,充当负载
_
物理意义: 电场力做功 , 电源吸收功率。
例
计算图示电路各元件的功率。
R 5
5V
_
i
_
PR Ri 5 1 5W
2
满足:P(发)=P(吸)
+
10V
uR
+
_ +
解
uR (10 5) 5V
i
§1-3 电功率和能量(power)
一.电功率 电压的定义: 电流的定义:
dW u dq
dq i dt
电功率:
dW u dq u i dt p u i dt dt dt
(Watt,瓦特) (Joule,焦耳)
功率的单位:W (瓦) 能量的单位: J (焦)
二.判断元件是吸收功率还是发出功率
注
具有相同的主要电磁性能的实际电路部件, 在一定条件下可用同一模型表示; 同一实际电路部件在不同的应用条件下,其 模型可以有不同的形式
例
§1-2 电流和电压的参考方向
一、问题的引入
电流方向?
考虑电路中每个电阻的电流方向
5Ω 3Ω
10V
9V
1.2 电压和电流的参考方向
1. 电路基本物理量的实际方向 物理中对基本物理量规定的方向 物理量 电流 I 实 际 方 向 正电荷运动的方向 高电位 低电位 (电位降低的方向) 低电位 高电位 (电位升高的方向) 单 位 kA 、A、mA、 μA kV 、V、mV、 μV kV 、V、mV、 μV
电路分析第1章 集总参数电路1
29
例 : 若 I1
解:
I4
2A 9A I2 8A 求: I3
I4 I3
I1 I2
I1 I2 I3 I4 0 0 9 ( 2 ) I3 8 KCL
电流的参考方向 与实际方向相反
I3
19A
<1>注意两套符号:括号前的符号取决于参考方向相对于节 点的关系。常设流入为正,流出为负,是列方程出现的符 号。 括号里的符号是电流本身的符号,反映真实方向和参考 方向的关系,正的相同,负的相反。 <2>求出的值无论正负,都不要把参考方向改成真实方 30 向。
i1 iA
A
iC
i2
i3
B
iB C
28
关于KCL的几点说明:
(1) KCL阐明了电路中与任一节点有关的各电流之间 的关系,其反映的是电流连续性原理。集总参数 电路中的节点不能聚集电荷,有多少电荷流入就 必须有多少电荷流出。 (2) KCL具有普遍适用性。既适用于任一瞬时任何变 化的电流,也适用于由各种不同元件构成的电路。 此定律与元件性质无关,是对支路电流所加的约束。 (3) KCL不仅适用于任一节点,而且还适用于电路中 任何一个假定的闭合面(广义节点)。 (4) 应用KCL列任一节点的电流方程时,一定要先在 电路图上标出电流的参考方向。
3×108m/s c = = =6×106m=6000km 50Hz f
对于以此为工作频率的实验室电气电子设备而言,其尺寸远 小于这一波长,可以按集总电路处理。 而对于远距离输电线来说,就必须考虑到电场、磁场沿电路 分布的现象,不能按集总电路来处理,而要用分布参数表征。 12
<2>、理想元件(集总参数元件)
三. 关联参考方向
在电路分析中,对一个元件既要假设通过它的电流 参考方向,又要假设它两端电压的参考极性(方向),两 个都可任意假定,而且彼此独立无关。但是,为方便起见, 通常引入关联参考方向。 关联参考方向的规定:电流由高电位流向低电位。 即电流参考方向与电压参考极性一致。
例 : 若 I1
解:
I4
2A 9A I2 8A 求: I3
I4 I3
I1 I2
I1 I2 I3 I4 0 0 9 ( 2 ) I3 8 KCL
电流的参考方向 与实际方向相反
I3
19A
<1>注意两套符号:括号前的符号取决于参考方向相对于节 点的关系。常设流入为正,流出为负,是列方程出现的符 号。 括号里的符号是电流本身的符号,反映真实方向和参考 方向的关系,正的相同,负的相反。 <2>求出的值无论正负,都不要把参考方向改成真实方 30 向。
i1 iA
A
iC
i2
i3
B
iB C
28
关于KCL的几点说明:
(1) KCL阐明了电路中与任一节点有关的各电流之间 的关系,其反映的是电流连续性原理。集总参数 电路中的节点不能聚集电荷,有多少电荷流入就 必须有多少电荷流出。 (2) KCL具有普遍适用性。既适用于任一瞬时任何变 化的电流,也适用于由各种不同元件构成的电路。 此定律与元件性质无关,是对支路电流所加的约束。 (3) KCL不仅适用于任一节点,而且还适用于电路中 任何一个假定的闭合面(广义节点)。 (4) 应用KCL列任一节点的电流方程时,一定要先在 电路图上标出电流的参考方向。
3×108m/s c = = =6×106m=6000km 50Hz f
对于以此为工作频率的实验室电气电子设备而言,其尺寸远 小于这一波长,可以按集总电路处理。 而对于远距离输电线来说,就必须考虑到电场、磁场沿电路 分布的现象,不能按集总电路来处理,而要用分布参数表征。 12
<2>、理想元件(集总参数元件)
三. 关联参考方向
在电路分析中,对一个元件既要假设通过它的电流 参考方向,又要假设它两端电压的参考极性(方向),两 个都可任意假定,而且彼此独立无关。但是,为方便起见, 通常引入关联参考方向。 关联参考方向的规定:电流由高电位流向低电位。 即电流参考方向与电压参考极性一致。
电路分析第1章 集总参数电路B
第一章 集总参数电路中电压、电流的约束关系
主要内容: 1.基本概念:电路及电路模型、集总假设、电路变量、电流、 电压、功率、独立电源、受控源、参考方向及关 联参考方向。 2.基本定律:基尔霍夫定律,欧姆定律。
§1-1
一、电路
电路及集总电路模型
若干个电气设备或电子器件按照一定的方式连接起来构成 电流的通路 叫作 电路 例如手电筒电路:
集总参数电路
<1>、集总假设:在器件的尺寸远小于正常工作频率所对 应的波长时,可将它所反映的物理现象分别进行研究,即用 三种基本元件表示其三种物理现象,这就是集总假设。 采用集总假设的条件:实际电路的尺寸远小于电路使用时 其最高工作频率所对应的波长。 例如,我国电力用电的频率为50Hz,对应的波长为
电路分析理论所研究的对象都是由理想电路元件组成 的实际电路的电路模型。
PDF 文件使用 "pdfFactory Pro" 试用版本创建
§1-2电路变量、电流、电压及功率
电路分析:给定电路结构及电路参数,求各部分的 电压、电流叫电路分析。
一 电流(电流强度)
1.定义:带电粒子的定向运动(有秩序的运动)形成电流。 dq ? i(t)=dq/dt --电荷的变化率 方向:正电荷运动的方向 大小和方向都不随时间改 变的电流称为直流 。 i
PDF 文件使用 "pdfFactory Pro" 试用版本创建
干 电 池 开关 灯 泡
PDF 文件使用 "pdfFactory Pro" 试用版本创建
电路是电流的通路,它是为了某种需要由某些电工设备 或元件按一定方式组合起来的。 电路的作用 1 能量的输送与转换
发电机 升压 输电线 降压 变压器 变压器
《电路》邱关源 第五版 PPT第一章
4、电路的功率
(1)、功率: 功率: 功率 单位时间内从A 单位时间内从A到B的电荷量
dq i= dt
u AB
dw = dq
关联
单位时间内从A移动到B所作的功 单位时间内从A移动到B 将单位电荷从A移动到B 将单位电荷从A移动到B所作的功
dw dw dq p= = = ui dt dq dt
p = ui
Vc = 0
U ac = Va
U dc = Vd
KVL
U a − U dc = Va − Vd
两点间的电压等于两点间的电位差
U V U 例:U ab = 1.5V , bc = 1.5V , 求 Va , b ,Vc , ac
为参考点, (1)a为参考点, Va = 0
实际方向
i>0
表示电流参考方向的两种方法: 表示电流参考方向的两种方法: 箭头 双下标(iAB):参考方向从 指向B 双下标( ):参考方向从A指向 参考方向从 指向
i<0
例:
A
10Ω 10V
I1
I = 1A
实际方向从A到 实际方向从 到B
I
I2
B
如果参考方向为I 如果参考方向为 1, I1=1A 如果参考方向为I 如果参考方向为 2, I2=-1A
i
i a b
O
i = Im sin ωt
T 0 < t < ,i > 0 2 T < t < T,i < 0 2
T /2
T
t
如何求电流? 如何求电流? 实际方向与参考方向相同 实际方向与参考方向相反
(2)电流的参考方向 电流的实际方向
实际方向
实际方向
电路(第5版)邱关源第一章电路模型和电路定律
例 电感线圈的电路模型
返 回
上 页
下 页
1.2 电流和电压的参考方向
电路中的主要物理量有电压、电流、电荷、磁 链、能量、电功率等。在线性电路分析中人们主要 关心的物理量是电流、电压和功率。
1.电流的参考方向
电流 电流强度 带电粒子有规则的定向运动 单位时间内通过导体横截面的电荷量
Δq dq i (t ) lim Δt 0 Δt dt
欧姆定律
①只适用于线性电阻( R 为常数); ②如电阻上的电压与电流参考方向非关 联,公式中应冠以负号; ③说明线性电阻是无记忆、双向性的元 件。 i R
则欧姆定律写为
u
+
i –G u
u –R i
公式和参考方向必须配套使用!
返 回 上 页 下 页
3.功率和能量
功率
i
R
+
i
u
R
+
p u i i2R u2 / R
1.实际电路
功能 由电工设备和电气器件按预期
目的连接构成的电流的通路。
a 能量的传输、分配与转换; b 信息的传递、控制与处理。 共性 建立在同一电路理论基础上。
几个概念:电源 负载 激励 响应 输入 输出
返 回 上 页 下 页
2. 电路模型
开关
电路图
灯泡
10BASE-T wall plate
电 池 导线
注意
①5种基本理想电路元件有三个特征:
(a)只有两个端子;
(b)可以用电压或电流按数学方式描述; (c)不能被分解为其他元件。
返 回 上 页 下 页
注意
①具有相同的主要电磁性能的实际电路部件, 在 一定条件下可用同一电路模型表示; ②同一实际电路部件在不同的应用条件下,其电路 模型可以有不同的形式。
邱关源《电路》第五版-第1章电路的基本定律与分析方法
第3节
一、 电功率( p )
电功率和能量
1、定义:单位时间内电场力所做的功。 2、大小: p
dw dw dq ui dt dq dt
单位:W
3、电路吸收或发出功率的判断 (1)u, i 取关联参考方向:
i
u
p 0 吸收正功率
p ui 表示元件吸收的功率
(实际吸收)
p0
(2)u, i 取非关联参考方向:
1、在集总电路中,任何时刻,沿任一回路,所有支路电压的代数和等于零。 即:
u 0
关键: u 前“+” “-”的选取:若支路电压的参考方向与回路的绕行方向一致, u 前取“+” ; 若支路电压的参考方向与回路的绕行方向相反, u 前取“-” 。 例:
图3 对该回路,则有: u3 u4 u2 0
(1)
i1 i2 i3 0
2、在集总参数电路中,任意时刻,通过任一结点的电流的代数和等于零。 即:
i 0
关键: “+” 、 “-”号的选取:若流出结点的电流前面取“+”号; 则流入结点的电流前面取“-”号。 例:
i1 i4
i5 i4 i3 i1 i2
i6
i2 i3
i5
i1 i2 i3 i4 i5 0
例 4:电路如图 8 所示,已知: E1 10V , E2 2V , E3 1 V , R1 R2 1 ,求 U。 解:对左回路由 KVL 知: R1I1 R2 I 2 E 且 I1 I 2 解得: I 2 I1 5 A
图4
图5
US 2 U2 写 KVL 方程时,应先: (1)标定各元件电压参考方向 (2)选定回路绕行方向,顺时针或逆时针.
《电路》邱关源第五版第一章课件
件组成的电路。
欧姆定律的应用非常广泛, 它可以帮助我们计算电流、
电压和电阻等电路参数。
通过欧姆定律,我们可以计算出 电流 $I = frac{V}{R}$ 或 $V = IR$,以及电阻 $R = frac{V}{I}$。 这些公式可以帮助我们解决电路 中的各种问题,例如计算功率、
分析电路的动态响应等。
基尔霍夫定律
描述了电路中电流和电压 的约束关系,包括电流定 律和电压定律。
功率守恒定律
描述了电路中功率的约束 关系,即任意电路中输入 功率等于输出功率。
03
电路的基本定律
欧姆定律
总结词
详细描述
总结词
详细描述
欧姆定律是电路分析中最基 本的定律之一,它描述了电 路中电压、电流和电阻之间
的关系。
欧姆定律是指在一个线性电阻元 件中,电压与电流成正比,即 $V = IR$,其中 $V$ 是电压,$I$ 是 电流,$R$ 是电阻。这个定律适 用于金属导体和电解液等线性元
动态变化
暂态过程中,电路中的电压和电流会随时间动态变化。
持续时间短
暂态过程的时间常数很小,通常在微秒或毫秒级别。
能量转换
暂态过程中,电路中的储能元件会进行能量的转换和传递 。
一阶电路的暂态过程
01
一阶电路的数学模 型
一阶电路由一个电容或一个电感 组成,其数学模型可以用微分方 程表示。
02
一阶电路的暂态过 程分析
电压
电场力做功的量度,表示为V 。
电功率
表示电场力做功快慢的物理量 ,表示为P。
电能量
表示电荷在电场中做功本领大 小的物理量,表示为W。
02
电路的状态和元件的约束关系
电流和电压
欧姆定律的应用非常广泛, 它可以帮助我们计算电流、
电压和电阻等电路参数。
通过欧姆定律,我们可以计算出 电流 $I = frac{V}{R}$ 或 $V = IR$,以及电阻 $R = frac{V}{I}$。 这些公式可以帮助我们解决电路 中的各种问题,例如计算功率、
分析电路的动态响应等。
基尔霍夫定律
描述了电路中电流和电压 的约束关系,包括电流定 律和电压定律。
功率守恒定律
描述了电路中功率的约束 关系,即任意电路中输入 功率等于输出功率。
03
电路的基本定律
欧姆定律
总结词
详细描述
总结词
详细描述
欧姆定律是电路分析中最基 本的定律之一,它描述了电 路中电压、电流和电阻之间
的关系。
欧姆定律是指在一个线性电阻元 件中,电压与电流成正比,即 $V = IR$,其中 $V$ 是电压,$I$ 是 电流,$R$ 是电阻。这个定律适 用于金属导体和电解液等线性元
动态变化
暂态过程中,电路中的电压和电流会随时间动态变化。
持续时间短
暂态过程的时间常数很小,通常在微秒或毫秒级别。
能量转换
暂态过程中,电路中的储能元件会进行能量的转换和传递 。
一阶电路的暂态过程
01
一阶电路的数学模 型
一阶电路由一个电容或一个电感 组成,其数学模型可以用微分方 程表示。
02
一阶电路的暂态过 程分析
电压
电场力做功的量度,表示为V 。
电功率
表示电场力做功快慢的物理量 ,表示为P。
电能量
表示电荷在电场中做功本领大 小的物理量,表示为W。
02
电路的状态和元件的约束关系
电流和电压
邱关源现代电路理论第一章
二、离散时间系统
系统的输入输出都是离散时间信号。 例:数字计算机是一个离散时间系统。
数学描述:差分方程描述。
求解:知道输入信号和初始条件。
三、混合时间系统
输入时连续时间信号,输出是离散时间信号。 例:电视机是混合时间系统。
作业: 1.阅读文章。 2. 1-2,1-3
i G(v, i)
v F( v, i)
T i ik 1, ik 2 ,, iN T
T i i1, i2 ,, ik
v v1, v2 ,, vk
v vk 1, vk 2 ,, vN
T
四、网络端口 若从网络端子k流进的电流等于从端子k’流出的电流,则k和k’ 构成网络的一个端口
3.二端既流控也压控 单调电阻
二、(N+1)端电阻元件
F ( v, i ) 0
模型?电位器
T
v1 i1 i2 v2
i i1, i2 ,, iN
1.(N+1)端流控电阻
v v1, v2 ,, vN
T
vN i N vN 1 (0)
4. (N+1)线性时变电阻
v f(i)
T
由U与Y间的齐次性:
N(U,Y) 0 时必有
由U与Y间的可加性:
N(U, Y) 0
时必有
N(U1 , Y1 ) 0 N(U2 , Y2 ) 0 N(U1 U1 , Y1 Y2 ) 0
网络N线性(叠加原理)
N(U1 , Y1 ) 0
N(U2 , Y2 ) 0
v g (q)
3.二端既压控也荷控 单调电容 二、多端电容元件
F(q, v) 0
电路课件第一章(第五版邱关源)
叠加定理
总结词
叠加定理是一种将复杂电路问题分解为多个简单电路问题的方法,通过分别求解 各个简单电路问题,最后得到复杂电路的总响应。
详细描述
叠加定理的基本思想是将原电路分解为多个独立电源的简单电路,分别求解各个 简单电路的响应,然后将各个响应叠加起来得到原电路的总响应。这种方法适用 于任何线性时不变电路,可以大大简化复杂电路的分析过程。
正弦稳态电路的分析方法
总结词
正弦稳态电路的分析方法主要包括相量法、阻抗法和导纳法等。
详细描述
相量法是一种将正弦波形的电压和电流表示为复数形式的方法,通过相量图可以直观地分析电路的相 位和幅度关系。阻抗法和导纳法则是将电路中的元件表示为阻抗或导纳的形式,通过代数运算来求解 电路的电压和电流。
正弦稳态电路的功率
过渡过程的特性
过渡过程的特性包括时间常数、最大值、 最小值、稳态值等,这些特性可以通过计
算或实验得到。
过渡过程的计算
过渡过程的计算需要使用动态电路的微分 方程,通过求解微分方程可以得到过渡过 程中电压和电流的变化情况。
过渡过程的应用
过渡过程的应用包括信号处理、控制系统、 通信系统等领域,通过研究过渡过程可以 更好地理解和控制系统的动态行为。0102Fra bibliotek0304
电阻器
限制电流流动,将电能转换为 热能。
电容器
储存电荷,具有隔直通交的特 性。
电感器
储存磁能,具有隔交通直的特 性。
二极管
单向导电,用于整流、开关等 应用。
电路的基本物理量
电流
电压
功率
电阻
单位时间内流过导体的 电荷量,用符号I表示。
电场力将单位正电荷从 一点移动到另一点所做 的功,用符号U表示。
《电路原理》邱关源ppt课件
i(t)deΔ flti m0Δ Δqt ddqt
单位正电荷q 从电路中一点移至另一点时 电场力做功(W)的大小
U
def
dW
dq
为什么要设电流参考方
向?
简单电a 路
+
+
I
U
E
Uab
-
b-
I1 R1
R2 I2
复杂+ 电路
U6
I3
-
IS
I4
R3
R4
电流的实际方向 可知
各电I5流+ 的US 实- 际方向 未知
(b) 若iS为变化的电源,则某一时刻的伏安关系也是 这样 电流为零的电流源,伏安曲线与 u 轴重合, 相当于开路元件
(4). 理想电流源的短路与开路
i
(a) 短路:R=0, i= iS ,u=0 ,电流
+
源被短路。
iS
u
R (b) 开路:R,i= iS ,u 。若强
_
迫断开电流源回路,电路模型为病
i为有限值时,u=0。
当R=,视其为开路。
u为有限值时,i=0。 * 理想导线的电阻值为零。
5.其他电阻元件
负电阻: (negative resistance),在u、i 取关联参考方向时,负电阻的电压、
电流关系位于Ⅱ、Ⅳ象限,即R<0,G<0 。负电阻将输出电功率(电功率
小于零),对外提供电能。所以负电阻是一种有源元件(active element)。
例 i
+
AU B
-
电压电流参考方向如图中所标, 问:对A、两部分电路电压电流参考方向 关联否?
答: A 电压、电流参考方向非关联;
B 电压、电流参考方向关联。
单位正电荷q 从电路中一点移至另一点时 电场力做功(W)的大小
U
def
dW
dq
为什么要设电流参考方
向?
简单电a 路
+
+
I
U
E
Uab
-
b-
I1 R1
R2 I2
复杂+ 电路
U6
I3
-
IS
I4
R3
R4
电流的实际方向 可知
各电I5流+ 的US 实- 际方向 未知
(b) 若iS为变化的电源,则某一时刻的伏安关系也是 这样 电流为零的电流源,伏安曲线与 u 轴重合, 相当于开路元件
(4). 理想电流源的短路与开路
i
(a) 短路:R=0, i= iS ,u=0 ,电流
+
源被短路。
iS
u
R (b) 开路:R,i= iS ,u 。若强
_
迫断开电流源回路,电路模型为病
i为有限值时,u=0。
当R=,视其为开路。
u为有限值时,i=0。 * 理想导线的电阻值为零。
5.其他电阻元件
负电阻: (negative resistance),在u、i 取关联参考方向时,负电阻的电压、
电流关系位于Ⅱ、Ⅳ象限,即R<0,G<0 。负电阻将输出电功率(电功率
小于零),对外提供电能。所以负电阻是一种有源元件(active element)。
例 i
+
AU B
-
电压电流参考方向如图中所标, 问:对A、两部分电路电压电流参考方向 关联否?
答: A 电压、电流参考方向非关联;
B 电压、电流参考方向关联。
电路_邱关源教材课件_第1章
l 电压为时变时,平面上直线平移
l us(t)=0相当于短路 l 元件电流由电源与外电路共同决定 3、伏安特性曲线 表明端电压与电流 大小无关。 u
US
i
二、电流源 1、定义 是一个理想的二端元件,通过元件的电流与 它两端的电压无关,电流总保持为某给定的 时间函数。 2、性质(特点) l 该元件电流不随电压大小变化,在u-i平面上 为一条直线
I a 参考方向 R
b
4、电流的正负仅对参考方向有意义。参考方向 的假设是任意的,但一经假定就不得更改。
三、电压的参考方向 1、电压的实际方向—高电位指向低电位 2、参考方向—人为规定的电压方向,用正负号或 双下标表示,为代数量。 3、与实际方向的关系:如果电压的实际方向与 参考方向一致,电压为正值;否则,为负值。
第一章
电路模型和电路定律
本章主要内容:
电路和电路模型
电流和电压的参考方向
功率
电路元件:电阻、独立源和受控源 电路的基本定律—基尔霍夫定律
基 本 要 求
牢固掌握理想元件、电路模型、参考方向 及关联参考方向等概念。 深刻理解电压、电流、功率等物理量的意 义和各量之间的关系。 牢固掌握和熟练应用元件(电阻、电压源、 电流源和受控源)的伏安关系和基尔霍夫电 压定律及电流定律。 树立用电路基本定律分析电路的观念。
§16 电压源和电流源 电压源和电流源都是独立源
一、电压源
1、定义
是一个理想的二端元件,元件两端的电压与通 过它的电流无关,电压总保持为某给定的时间 函数。 us为电压源的电 + Us 压,“+”、“-” 元件模型: us 为参考极性 -
2、性质(特点) l 该元件电压不随电流大小变化,在u-i平面 上为一条直线
电路 邱光源 第一章课件
+ +
u1
-
i2
u2
X
控制支路
受控支路
说明:
1. 控制支路: 反映控制量 u1 , i1
电流i1 ( 短路)
电压u1 ( 开路 )
电流源 i2 (
i2 )
2. 受控支路: 反映被控量 u2 , i2
电 压源 (
三. 理想受控源分类
+ ) u2 i2
1. 电流控制电流源 (CCCS )
控制关系 i2 i1
发出
P5V uS i 5 (2) 10 W 发出
满足:P(发)=P(吸)
X
+
_
计算图示电路各元件的功率
i
2A
例. 图示电路中 , U CD ?
1A
A
AD间开路 , 则电压 U AB ? UBC ?
2A
3 +
C
3
3V
U AD ?
D
B
1
I
1 V
3A
解:
由广义节点知: I=0
u 10 V
p 10W
pI S 30W
u 10 V
p 10W ( 吸收 )
Is :
pI S 10W
pI S 10W (发出 )
X
⑤ 电流源不能开路
Is
Is
可以短路
X
例
解
i iS 2A u 5V P2 A iS u 2 5 10 W
+
5V u
330kV
10kV 10kV 400V
电工理论学科是电力工业主要依靠的技术学科
X
电路应用举例
u1
-
i2
u2
X
控制支路
受控支路
说明:
1. 控制支路: 反映控制量 u1 , i1
电流i1 ( 短路)
电压u1 ( 开路 )
电流源 i2 (
i2 )
2. 受控支路: 反映被控量 u2 , i2
电 压源 (
三. 理想受控源分类
+ ) u2 i2
1. 电流控制电流源 (CCCS )
控制关系 i2 i1
发出
P5V uS i 5 (2) 10 W 发出
满足:P(发)=P(吸)
X
+
_
计算图示电路各元件的功率
i
2A
例. 图示电路中 , U CD ?
1A
A
AD间开路 , 则电压 U AB ? UBC ?
2A
3 +
C
3
3V
U AD ?
D
B
1
I
1 V
3A
解:
由广义节点知: I=0
u 10 V
p 10W
pI S 30W
u 10 V
p 10W ( 吸收 )
Is :
pI S 10W
pI S 10W (发出 )
X
⑤ 电流源不能开路
Is
Is
可以短路
X
例
解
i iS 2A u 5V P2 A iS u 2 5 10 W
+
5V u
330kV
10kV 10kV 400V
电工理论学科是电力工业主要依靠的技术学科
X
电路应用举例
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3)电子管时代 1904年 弗莱明 发明真空二极管 1906年 德福雷斯特 发明真空三极管 4)晶体管时代 1948年 布拉顿等 发明晶体管 5)集成电路时代 1958年 发明集成电路 20世纪30年代,电路理论形成一门独立学科,20世纪50年代 末,电路理论体系基本完善。电路理论的研究演变为三个方面 的内容:电路器件的建模研究、电路分析方法研究和电路综合 方法研究。 电路器件建模:通过微观或宏观分析,得到器件端子上电 量之间的约束关系,用于描述器件特性。 电路分析:给定电路结构和参数,求解电路中的电压、电 流,分析电路的特性。 电路综合:给定电路性能要求,设计电路的形式并计算元 件参数,从而确定电路的结构。
本课程研究的主要对象:线性、时不变、集 总参数电路。
电路理论体系
电 路 分 析 (analysis) : 在 给 定 的 激 励 (excitation) 下,求结构已知的电路的响应 (response)。
激励给定 e 电 路 响应待求 已知 r
电路综合(synthesis):在特定的激励下, 为了得到预期的响应而研究如何构成所需的 电路
电路: 系统: 信号与系统 场: 计算机:
电路分析基础
电子线路 数字电路 数字系统设计 。。。
电磁场理论 C/C++
数字信号处理 微波与天线 数据库及其应用 语音信号处理 。。。 微机原理和接口 多媒体技术 单片机原理 现代通信技术 现代交换技术 数字信号处理器 。。。
教师严谨治学
学生积极配合
希望踊跃发表看法
意见要求及时反馈
共创优异成绩
2. 电学和电路理论发展简史
1)奠基时期 1752年 富兰克林 证明闪电是电 1785年 库伦 发现库伦定律 1826年 欧姆 发现欧姆定律 1831年 法拉第 发现电磁感应定律 2)通讯时代 1837年 莫尔斯 发明实用电报机 1845年 基尔霍夫提出基尔霍夫电流定律和电压定律 1875年 贝尔 发明电话 1894年 马可尼和波波夫 分别发明无线电
课堂教学 认真理解老师对相关内容的讲解,特别是对基本 概念,基本理论和基本分析方法的论述,注意解 题方法和技巧。 习题 独立完成作业,按时交作业。
实验 4个
考试 期末70%,实验、作业和和课堂测验30%。Βιβλιοθήκη 材及参考书 教材: 《电路》
邱关源主编 高等教育出版社
参考书: 《电路分析基础》
第1章
电路模型和电路定律
本章重点
1.1
电路和电路模型 电流和电压的参考方向 电功率和能量 电路元件
1.5
电阻元件
1.2
1.3
1.6
1.7
电压源和电流源
受控电源
1.4
1.8
基尔霍夫定律
首页
重点: 1. 电压、电流的参考方向 2. 电阻元件和电源元件的特性
3. 基尔霍夫定律
返 回
1.1 电路和电路模型
电路分析的主要内容是对电路中的电磁现象和过程的 分析,这些知识是认识和分析实际电路的理论基础, 更是分析和设计电路的重要工具。 通过该课程的学习,掌握电路的基本分析方法和一些 基本性质,为后面的专业学习打下基础。
特点之一:具有基础课的特点
强调理论基础的学习。即:其中涉及很多定理、概 念、方法和公式,以及它们之间的相互联系。
电路原理课程介绍
1)电路原理是研究电路中发生的电磁现象,利用电路基本 理论和基本定律进行分析计算,是理工类本科生的一门重要 基础课程; 2)电路研究内容一般分类及应用方向: a>.强电部分:电能输送分配、电网、电功率计算、效 率、电气安全等;
电路原理课程介绍
b>.弱电部分:电信号传输、处理、调制解调、滤波、畸 变分析、模拟和数字信号、电路特性等;
崔晓燕 周慧玲 张轶 科学出版社 李瀚荪著 高等教育出版社 电子工业出版社
《简明电路分析基础》
《电路分析基础》俎云霄 李巍海 吕玉琴编著
教学形式:
课堂上,主要以多媒体课件形式进行授 课,辅之板书进行分析。有时借助计算机软件对电路 进行分析; 课后,认真复习,完成作业 。 学习的独立性!!
希望和要求:
应用研究领域包括电气驱动、自动化工程、电力电子、 电气信息工程、通信工程、电子仪器及测量、计算机、光 电工程等.
课程的实践背景
电路的功能
进行能量的传送和转换。 实现信号的产生、传递、变换、处理与控制
电路分析过程
实际电路
电路模型
电路分析
分析结果
电路的分类
线性(linear)电路与非线性(nonlinear)电路 时变(time-varying)与时不变(定常)(timeinvariance)电路 稳态(steady state)和暂态(transient state)电路 集总参数(lumped parameter)和分布参数 (distributed parameter)电路
特点之二:具有专业课的特点
与实际相关,应用广泛。要学会用工程的观点对电 路进行分析。
电路分析课程研究的对象:
1、集总电路的分析。 2、电路中的节点电压、支路电流以及功率和能量。
课程的基本结构:
两类约束(KCL、KVL和元件的VCR)、三大基 本方法(叠加、分解、变换域的分析)
主要教学环节
激励已知 e
电 路 目标给定 未知 r
课程性质
《电路分析基础》是电路理论的入门课程, 是电类各专业的技术基础课。 其任务是讨论电路分析的基本规律和电路的 各种分析方法。 理论严密、逻辑性强,有着广阔的工程背景。 本课程的先修课程是《高等数学》和《大学 物理》。
本课程在专业课程群中的位置
光纤通信
电视原理 。。。
课程特点
课程特点:
本课程定位为理工类本科生的基础课,课程知识是对实 际问题的抽象研究。课程主要讲述电路的一般分析计算方法, 具有较强的理论性。 本课程研究内容是电子线路、信号处理、高频电子线路、 自动控制理论、微机控制、计算机、电气驱动、电力电子、 电力系统等后续课程的基础。 本课程学习所需的准备知识包括物理学、微积分、微分 方程、复变函数、线性代数、矩阵等。
1.实际电路
功能 由电工设备和电气器件按预期
目的连接构成的电流的通路。