(整理)成桥预拱度计算方法
桥梁预拱度的计算公式
桥梁预拱度的计算公式
桥梁预拱度计算公式一般根据不同的桥址和规格而异。
一般可以采用以下公式来计算:
V = (Vf + Vd) / Kf
其中,V表示桥梁的预拱度,Vf表示桥梁自重引起的拱度,
Vd表示活载引起的拱度,Kf表示桥梁非良好地基的修正系数。
简单来说,就是根据桥梁的重量和活载以及地基的情况来估计桥梁的预拱度。
由于桥梁的结构和地理条件的不同,预拱度计算公式可能存在多种形式。
因此,在具体应用中需要根据桥梁的实际情况来选择合适的公式进行计算,并在实际施工过程中进行调整。
桥博预拱度计算
桥博预拱度计算
连续刚构预拱度分为施工预拱度和成桥预拱度,设置施工预拱度主要为了消除施工过程中各种荷载对成桥线形的影响,设置成桥预拱度主要为了消除后期运营过程中后期收缩、徐变、后期预应力损失及汽车荷载对桥面线形的影响。
采用挂篮悬臂浇筑的连续刚构桥在设置施工预拱度时应考虑下表所列因素的影响:
表连续刚构桥施工预拱度的主要影响因素
采用挂篮悬臂浇筑连续刚构桥,其成桥预拱度应考虑下表所列因素的影响:。
连续梁成桥预拱度计算过程
5.5.1 成桥预拱度计算方法目前,由于对混凝土徐变的计算,不论是老化理论,修正老化理论还是规范规定的计算方法,都难以正确地估算混凝土徐变的影响,在施工中对这一影响不直接识别、修正,通常是用以往建成的同类跨径的下挠量来类比的,并且通过立模标高的预留来实现的。
因此,成桥预拱度合理设置尤为重要。
根据近几年来工程实践检验,后期混凝土收缩、徐变对中孔跨中挠度影响约为L/500~L/1000(L:中孔跨径),边孔最大挠度一般发生在3/4L处,约为中孔最大挠度1/4。
另外,连续刚构桥边中跨比例0.52~0.6,桥墩采用柔性墩。
在后期运营中向跨中方向产生位移,刚构墩、梁固结,由变形协调可知,转角位移使边孔上挠。
中孔跨中下挠。
因此,边跨成桥预拱度一般设置较小,在3/4L处设置fc/4预拱度(fc:中孔跨中成桥预拱度)。
根据陕西省连续刚构桥成桥预拱度计算方法:“中跨预拱度在设计预拱度的基础上,按L/1000+1/2d2(L为中跨跨径,d2为活载挠度)提高预拱度(最大挠度在跨中),边跨预拱度按中跨最大挠度1/4计算,边跨最大挠度在3/4L处。
其余各点按余弦曲线分配。
在中孔跨中fc确定后,中孔其余各点按y=fc/2(1-cos(2πx/L))进行分配。
边孔3/4L处成桥预拱度取中孔跨中成桥预拱度fc的1/4,边孔其余各点按余弦曲线分配。
原因:(1)余弦曲线在墩顶两曲线连接处切线斜率为零,满足平顺要求;(2)余弦曲线在L/4处预拱度为跨中预拱度1/2,与有限元计算吻合。
.1.活载挠度计算1) 荷载等级:公路—Ⅰ;2) 车道系数:三车道,车道折减系数0.78;3) 中跨活载最大挠度:d=0.029m; 22.中跨最大预拱度的确定Ld=0.09+0.0145=0.1045m; ??fc2100023.余弦曲线成桥预拱度线形示意图各曲线函数表达如下:?x2fa??曲线:() A)y?cos(1?90??x0??290???xfc2??B曲线:() )?1y?cos(53?22.5?x??612???x2fc??C曲线:() )cos(?y1?22.5??x0?? 245??5.5.2 施工预拱度的计算方法不论采用什么施工方法,桥梁结构在施工过程中总要产生变形,并且结构的变形将受到诸多因素的影响,极易使桥梁结构在施工过程中的实际位置(立面标高、平面位置)状态偏离预期状态,使桥梁难所以必须对桥梁进行施工或成桥线形与设计要求不符,以顺利合拢,控制,使其在施工中的实际位置状态与预期状态之间的误差在容许范围和成桥状态符合设计要求。
桥梁的制作预拱度和施工预拱度
桥梁的制作预拱度和施工预拱度1. 概要在设计斜拉桥中,一般用成桥阶段模型估算结构的截面和索的截面、索的布置以及索的张力,用施工阶段模型分析并确定各施工阶段索的张力(如何调索)以及制作预拱度(Fabrication camber)和施工预拱度。
通过施工阶段分析可以确定构件在各施工阶段的应力,用户可通过调整测试施工阶段确定较优的施工方案。
在施工过程中,当沿着前一阶段施工的桥梁段的切线方向添加新的桥梁段时,对后续的节点会产生假想位移,结构真实的位移(Real displacement)也称为总位移是由自重和荷载作用的纯位移(net displacement)和假想位移构成的。
为了决定制作预拱度(Fabrication camber),需要输出总位移结果。
本资料将说明制作预拱度和施工预拱度的概念,并说明在MIDAS/Civil中如何查看各施工阶段的总位移以及如何输出制作预拱度和施工预拱度。
2. 制作预拱度和施工预拱度的概念使用悬臂法施工的斜拉桥最重要课题的就是控制形状(位移控制,geometry control)。
有时为了减少徐变的影响会采用提前两个月左右预制桥梁段的方法,预制时会给桥梁段一定量的预拱度,使其在组装时不至于产生较大的应力。
制作预拱度 =最终线型 – 最终位移量 + 附加预拱度施工预拱度 =制作预拱度 + 到相应阶段的总位移图1. 制作预拱度概念图示在做施工阶段分析前一定要了解整个施工顺序和各阶段的荷载,因为当按预期的制作预拱度浇筑后,如果发生了意外的荷载或其他没有考虑到的情况,重新调整会很困难,所以斜拉桥的施工必须有专业的工程技术人员(construction engineering)进行严密的分析和验算。
图2中简单说明了制作预拱度和施工预拱度的差异。
图2(a)表现的是施工各桥梁段时的位移量。
在施工第2个桥梁段后,节点1和节点2的位移量(不包含施工桥梁段1时的位移量)分别为12δ和22δ,在节点3产生假想位移32δ(不包含施工桥梁段1时的假想位移量)。
钢管混凝土拱桥预拱度的计算与设置
1 工程概况
1.1 唐家河特大桥桥型布置 唐家河特大桥位于张花高速公路古丈连接线上,是
一座大跨度钢管混凝土拱桥。桥梁全长 294.20 m,桥面 宽 10 m。主桥为上承式钢管混凝土拱桥,桥跨布置为: (2× 20 m)先简支后结构连续 T 梁 +200 m 上承式钢管混 凝土拱桥 +(2× 20 m)先简支后结构连续 T 梁(见图 1)。 1.2 唐家河特大桥主拱拱肋构造
唐家河特大桥主拱肋计算跨径 200 m,矢高 40 m, 矢跨比 1/5,拱轴线采用悬链线,拱轴系数 = 1.756。单 片拱肋采用变高度四管桁式截面,拱顶截面高 3.5 m, 拱 脚 截 面 高 5.5 m。 上、 下 弦 管 直 径 920 土;直腹杆钢管直 径 457 mm,壁厚 12 mm;斜腹杆钢管直径 356 mm,壁
– 58 –
邬智:钢管混凝土拱桥预拱度的计算与设置
2019 年第 2 期
2 × 20.0
294.2 16.1 + 11 × 16.0 + 16.1
40
200 图 1 桥型总体布置图
厚 9 mm;横向缀管直径 457 mm,壁厚 12 mm;小横 管 356 mm,壁厚 9 mm。横向联系采用 X 撑横联,拱 肋中距 7 m,全桥共设 22 道 X 撑横联,横联钢管直径 457 mm,壁厚 12 mm。主拱肋半立面图(见图 2)。
关键词:钢管混凝土拱桥;预拱度;有限元 中图分类号:U491 文献标志码:A 文章编号:1671-3400(2019)02-0058-03
Calculation and Settings for Camber of Concrete Filled Steel Tubular Arch Bridge
第八节、挠度、预拱度的计算
立柱式支架,可用于旱桥、不通航河道以及桥墩 不高旳小桥施工;如图a、b所示。
梁式支架,钢板梁合用于跨径不大于20m,钢衍 梁 合用于大子20m旳情况;如图c、d所示。 梁一柱式支架,合用于桥墩较高,跨径较大且支 架下需要排洪旳情况;如图e、f所示。
支架属于施工中旳临时承重构造,除承受桥梁上 部构造旳大部分恒重外,还要承受施工设备及振动荷 载、风力、施工人员旳重力以及支架本身旳自重,因 此需要进行设计计算,以确保支架具有足够旳强度、 刚度、支架基础旳牢固可靠、构件旳结合紧密,并要 求具有足够旳纵、横、斜三个方向旳连接杆件,使支 架形成整体。
(1)混凝土旳运送
混凝土旳运送能力应适应混凝土凝结速度和浇 筑速度旳需要,务必使泥凝土在运到浇筑地点时仍 保持均匀性和要求旳坍落度。不论采用汽车运送还 是搅拌车运送,其运送时间均不宜超出要求旳时间 范围。
采用泵送混凝土应符合下列要求:混凝土旳供 应必须确保输送混凝土泵能连续工作;输送管线宜 直,转弯宜缓,接头应严密,如管道向下倾斜,应 预防混入空气,产生阻塞;泵送前应先用水泥浆润 滑输送管道内壁,混凝土出现离析现象时,应立即 用压力水或其他措施冲洗管内混凝土,泵送间歇时 间不宜超出15min;在泵送过程中,受料斗内应具
⑷将导梁临时占住位置旳预制梁暂放在已架好旳梁上。
⑸待用绞车将导梁移至下一桥孔后,再将暂放一侧旳 预制梁架设完毕。
如此反复,直到将各孔主梁全部架好为止。此法
合用于孔数较多和较长旳桥梁时才比较经济。
由 试验资料来拟定相隔时间。当无法满足上述要求旳间 隔时间时,就必须预先拟定施工缝预留旳位置。一般 将它选择在受剪力和弯矩较小且便于施工旳部位.并 应技下列要求混凝土表层旳 水泥浆和较弱层。 ②经凿毛旳混凝上表面.应用水洗洁净,在浇筑次 层混凝土之前,对垂直施工缝宜刷层净水泥浆,对 于水平缝宜铺一层厚为10一20mm旳122旳水泥砂
桥梁博士预拱度设置及计算
用桥博计算书模板提取预拱度分享首次分享者:千雪寻已被分享21次评论(0)复制链接分享转载举报一、对桥博组合位移全部废弃,仅供用户自定义组合的解释。
1、对全预应力和A类构件,计算挠度时,按照规范6.5.2条,全截面的抗弯刚度Bo应取0.95EcIo,但桥博直接取的EcIo,所以桥博算出来的单项位移,全界面的抗弯刚度没有进行折减,单项位移、组合位移结果都是是不准确的,全部废弃。
2、解决方案:用户可以将桥博输出的值加以修整,除以0.95的折减系数,即可得到正确的单项挠度效应。
组合位移的值,用户可以采用报表来完成。
3、对于钢筋混凝土构件桥博的挠度计算值无需再进行修正。
钢筋硷构件在使用阶段是允许开裂的,挠度验算采用最小刚度原则,即用砖开裂后的最小刚度计算其可能的最大挠度。
二、如何设置预拱度?1、规范条文:2、预拱度的设置:桥博不能自动判断是否需要设置预拱度,需要用户编制报表,计算出短期荷载效应下的长期挠度和预加力产生的长期反拱值。
通过比较先判断是否需要设置预拱度,若需要设置,则按规范值进行计算。
同时,挠度值还必须满足规范6.5.3条的要求:3、几个系数的取值4、桥博报表解析荷载短期效应组合长期竖向挠度(mm){1000*(1.55-0.0025*W)/0.95*(ZSUM<[DS(iN,2,iS).V],iS=sgjd>+ZSUM<[D S(iN,3,iS).V],iS=sgjd>+0.7*([DU(iN,58).V])+[DU(iN,70).V])}ZDEC<3>永久荷载产生的荷载+施工临时荷载位移+汽车最小剪力下的位移+人群最小剪力的位移预加应力产生的长期挠度(mm){1000*2*(ZSUM<[DS(iN,4,iS).V],iS=sgjd>)}ZDEC<3>消除结构自重后的挠度{(1000/0.95*(0.7*([DU(iN,58).V])+1.0*([DU(iN,70).V])))*(1.55-0.0025*W)} 汽车最小剪力下的位移+人群最小剪力的位移总结:《桥规》 D62的 6.5.5条:受弯构件的预拱度可按下列规定设置:1 钢筋混凝土受弯构件1)当由荷载短期效应组合并考虑荷载长期效应影响产生的长期挠度不超过计算跨径的1/1600时,可不设预拱度;2)当不符合上述规定时应设预拱度,且其值应按结构自重和1/2可变荷载频遇值计算的长期挠度值之和采用。
预拱度
预拱度的设置一、基本原理1、预拱度的设置只针对桥面系,考虑的是行车时线路的平顺性。
2、预拱度的设置只考虑恒载与活载,不考虑温度及支座沉降。
其中,恒载:结构自重、预应力、二期恒载、收缩徐变(对混凝土梁)。
由于收缩徐变跟时间有关,预拱度分成桥及成桥3年后两种,一般以成桥3年后为准。
活载:按静活载考虑。
3、针对简支结构预拱度值= —(恒载挠度+0.5*静活载最大挠度)即保证不行车时结构上拱0.5*静活载最大挠度,行车最大时结构下挠0.5*静活载最大挠度。
4、针对连续结构预拱度值有两种设法,不同之处在于对活载的处理,目前没有统一。
预拱度值1 = —[恒载挠度+0.5*静活载(最大挠度+最小挠度)]预拱度值2 = —[恒载挠度+0.5*静活载最大挠度]方法1理由如下:火车过桥时,结构各点位移可上可下,直接取下值会使得预拱度过大,取两者平均值切合实际。
由于简支结构最小挠度为0,该方法针对简支结构也能说通。
方法2理由如下:火车过桥时,某处发生最小挠度时表明火车还没有到达该处,此时的挠度对火车走行没有影响,而火车到达该处时一般挠度达到最大值,因此该值才具备实际意义。
实际上火车是由一节节车厢组成,而不是一个移动的集中荷载,因此两种做法不好判别,目前公司说做的连续结构均按第一种办法。
二、施工方案对预拱度的影响针对常规的混凝土结构和钢结构,计算程序及预拱度设置均遵循小变形假定,均即结构形状的微小改变不影响结构受力及位移,程序各阶段处理结构内力及变位时均按直线计算,但是结构的总变形是各阶段的累计(计入位移及转角)。
预拱度= - [最后恒载挠度(成桥3年)+1/2静活载挠度]立模标高= 线路标高+预拱度也就是说,每个节点(梁段)第一次出现(不受力,标高即模板标高)时,按照(线路标高+预拱度)立模,施工完成后得到的就是设计线形,一次成桥如此,悬臂施工及支架施工也是如此。
三、钢梁的预拱度使得桥面节点加工(平躺时)的坐标等于预拱度值即可,方法可多种。
18_桥梁的制作预拱度和施工预拱度
桥梁的制作预拱度和施工预拱度1.概要在设计斜拉桥中,一般用成桥阶段模型估算结构的截面和索的截面、索的布置以及索的张力,用施工阶段模型分析并确定各施工阶段索的张力(如何调索)以及制作预拱度(Fabrication camber)和施工预拱度。
通过施工阶段分析可以确定构件在各施工阶段的应力,用户可通过调整测试施工阶段确定较优的施工方案。
在施工过程中,当沿着前一阶段施工的桥梁段的切线方向添加新的桥梁段时,对后续的节点会产生假想位移,结构真实的位移(Real displacement)也称为总位移是由自重和荷载作用的纯位移(net displacement)和假想位移构成的。
为了决定制作预拱度(Fabrication cambe r),需要输出总位移结果。
本资料将说明制作预拱度和施工预拱度的概念,并说明在MIDAS/Civil中如何查看各施工阶段的总位移以及如何输出制作预拱度和施工预拱度。
2.制作预拱度和施工预拱度的概念使用悬臂法施工的斜拉桥最重要课题的就是控制形状(位移控制,geometry control)。
有时为了减少徐变的影响会采用提前两个月左右预制桥梁段的方法,预制时会给桥梁段一定量的预拱度,使其在组装时不至于产生较大的应力。
图1. 制作预拱度概念图示在做施工阶段分析前一定要了解整个施工顺序和各阶段的荷载,因为当按预期的制作预拱度浇筑后,如果发生了意外的荷载或其他没有考虑到的情况,重新调整会很困难,所以斜拉桥的施工必须有专业的工程技术人员(construction engineering)进行严密的分析和验算。
图2中简单说明了制作预拱度和施工预拱度的差异。
图2(a)表现的是施工各桥梁段时的位移量。
在施工第2个桥梁段后,节点1和节点2的位移量(不包含施工桥梁段1时的位移量)分别为12δ和22δ,在节点3产生假想位移32δ(不包含施工桥梁段1时的假想位移量)。
所谓的假想位移指的是当前桥梁段沿上一桥梁段的切线方向与上一桥梁段连接时产生的位移(不是由施工当前桥梁段时荷载产生的位移)。
施工预拱度计算
施工预拱度计算
在桥梁悬臂施工的控制中,最困难的任务之一就是施工
预拱度的计算。
箱梁预拱度计算根据现场测定的各项参数由
专业程序计算得出并结合实际测量值进行比对:
①在第N#梁段混凝土灌注前,精确测量该梁段端头测
点的标高(即为段测点处的顶板施工立模标高)Ml。
②在第N#梁段混凝土灌注硬化后,精确测量该梁段端
头测点的标高M2。
③在第N#梁段纵向预应力束张拉前,精确测量该梁段
端头测点的标高M3。
④在第N#梁段纵向预应力束张拉压浆完成后、移挂篮前,精确测量该端头测点的标高M4。
⑤计算第N#梁段混凝土灌注前后测点的标高差d1=M2—Ml,以及该段纵向预应力束张拉压浆完成前后的标高差的d2=M4—M3。
将这两个标高差与线形控制软件计算得出的结果ΔMl、ΔM3分别进行比较,如果d1与ΔM 1、d2与ΔM3相比的误差都小于设计值,则按上述步骤进行下一梁段的施工;若两个误差值中有一个或两个都大于规定值,则需要从施工现场和数据文件两个方面查找产生差别的并修改相应的数据文件、输入微机、重新计算后,对下一梁段的立模实际标高进行修正。
按上述步骤不断循环,直至悬灌梁段施工完毕。
钢箱梁制作预拱度计算
钢箱梁制作预拱度计算钢箱梁是一种常用的桥梁结构,它由多个钢板焊接而成,具有较高的强度和刚度。
在制作钢箱梁的过程中,预拱度计算是一个至关重要的步骤。
本文将介绍钢箱梁预拱度计算的方法和步骤。
我们需要了解什么是预拱度。
预拱度是指在桥梁建造过程中,在桥梁支撑前,为了抵消最终荷载引起的变形而给桥梁构件施加的逆方向曲率。
预拱度的作用是使桥梁在最终使用状态下保持平直。
钢箱梁的预拱度计算一般分为以下几个步骤:1. 确定桥梁的几何形状:首先需要确定钢箱梁的几何形状,包括梁的长度、宽度、高度等参数。
这些参数将直接影响到预拱度计算的结果。
2. 确定材料的力学性质:钢箱梁的预拱度计算需要知道材料的力学性质,包括弹性模量、屈服强度等。
这些参数可以通过材料试验或者查阅相关资料得到。
3. 计算桥梁的刚度:在计算预拱度之前,需要先计算钢箱梁的刚度。
刚度是指单位载荷作用下的变形量。
通过计算钢箱梁的刚度,可以确定在不同荷载作用下的变形量。
4. 计算预拱度:根据钢箱梁的刚度和荷载作用下的变形量,可以计算出预拱度。
预拱度的计算一般使用弹性理论或者有限元分析方法。
5. 考虑其他因素:在进行预拱度计算时,还需要考虑其他因素的影响,如温度变化、施工误差等。
这些因素可能会引起桥梁的变形,需要在预拱度计算中进行修正。
需要注意的是,钢箱梁的预拱度计算是一个复杂的过程,需要考虑多个因素的综合作用。
因此,在进行预拱度计算时,需要仔细分析各项参数,并结合实际情况进行修正。
钢箱梁的预拱度计算是桥梁建造过程中必不可少的一步。
通过合理计算和施工,可以保证钢箱梁在最终使用状态下保持平直,提高桥梁的安全性和稳定性。
在实际工程中,预拱度计算是桥梁设计和施工过程中不可或缺的一环,需要经验丰富的工程师和技术人员进行准确计算和判断。
拱架预拱度
拱架预拱度拱桥是一种优美、稳定的建筑形式,它的形态多样,应用广泛。
拱桥在道路、铁路、水利等基础设施建设中发挥着重要作用。
拱桥的预拱度是一个重要的设计参数,它直接影响着拱桥的稳定性和安全性。
本文将从拱桥的基本原理、预拱度的概念和计算方法、预拱度的影响因素以及预拱度的实际应用等方面进行探讨。
一、拱桥的基本原理拱桥是一种由多个拱段组成的建筑形式,它的主要作用是承受上部结构和荷载的重量,并将荷载传递到桥墩、桥台和地基上。
拱桥的主要特点是受力状态复杂,它既受到自重和荷载的直接作用,还受到弯矩、剪力和轴力的复杂作用。
因此,在设计拱桥时,必须考虑各种受力状态的影响,合理确定拱的形态和尺寸,以确保拱桥的稳定性和安全性。
二、预拱度的概念和计算方法预拱度是指在拱桥建造过程中,在拱的两端提前施加一定的预拱力,使拱向上提升,形成一定的弧形,以便在拱完全浇筑前,提前使拱产生一定的内力,达到一定的强度和稳定性。
预拱度是拱桥设计中一个非常重要的参数,它直接影响着拱桥的稳定性和安全性。
预拱度的计算方法主要有以下几种:(1)根据拱的形状和跨度,采用经验公式进行计算。
(2)根据拱桥的荷载和材料特性,采用力学原理进行计算。
(3)根据拱桥的实际情况,采用有限元方法进行计算。
三、预拱度的影响因素预拱度的大小和形态受到多种因素的影响,主要包括以下几个方面:(1)拱的形状和跨度:拱的形状和跨度是确定预拱度的重要因素。
通常情况下,跨度越大,拱的形状越扁平,预拱度就越大。
(2)荷载和荷载分布:荷载和荷载分布也是影响预拱度的重要因素。
荷载越大,荷载分布越不均匀,预拱度就越大。
(3)材料特性:材料的强度、刚度和变形特性也是影响预拱度的重要因素。
材料的强度越高,刚度越大,预拱度就越小。
(4)施工条件:施工条件也是影响预拱度的重要因素。
施工时的温度、湿度、施工速度等都会对预拱度产生影响。
四、预拱度的实际应用预拱度在拱桥的设计和施工过程中具有重要的应用价值。
成桥预拱度设置的正交多项式拟合法
0 . 9 9以 上 , 由 此 验 证 了 正 交 多项 式 拟合 法 的 可 靠
性 。 因此 , 采 用正 交 多项 式 拟 合法 计 算 的 成桥 预拱 度 不仅保 证 了桥梁 成 桥 线 形 的平 顺 , 而 且保 证 了桥 梁 线形 受力合 理性 , 具 有较高 的推 广与应 用价值 。
( S c h o o l o f C i v i l E n g e e r n i n g a n d T r a n s p o r t a t i o n, S o u t h C h i n a U n i v e r s i t y o f T e c h n o l o g y, G u a n g z h o u,
[ Ke y w o r d s ]b r i d g e c a mb e r ;c u r v e i f t t i n g ; o r t h o g o n a l p o l y n o m i a l s ;c o n t i n u o u s r i g i d f r a me b r i d g e 有限元 计算 得 出的成桥 预拱 度数据 的相 关系数 达 到
0 引言
目前 , 连 续刚 构桥 一般 采用悬 臂 浇筑法 、 悬 臂拼 装法 、 顶 推法 施工 的 , 其 过程 的线 形控 制一 般都 是通 过设 置预 拱度 而 实现 的¨ 。预 拱度 可分 为 施工 预
预拱度相关问题
预拱度相关问题一、预拱度的概念及确定因素预拱度:为抵消梁、拱、桁架等结构在荷载作用下产生的挠度,而在施工或制造时所预留的与位移方向相反的校正量。
确定因素:①脚手架承受施工荷载后引起的弹性变形;②超静定结构由于混凝土收缩及徐变而引起的挠度;③由于杆件接头的挤压和卸落设备的压缩而产生的塑性变形;④脚手架基础在受载后的塑弹性沉降;⑤梁、板、拱的底模板的预拱度设置。
二、拱桥预拱度的设置与计算2.1预拱度的设置当结构自重和汽车荷载(不计冲击力)产生的最大竖向挠度,不超过计算跨径的1/1600 时,可不设预拱度,超过就要设预拱度。
预拱度的设置值为按结构自重和 1/2 可变荷载频遇值计算的长期挠度值之和采用。
上部结构和支架的各变形值之和,即为应设置的预拱度。
支架受载后将产生弹性和非弹性变形,桥梁上部结构在自重作用下会产生挠度,为了保证桥梁竣后尺寸的准确性,在施工时支架须设置一定数量的预拱度。
钢桥预共度是通过改变螺栓间距实现的,混凝土桥是靠桥梁线形控制的,调整立模标高。
预共度值一般是恒载+1/2静活载挠度。
预拱度应根据上述各项因素产生的挠度曲线反向设置;可根据以往的实践经验按下述方法之一设置:1 按抛物线设置。
2 按推力影响线的比例设置。
3 对于不对称拱桥或坡拱桥,按拱的弹性挠度反向比例设置。
根据近几年来工程实践检验,后期混凝土收缩、徐变对中孔跨中挠度影响约为L/500~L/1000(L:中孔跨径),边孔最大挠度一般发生在3/4L处,约为中孔最大挠度1/4。
另外,连续刚构桥边中跨比例0.52~0.6,桥墩采用柔性墩。
在后期运营中向跨中方向产生位移,刚构墩、梁固结,由变形协调可知,转角位移使边孔上挠。
中孔跨中下挠。
因此,边跨成桥预拱度一般设置较小,在3/4L处设置fc/4预拱度(fc:中孔跨中成桥预拱度)。
中跨预拱度在设计预拱度的基础上,按L/1000+1/2d2(L为中跨跨径,d2为活载挠度)提高预拱度(最大挠度在跨中),边跨预拱度按中跨最大挠度1/4计算,边跨最大挠度在3/4L处。
挠度、预拱度计算[大成].doc
挠度、预拱度计算4.5 挠度、预拱度计算在进行钢筋混凝土或预应力混凝土梁桥设计时,除了要对主梁进行承载能力计算和应力验算外,还应该校核梁的变形(挠度),以确保结构具有足够的刚度,避免因变形(挠度)过大而影响高速行车,使桥面铺装层和结构的辅助设施破坏,甚至危及桥梁的安全。
桥梁的挠度,根据产生原因可分成永久作用(结构自重力、桥面铺装、预应力、混凝土徐变和收缩作用等)产生的和可变作用(汽车、人群)产生的。
永久作用产生的挠度是恒久存在的且与持续的时间有关,可分为短期挠度和长期挠度。
可变作用产生的挠度是临时出现的,在最不利的作用位置下,挠度达到最大值,随着可变作用位置的移动,挠度逐渐减小,一旦可变作用离开桥梁,挠度随即消失。
永久作用产生的挠度并不表征结构的刚度特性,通常可以通过施工时预设的反向挠度(即预拱度)来加以抵消,使竣工后的桥梁达到理想的设计线形。
可变作用产生的挠度,使梁产生反复变形,变形的幅度愈大,可能发生的冲击和振动作用也愈强烈,对行车的影响也愈大。
因此,在桥梁设计中需要通过验算可变作用产生的挠度以体现结构的刚度特性。
公路桥梁规范中规定,对于钢筋混凝土及预应力混凝土梁式桥,在使用阶段的长期挠度值,在消除结构自重产生的长期挠度后梁式桥主梁的最大挠度处不应超过计算跨径的1/600,梁式桥主梁的悬臂端不应超过悬臂长度的1/300。
此挠度为不计冲击力时的值。
钢筋混凝土和预应力混凝土受弯构件,在正常使用极限状态下的挠度,可根据给定的构件刚度用结构力学的方法计算。
受弯构件的刚度可按下式计算:1.钢筋混凝土构件crscrscrBBMMMMBB02201.................+........= (4.78)0WfMtkcrγ= (4.79)式中:B——开裂构件等效截面的抗弯刚度;0B——全截面的抗弯刚度,0095.0IEBc=;cE——混凝土弹性模量;——开裂截面的抗弯刚度,crBcrccrIEB=;——开裂弯矩; crMγ——构件受拉区混凝土塑性影响系数,002WS=γ。
(整理)成桥预拱度计算方法
(整理)成桥预拱度计算方法5.5.1 成桥预拱度计算方法目前,由于对混凝土徐变的计算,不论是老化理论,修正老化理论还是规范规定的计算方法,都难以正确地估算混凝土徐变的影响,在施工中对这一影响不直接识别、修正,通常是用以往建成的同类跨径的下挠量来类比的,并且通过立模标高的预留来实现的。
因此,成桥预拱度合理设置尤为重要。
根据近几年来工程实践检验,后期混凝土收缩、徐变对中孔跨中挠度影响约为L/500~L/1000(L:中孔跨径),边孔最大挠度一般发生在3/4L处,约为中孔最大挠度1/4。
另外,连续刚构桥边中跨比例0.52~0.6,桥墩采用柔性墩。
在后期运营中向跨中方向产生位移,刚构墩、梁固结,由变形协调可知,转角位移使边孔上挠。
中孔跨中下挠。
因此,边跨成桥预拱度一般设置较小,在3/4L处设置fc/4预拱度(fc:中孔跨中成桥预拱度)。
根据陕西省连续刚构桥成桥预拱度计算方法:“中跨预拱度在设计预拱度的基础上,按L/1000+1/2d2(L为中跨跨径,d2为活载挠度)提高预拱度(最大挠度在跨中),边跨预拱度按中跨最大挠度1/4计算,边跨最大挠度在3/4L处。
其余各点按余弦曲线分配。
在中孔跨中fc确定后,中孔其余各点按y=fc/2(1-cos(2πx/L))进行分配。
边孔3/4L处成桥预拱度取中孔跨中成桥预拱度fc的1/4,边孔其余各点按余弦曲线分配。
原因:(1)余弦曲线在墩顶两曲线连接处切线斜率为零,满足平顺要求;(2)余弦曲线在L/4处预拱度为跨中预拱度1/2,与有限元计算吻合。
1.活载挠度计算1) 荷载等级:公路—Ⅰ;2) 车道系数:三车道,车道折减系数0.78;3) 中跨活载最大挠度: d 2=0.029m; 2.中跨最大预拱度的确定210002L d fc =+=0.09+0.0145=0.1045m;3.余弦曲线成桥预拱度线形示意图各曲线函数表达如下:A 曲线:21cos()290fa x y π??=- (090x ≤≤) B 曲线:21cos()261fc x y π??=- (22.553x ≤≤) C 曲线:21cos()245fc x y π??=-(022.5x ≤≤) 5.5.2 施工预拱度的计算方法不论采用什么施工方法,桥梁结构在施工过程中总要产生变形,并且结构的变形将受到诸多因素的影响,极易使桥梁结构在施工过程中的实际位置(立面标高、平面位置)状态偏离预期状态,使桥梁难以顺利合拢,或成桥线形与设计要求不符,所以必须对桥梁进行施工控制,使其在施工中的实际位置状态与预期状态之间的误差在容许范围和成桥状态符合设计要求。
预拱度相关问题
预拱度相关问题一、预拱度的概念及确定因素预拱度:为抵消梁、拱、桁架等结构在荷载作用下产生的挠度,而在施工或制造时所预留的与位移方向相反的校正量。
确认因素:①脚手架忍受施工荷载后引发的弹性变形;②逊于砌石结构由于混凝土膨胀及徐变而引发的挠度;③由于杆件接点的侵蚀和卸落设备的放大而产生的塑性变形;④脚手架基础在受载后的塑弹性下陷;⑤梁、板、拱形的底模板的预拱度设置。
二、拱桥预拱度的设置与计算2.1预拱度的设置当结构自重和汽车荷载(不计冲击力)产生的最大竖向挠度,不超过计算跨径的1/1600时,可不设预拱度,超过就要设预拱度。
预拱度的设置值为按结构自重和1/2可变荷载频遇值计算的长期挠度值之和采用。
上部结构和支架的各变形值之和,即为应当设置的预拱度。
支架受载后将产生弹性和非弹性变形,桥梁上部结构在蔡国用促进作用下能产生挠度,为了确保桥梁竣后尺寸的准确性,在施工时支架须设置一定数量的预拱度。
钢桥预共度是通过改变螺栓间距实现的,混凝土桥是靠桥梁线形控制的,调整立模标高。
预共度值一般是恒载+1/2静活载挠度。
预拱度应当根据上述各项因素产生的挠度曲线逆向设置;可以根据以往的实践经验按下列方法之一设置:1按抛物线设置。
2按推力影响线的比例设置。
3对于不等距拱桥或坡拱桥,按拱形的弹性挠度逆向比例设置。
根据近几年来工程实践检验,后期混凝土收缩、徐变对中孔跨中挠度影响约为l/500~l/1000(l:中孔跨径),边孔最大挠度一般发生在3/4l处,约为中孔最大挠度1/4。
另外,连续刚构桥边中跨比例0.52~0.6,桥墩采用柔性墩。
在后期运营中向横跨中方向产生加速度,刚构桥头、梁晶化,由变形协同所述,转回角位移并使边孔上抖。
中孔横跨中下挠。
因此,边跨成桥预拱形度通常设置较小,在3/4l处为设置fc/4预拱度(fc:中孔跨中成桥预拱度)。
中跨预拱度在设计预拱度的基础上,按l/1000+1/2d2(l为中跨跨径,d2为活载挠度)提高预拱度(最大挠度在跨中),边跨预拱度按中跨最大挠度1/4计算,边跨最大挠度在3/4l处。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.5.1 成桥预拱度计算方法
目前,由于对混凝土徐变的计算,不论是老化理论,修正老化理论还是规范规定的计算方法,都难以正确地估算混凝土徐变的影响,在施工中对这一影响不直接识别、修正,通常是用以往建成的同类跨径的下挠量来类比的,并且通过立模标高的预留来实现的。
因此,成桥预拱度合理设置尤为重要。
根据近几年来工程实践检验,后期混凝土收缩、徐变对中孔跨中挠度影响约为L/500~L/1000(L:中孔跨径),边孔最大挠度一般发生在3/4L处,约为中孔最大挠度1/4。
另外,连续刚构桥边中跨比例0.52~0.6,桥墩采用柔性墩。
在后期运营中向跨中方向产生位移,刚构墩、梁固结,由变形协调可知,转角位移使边孔上挠。
中孔跨中下挠。
因此,边跨成桥预拱度一般设置较小,在3/4L处设置fc/4预拱度(fc:中孔跨中成桥预拱度)。
根据陕西省连续刚构桥成桥预拱度计算方法:“中跨预拱度在设计预拱度的基础上,按L/1000+1/2d2(L为中跨跨径,d2为活载挠度)提高预拱度(最大挠度在跨中),边跨预拱度按中跨最大挠度1/4计算,边跨最大挠度在3/4L处。
其余各点按余弦曲线分配。
在中孔跨中fc确定后,中孔其余各点按y=fc/2(1-cos(2πx/L))进行分配。
边孔3/4L处成桥预拱度取中孔跨中成桥预拱度fc的1/4,边孔其余各点按余弦曲线分配。
原因:(1)余弦曲线在墩顶两曲线连接处切线斜率为零,满足平顺要求;(2)余弦曲线在L/4处预拱度为跨中预拱度1/2,与有限元计算吻合。
1.活载挠度计算
1) 荷载等级:公路—Ⅰ;
2) 车道系数:三车道,车道折减系数0.78;
3) 中跨活载最大挠度: d 2=0.029m; 2.中跨最大预拱度的确定 210002
L d fc =+=0.09+0.0145=0.1045m;
3.余弦曲线
成桥预拱度线形示意图
各曲线函数表达如下:
A 曲线:21cos()290fa x y π⎡⎤=
-⎢⎥⎣⎦ (090x ≤≤) B 曲线:21cos()261fc x y π⎡⎤=
-⎢⎥⎣⎦ (22.553x ≤≤) C 曲线:21cos()245fc x y π⎡⎤=-⎢⎥⎣⎦
(022.5x ≤≤) 5.5.2 施工预拱度的计算方法
不论采用什么施工方法,桥梁结构在施工过程中总要产生变形,并且结构的变形将受到诸多因素的影响,极易使桥梁结构在施工过程中的实际位置(立面标高、平面位置)状态偏离预期状态,使桥梁难以顺利合拢,或成桥线形与设计要求不符,所以必须对桥梁进行施工控制,使其在施工中的实际位置状态与预期状态之间的误差在容许范围和成桥状态符合设计要求。
我单位设置的施工预拱度由下面的公式进行说明:
f si =∑f 1i +f 2i +f 3i +f 4i +f 5i +f 6i +f 7i +f 8i +f 9i +f 10i +f 11i
fsi :施工预拱度;
∑f 1i :本阶段块件生成后和以后各阶段挠度累计值
∑f 2i :本次浇筑梁段及后浇梁段纵向预应力钢束张拉对该点挠度影响值
f 3i :二期恒载挠度
f 4i :结构体系转换
f 5i :挂篮自重及变形
f 6i :墩身压缩变形
f 7i :前期收缩、徐变挠度值
f 8i :温度影响
f9i:墩顶转角影响
f10i:施工荷载产生挠度
f11i:支架弹性、非弹性变形
上述各组成因素的计算方法如下:
(1) 结构自重(一期恒载)作用预拱度的设置
结构自重的计算方法是本阶段块件生成后及以后各阶段对本阶段挠度累计值,特点是先浇阶段已完成本身自重变形,不再对后浇阶段产生影响,虽然合拢段与悬浇阶段单项挠度计算方法不同,但计入方法是相同的,可用通式表达:
∑f1i=f1i+f1i+1+ (1)
(2) 预应力作用下预拱度的设置
本阶段纵向钢束及后浇阶段纵向钢束张拉对该点挠度影响值
∑f2i=f2i+f2i+1+ (2)
(3) 二期恒载作用预拱度的设置
二期恒载即桥面铺装、防撞护栏等作用在成桥结构上,将计算所得挠度值反向设置。
(4) 结构体系转换的预拱度的设置
结构体系转换时,一般采用平衡重、配重、顶推等方式,平衡重与合拢段等量置换的那部分平衡重,随着合拢段砼浇筑同步卸除,设置预拱度时应剔除其影响。
但是为了调整合拢段两端标高而设置的附加配重在合拢段砼达到规定的强度后才卸除,其作用在合拢前后的不同体系上,卸载前后对桥梁的影响不能抵消,应充分考虑。
为了改善桥墩受力及在合拢时其场地温度高于设计合拢温度时,为满足设计合拢温度要求,采取顶推方式,以改善桥墩及上部结构受力性能和应力状态。
在顶推时,会使各截面产生挠度,这部分挠度变形在设置预拱度时应考虑。
(5) 挂篮自重及变形
1)挂篮对已浇阶段产生弹性变形,但拆除挂篮后,变形即恢复,不必考虑其影响;
2)现浇阶段,由于本阶段刚度未形成,节段自重由挂篮来承担,挂篮在节段砼自重的作用下,产生挠曲变形,现浇阶段砼产生相同变形,这一变形在挂篮拆除后不可恢复。
因此,必须计入这部分变形的影响。
其值一般由现场压力试验确定(压力与变形曲线)
(6) 墩身压缩变形
大跨度连续刚构桥悬臂较长,施工荷载大,如果墩高较高,墩身会产生较大压缩量,在挠度计算时应计入墩身弹性压缩的影响。
(7) 前期收缩、徐变影响
现行《公路钢筋混凝土及预应力混凝土桥涵设计规范》规定:“预应力混凝土受弯构件当需计算施工阶段变形时,可按结构自重和预应力产生的初始弹性变形乘以﹝1+ф(t,t0)〕求值。
”
前期徐变即施工阶段徐变,可按规范计入。
收缩按规范规定计入。
(8) 温度影响
在连续刚构桥分段施工过程中,其几何线形的实测值中都包含温度作用的影响,尽管测量时间选择在温度较稳定的时段,如深夜或凌晨,但是,很难避免日照温差的复杂影响。
一般的,大气升温时,悬臂端下挠,大气降温时,悬臂端上升。
日照温差对悬臂端挠度的影响,可以通过各施工阶段温度敏感性分析得到结构随温度改变的变形曲线,根据实际温度变化进行插值计算,对结构变形进行修正,即:
HTi=Hi+fti
fti: :温度修正值
连续刚构桥施工过程中,为了进一步摸清箱梁截面温度及温度在截面上的分布规律,有必要每月选择有代表性的天气(晴、雨、阴、寒流)进行24小时连续观测,以准确掌握温度变化规律,然后根据测量结果进行温度修正。
均匀温度作用对挠度的影响、主要取决于梁体温度与设计合拢温度是否相符合,悬臂施工阶段,结构为静定体系,而合拢后为超静定体系,连续刚构桥以柔性薄壁墩适应温度纵向变化,若梁体温度与设计合拢温度不相符合,即产生温度的变形,因此,计算年温差引起的变形,应以边跨合拢时计入其影响。
(9) 墩顶转角影响
高墩大跨连续刚构桥在悬臂施工过程中,特别是长悬臂时,荷载不可能严格对称,由此引起的墩顶水平位移、转角,对挠度影响不容忽视。
(10) 施工荷载的影响
施工荷载属临时荷载,在后续阶段卸除,因此,临时荷载引起的墩身压缩,挂篮自重产生的挠度,温度梯度影响,偏引起的转角影响属加卸载过程,都应在立模标高中剔除其影响,但配重由于作用在不同的结构体系上,其影响不能剔除。
(11) 支架弹性、非弹变形
边跨支架在施工时应严格要求用同等边跨现浇段及施工荷载重量预压,消除地基不均匀沉降,测定支架弹性、非弹性变形,并在边
跨现浇段中预留其变形。
表5.8给出的施工预拱度是根据图纸的各种参数,通过模型正装计算、施工阶段模拟的初步施工预拱度,不包括挂蓝变形值,而且随着施工进度、现场采集数据进行误差分析,修改模型设计参数,建立新模型再进行结构计算,进行动态调控。