初二数学八上分式和分式方程所有知识点总结和常考题型练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式知识点
一、分式的定义
如果A ,B 表示两个整数,并且B 中含有字母,那么式子
B A 叫做分式,A 为分子,B 为分母。 二、与分式有关的条件
①分式有意义:分母不为0(0B ≠)
②分式无意义:分母为0(0B =)
③分式值为0:分子为0且分母不为0(⎩⎨⎧≠=0
0B A )
④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩
⎨⎧<<00B A ) ⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><0
0B A )
⑥分式值为1:分子分母值相等(A=B )
⑦分式值为-1:分子分母值互为相反数(A+B=0)
三、分式的基本性质
分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。 字母表示:C B C ••=A B A ,C
B C ÷÷=A B A ,其中A 、B 、C 是整式,C ≠0。 四、分式的约分
定义:把分式的分子与分母的公因式约去,叫做分式的约分。
步骤:把分式分子分母因式分解,然后约去分子与分母的公因。
注意:①分式的分子与分母为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。
②分子分母若为多项式,约分时先对分子分母进行因式分解,再约分。
最简分式:一个分式的分子与分母没有公因式时,叫做最简分式。
五、分式的通分
定义:把几个异分母的分式化成同分母分式,叫做分式的通分。
步骤:分式的通分最主要的步骤是最简公分母的确定。
最简公分母的定义:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。 确定最简公分母的一般步骤:
Ⅰ 取各分母系数的最小公倍数;
Ⅱ 单独出现的字母(或含有字母的式子)的幂的因式连同它的指数作为一个因式;
Ⅲ 相同字母(或含有字母的式子)的幂的因式取指数最大的。
Ⅳ 保证凡出现的字母(或含有字母的式子)为底的幂的因式都要取。
注意:分式的分母为多项式时,一般应先因式分解。
六、分式的四则运算与乘方
① 分式的乘除法法则:
分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。式子表示为:
d
b c a d c b a ••=• 分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。式子表示为
c
c ••=•=÷b
d a d b a d c b a ② 分式的乘方:把分子、分母分别乘方。式子
n n n
b a b a =⎪⎭
⎫ ⎝⎛ ③ 分式的加减法则:
同分母分式加减法:分母不变,把分子相加减。式子表示为 c
b a
c b ±=±c a 异分母分式加减法:先通分,化为同分母的分式,然后再加减。式子表示为
bd
bc ad d c ±=±b a 整式与分式加减法:可以把整式当作一个整数,整式前面是负号,要加括号,看作是分母为1的分式,再通分。
④ 分式的加、减、乘、除、乘方的混合运算的运算顺序
先乘方、再乘除、后加减,同级运算中,谁在前先算谁,有括号的先算括号里面的,也要注意灵活,提高解题质量。
注意:加减后得出的结果一定要化成最简分式(或整式)。
七、整数指数幂
(1)同底数的幂的乘法:m n m n a a a +•=;
(2)幂的乘方:()m n mn a a =;
(3)积的乘方:()n n n ab a b =;
(4)同底数的幂的除法:m n m n a a a -÷=( a ≠0);
(5)分式(商)的乘方:()n
n n a a b b
=;(b ≠0) (6)n a
1=-n a ;0≠a ) (7)10=a ;(0≠a ) (任何不等于零的数的零次幂都等于1)
八、科学记数法
把一个数表示成n a 10⨯的形式(其中101<≤a ,n 是整数)的记数方法叫做科学记数法。 用科学记数法表示绝对值大于10的n 位整数时,其中10的指数是1-n 。
用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点前面的一个0)。
九、分式方程
含分式,并且分母中含未知数的方程——分式方程。
解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。
解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。
解分式方程的步骤 :(分式方程必须检验)
⑴去分母,把方程两边同乘以各分母的最简公分母。(产生增根的过程)
⑵解整式方程,得到整式方程的解。
⑶检验,把所得的整式方程的解代入最简公分母中:
如果最简公分母为0,则原方程无解,这个未知数的值是原方程的增根;如果最简公分母不为0,则是原方程的解。
产生增根的条件是:①是得到的整式方程的解;②代入最简公分母后值为0。
分式练习
一、选择题
1. 若关于x 的方程+=2的解为正数,则m 的取值范围是( ) A . m <6 B . m >6 C . m <6且m≠0
D . m >6且m≠8 2. 若> > ,则的值为( )
A.正数
B.负数
C.零
D.无法确定
3.方程
x
x x -=++-1315112的根是( ) A.x =1 B.x =-1 C.x =8
3 D.x =2 4.,04412=+-x x 那么x 2的值是( ) A.2 B.1 C.-2 D.-1
5.下列分式方程去分母后所得结果正确的是( ) A.
11
211-++=-x x x 去分母得,1)2)(1(1-+-=+x x x ; B.125552=-+-x
x x ,去分母得,525-=+x x ; C.2
42222-=-+-+-x x x x x x ,去分母得,)2(2)2(2+=+--x x x x ; D.,1132-=+x x 去分母得,23)1(+=-x x ; 6. 赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半书时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中,正确的是( ) A.21
140140-+x x =14 B.21280280++x x =14 C.21
140140++x x =14 D.211010++x x =1 7.若关于x 的方程01
11=----x x x m ,有增根,则m 的值是( ) A.3 B.2 C.1 D.-1
8.若方程,)
4)(3(1243+-+=++-x x x x B x A 那么A 、B 的值为( ) A.2,1 B.1,2 C.1,1 D.-1,-1
9.如果,0,1≠≠=
b b
a x 那么=+-
b a b a ( ) A.1-x 1 B.11+-x x C.x x 1- D.11+-x x