初二数学八上分式和分式方程所有知识点总结和常考题型练习题

合集下载

最新初二数学八上分式和分式方程所有知识点总结和常考题型练习题

最新初二数学八上分式和分式方程所有知识点总结和常考题型练习题

分式知识点一、分式的定义如果A ,B 表示两个整数,并且B 中含有字母,那么式子B A 叫做分式,A 为分子,B 为分母。

二、与分式有关的条件①分式有意义:分母不为0(0B ≠)②分式无意义:分母为0(0B =)③分式值为0:分子为0且分母不为0(⎩⎨⎧≠=00B A )④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A )⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A ) ⑥分式值为1:分子分母值相等(A=B )⑦分式值为-1:分子分母值互为相反数(A+B=0)三、分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。

字母表示:C B C ∙∙=A B A ,CB C ÷÷=A B A ,其中A 、B 、C 是整式,C ≠0。

四、分式的约分定义:把分式的分子与分母的公因式约去,叫做分式的约分。

步骤:把分式分子分母因式分解,然后约去分子与分母的公因。

注意:①分式的分子与分母为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。

②分子分母若为多项式,约分时先对分子分母进行因式分解,再约分。

最简分式:一个分式的分子与分母没有公因式时,叫做最简分式。

五、分式的通分定义:把几个异分母的分式化成同分母分式,叫做分式的通分。

步骤:分式的通分最主要的步骤是最简公分母的确定。

最简公分母的定义:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。

确定最简公分母的一般步骤:Ⅰ 取各分母系数的最小公倍数;Ⅱ 单独出现的字母(或含有字母的式子)的幂的因式连同它的指数作为一个因式;Ⅲ 相同字母(或含有字母的式子)的幂的因式取指数最大的。

Ⅳ 保证凡出现的字母(或含有字母的式子)为底的幂的因式都要取。

注意:分式的分母为多项式时,一般应先因式分解。

八年级数学上册第十五章分式基础知识点归纳总结(带答案)

八年级数学上册第十五章分式基础知识点归纳总结(带答案)

八年级数学上册第十五章分式基础知识点归纳总结单选题1、若数a使关于x的分式方程2x−1+a1−x=4的解为正数,则a的取值正确的是()A.a<6且a≠2B.a>6且a≠1C.a<6D.a>6答案:A分析:表示出分式方程的解,由解为正数确定出a的范围即可.解:分式方程整理得:2x−1−ax−1=4,去分母得:2−a=4x−4,解得:x=6−a4,由分式方程的解为正数,得到6−a4>0,且6−a4≠1,解得:a<6且a≠2.故选:A.小提示:此题考查了分式方程的解,始终注意分母不为0这个条件.2、若关于x的分式方程m+4x−3=3xx−3+2有增根,则m的值为()A.2B.3C.4D.5答案:D分析:根据分式方程有增根可求出x=3,方程去分母后将x=3代入求解即可.解:∵分式方程m+4x−3=3xx−3+2有增根,∴x=3,去分母,得m+4=3x+2(x−3),将x=3代入,得m+4=9,解得m=5.故选:D.小提示:本题考查了分式方程的无解问题,掌握分式方程中增根的定义及增根产生的原因是解题的关键.3、若把分式2x x+y 中的x 和y 同时扩大为原来的3倍,则分式的值( )A .扩大到原来的3倍B .扩大到原来的6倍C .缩小为原来的13D .不变 答案:D分析:根据分式的基本性质即可求出答案.解:∵2×3x 3x+3y =2×3x 3(x+y )=2xy x+y ,∴把分式2x x+y 中的x 和y 同时扩大为原来的3倍,则分式的值不变,故选:D .小提示:本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.4、计算x x+1+1x+1的结果是( )A .x x+1B .1x+1C .1D .−1答案:C分析:根据同分母分式的加法法则,即可求解.解:原式=x+1x+1=1, 故选C .小提示:本题主要考查同分母分式的加法法则,掌握”同分母分式相加,分母不变,分子相加“是解题的关键.5、若a +b =5,则代数式(b 2a ﹣a )÷(a−b a )的值为( )A .5B .﹣5C .﹣15D .15 答案:B分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.∵a +b =5,∴原式=b 2−a 2a ⋅a a−b =−(a+b )(a−b )a ⋅a a−b =−(a +b )=−5, 故选:B .小提示:考查分式的化简求值,掌握减法法则以及除法法师是解题的关键,注意整体代入法在解题中的应用.6、某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同.若设乙工人每小时搬运x件电子产品,可列方程为()A.300x =200x+30B.300x−30=200xC.300x+30=200xD.300x=200x−30答案:C分析:乙工人每小时搬运x件电子产品,则甲工人每小时搬运(x+30)件电子产品,根据300÷甲的工效= 200÷乙的工效,列出方程即可.乙工人每小时搬运x件电子产品,则甲工人每小时搬运(x+30)件电子产品,依题意得:300x+30=200x,故选C.小提示:本题考查了分式方程的应用,弄清题意,根据关键描述语句找到合适的等量关系是解决问题的关键..7、若关于x的分式方程2x−a −3x=0的解为x=3,则常数a的值为()A.a=2B.a=−2C.a=−1D.a=1答案:D分析:根据题意将原分式方程的解x=3代入原方程求出a的值即可.解:∵关于x的分式方程2x−a −3x=0解为x=3,∴23−a−1=0,∴2=3−a,∴a=1,经检验,a=1是方程23−a−1=0的解,故选:D.小提示:本题主要考查了利用分式方程的解求参数,熟练掌握相关方法是解题关键.8、解方程2x−13=x+a2−1时,小刚在去分母的过程中,右边的“-1”漏乘了公分母6,因而求得方程的解为x=2,则方程正确的解是( )A .x =−3B .x =−2C .x =13D .x =−13答案:A分析:先按此方法去分母,再将x=-2代入方程,求得a 的值,然后把a 的值代入原方程并解方程.解:把x =2代入方程2(2x -1)=3(x +a )-1中得:6=6+3a -1,解得:a =13,正确去分母结果为2(2x -1)=3(x +13)-6, 去括号得:4x -2=3x +1-6,解得:x =-3.故选:A小提示:本题考查了一元一次方程的解的定义以及解一元一次方程.使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.把方程的解代入原方程,等式左右两边相等.9、下列运算正确的是( )A .2a +3b =5abB .(−ab)2=a 2bC .a 2⋅a 4=a 8D .2a 6a 3=2a 3答案:D分析:根据合并同类项法则,同底数幂的乘法、幂的乘方与积的乘方以及单项式除以单项式法则解答. 解:A 、2a 与3b 不是同类项,不能合并,故本选项错误;B 、原式=a 2b 2,故本选项错误;C 、原式=a 6,故本选项错误;D 、原式=2a 3,故本选项正确.故选D .小提示:本题考查了同底数幂的乘法的性质与同类项合并同类项法则,熟练掌握性质和法则是解题的关键.10、下列分式中是最简分式的是( )A .2x 2B .42xC .x−1x 2−1D .x−1(x−1)2答案:A分析:一个分式的分子分母无公因式或公因数叫最简分式,四个选项逐个分析排除,只有选项A是最简分式,选项B、C、D中分子分母分别有公因数2、公因式x−1、公因式x−1,都不是最简分式.选项A不能约分,是最简分式;选项B中分子分母有公因数2,可约分,不是最简分式;选项C中x−1x2−1=x−1(x+1)(x−1),分子分母有公因式x−1,可约分,不是最简分式;选项D中分子分母有公因式x−1,可约分,不是最简分式;故选:A.小提示:本题主要考查了最简分式的概念,最简分式指的是分子分母无无公因式或公因数的分式,有时需要将分子分母进行因式分解再判断.填空题11、计算2m−2−mm−2的结果是 ____.答案:−1分析:根据分式的减法法则即可得.解:原式=2−mm−2=−(m−2) m−2=−1,所以答案是:−1.小提示:本题考查了分式的减法,熟练掌握运算法则是解题关键.12、若实数m使得关于x的不等式组{2x>23x<m+1无解,则关于y的分式方程yy−1=4−m2y−2的最小整数解是_________.答案:2分析:先求出每个不等式的解集,然后根据不等式组无解求出m的取值范围,再解分式方程从而确定y的取值范围即可得到答案.解:解不等式2x>2得:x>1,解不等式3x <m +1得:x <m+13, ∵不等式组无解,∴m+13≤1,∴m ≤2;y y −1=4−m 2y −2去分母得2y =4−m ,解得y =4−m 2,∵m ≤2,∴4−m ≥2∴y =4−m 2≥1,又∵y −1≠0,∴y >1,∴y 的最小整数解为2,所以答案是:2小提示:本题主要考查了根据不等式组的解集情况求参数,解分式方程,熟知相关计算法则是解题的关键.13、方程22x−1+x 1−2x =1的解是________.答案:x =1分析:原方程去分母得到整式方程,求解整式方程,最后检验即可.解:22x−1+x 1−2x =1, 22x−1﹣x 2x−1=1, 方程两边都乘2x ﹣1,得2﹣x =2x ﹣1,解得:x =1,检验:当x =1时,2x ﹣1≠0,所以x =1是原方程的解,即原方程的解是x=1,所以答案是:x=1.小提示:本题考查了解分式方程,把分式方程转化为整式方程是解答本题的关键,注意解分式方程不一定要检验.14、若|a|=2,且(a−2)0=1,则2a的值为_______.##0.25答案:14分析:根据绝对值的意义得出a=±2,根据(a−2)0=1,得出a−2≠0,求出a的值,即可得出答案.解:∵|a|=2,∴a=±2,∵(a−2)0=1,∴a−2≠0,即a≠2,∴a=−2,∴2a=2−2=1.4所以答案是:1.4小提示:本题主要考查了绝对值的意义,零指数幂有意义的条件,根据题意求出a=−2,是解题的关键.15、用科学记数法将﹣0.03896保留两位有效数字为____.答案:﹣3.9×10﹣2分析:先根据科学记数法表示该数,再保留两个有效数字即可.解:﹣0.03896=﹣3.896×10﹣2≈﹣3.9×10﹣2,所以答案是:﹣3.9×10﹣2.小提示:此题考查了科学记数法的表示方法,有效数字的概念,正确理解各知识点是解题的关键.解答题16、为推动家乡学校篮球运动的发展,某公司计划出资12000元购买一批篮球赠送给家乡的学校.实际购买时,每个篮球的价格比原价降低了20元,结果该公司出资10000元就购买了和原计划一样多的篮球,每个篮球的原价是多少元?答案:每个篮球的原价是120元.分析:设每个篮球的原价是x 元,则每个篮球的实际价格是(x ﹣20)元,根据“该公司出资10000元就购买了和原计划一样多的篮球”列出方程并解答.解:设每个篮球的原价是x 元,则每个篮球的实际价格是(x ﹣20)元,根据题意,得12000x =10000x−20.解得x =120.经检验x =120是原方程的解.答:每个篮球的原价是120元.小提示:本题考查了分式方程的应用,根据题意列出方程是解题的关键.17、若a ,b 为实数,且(a−2)2+|b 2−16|b+4=0,求3a ﹣b 的值. 答案:2分析:根据题意可得{a −2=0b 2−16=0b +4≠0,解方程组可得a,b,再代入求值.解:∵(a−2)2+|b 2−16|b+4=0,∴{a −2=0b 2−16=0b +4≠0,解得{a =2b =4, ∴3a ﹣b=6﹣4=2.故3a ﹣b 的值是2.小提示:本题考核知识点:分式性质,非负数性质.解题关键点:理解分式性质和非负数性质.18、阅读材料:对于非零实数a ,b ,若关于x 的分式(x−a)(x−b)x 的值为零,则解得x 1=a ,x 2=b .又因为(x−a)(x−b)x =x 2−(a+b)x+ab x=x +ab x ﹣(a +b ),所以关于x 的方程x +ab x =a +b 的解为x 1=a ,x 2=b . (1)理解应用:方程x 2+2x =3+23的解为:x 1= ,x 2= ;(2)知识迁移:若关于x 的方程x +3x =5的解为x 1=a ,x 2=b ,求a 2+b 2的值;(3)拓展提升:若关于x 的方程4x−1=k ﹣x 的解为x 1=t +1,x 2=t 2+2,求k 2﹣4k +2t 3的值. 答案:(1)3,23;(2)19;(3)12. 分析:(1)根据题意可得x =3或x =23;(2)由题意可得a +b =5,ab =3,再由完全平方公式可得a 2+b 2=(a +b )2-2ab =19;(3)方程变形为x -1+4x−1=k -1,则方程的解为x -1=t 或x -1=t 2+1,则有t (t 2+1)=4,t +t 2+1=k -1,整理得k =t +t 2+2,t 3+t =4,再将所求代数式化为k 2-4k +2t 3=t (t 3+t )+4t 3-4=4(t 3+t )-4=12.(1)解:∵x +ab x =a +b 的解为x 1=a ,x 2=b ,∴x 2+2x =x +2x =3+23的解为x =3或x =23,所以答案是:3,23;(2)解:∵x +3x =5,∴a +b =5,ab =3,∴a 2+b 2=(a +b )2-2ab =25-6=19; (3)解:4x−1=k -x 可化为x -1+4x−1=k -1,∵方程4x−1=k -x 的解为x 1=t +1,x 2=t 2+2,则有x -1=t 或x -1=t 2+1,∴t (t 2+1)=4,t +t 2+1=k -1, ∴k =t +t 2+2,t 3+t =4, k 2-4k +2t 3=k (k -4)+2t 3=(t+t2+2)(t+t2-2)+2t3=t4+4t3+t2-4=t(t3+t)+4t3-4=4t+4t3-4=4(t3+t)-4=4×4-4=12.小提示:本题考查了分式方程的解,理解题意,灵活求分式方程的解,并结合完全平方公式对代数式求值是解题的关键.。

人教版八年级数学分式知识点及典型例题

人教版八年级数学分式知识点及典型例题
a. 行程问题:基本公式:路程 =速度×时间而行程问题中又分相遇问题、追及问题. b. 数字问题: 在数字问题中要掌握十进制数的表示法. c. 工程问题: 基本公式:工作量 =工时×工效.
d. 顺水逆水问题 : v 顺水 =v 静水 +v 水 . v 逆水=v 静水 -v 水 .
工程问题: 例 1:一项工程,甲需 x 小时完成,乙需 y 小时完成,则两人一起完成这项工程需要
xy
x xy y
)A
7
B
7C
2D
2
2
2
7
7
例 5:已知 2x
3y ,求 xy x2 y2
y2
的值;
x2 y2
例 6:如果
a =2,则 b
a 2 ab b 2 a2 b2
=
例 7:已知
a 与 b 的和等于 x2 x2
4x
2
,则 a=
x4
,b=

15 、分式的应用题:
( 1)列方程应用题的步骤是什么? (1) 审; (2) 设; (3) 列; (4) 解; (5) 答. ( 2)应用题有几种类型;基本公式是什么?基本上有四种:
( 1)使分式有意义:令分母≠ 0 按解方程的方法去求解;
( 2)使分式无意义:令分母 =0 按解方程的方法去求解;
注意:( x 2 1 ≠ 0)
例 1:当 x 例 3:当 x
时,分式 1 有意义; x5
时,分式
1
2
有意义。
x1
例 2:分式 2x 1 中,当 x ____ 时,分式没有意义 2x
例 4:当 x
3 ,求
x2 y2
4
x 2 2xy y 2
xy y 2

【八年级上】分式和分式方程___知识梳理和练习(含答案)

【八年级上】分式和分式方程___知识梳理和练习(含答案)

学员编号:年级:初二课时数:学员姓名:辅导科目:数学学科教师:课题授课日期及时段教学目标重点、难点教学内容一、疑难讲解二、知识点梳理◇1、分式及其基本性质○1.分式的概念:叫做分式.一般地,如果A,B表示两个整式,并且B中含有字母,那么式子AB在理解分式的概念时,注意以下几点:⑴分式的分母中必然含有字母;⑵分式的分母的值不为0;⑶分式必然是写成两式相除的形式,中间以分数线隔开.⑷分式是两个整式相除的商,其中分母是除式,分子是被除式,而分数线则可以理解为除号,还含有括号的作用;⑸分式的分子可以含字母,也可以不含字母,但分母必须含有字母.⑹33y2y y,区别:y3y2是分式,3y 是整式,根据本来面目判断.整式与分式统称为有理式.整式与分式的区别:分式含有分母,且分母中必须含有字母,整式也可以含有分母,但分母中不含有字母。

如:3y 是整式,而y3是分式。

分式有意义的条件:分式的分母不为0分式的值为零的条件:同时满足:①分式的分子为零②分式的分母不为零○2.分式的基本性质:分式的分子与分母同时乘(或除以)一个不等于0的整式,分式的值不变.用公式可表示为:a am bbma a m bbm(0m ).注意:①在运用分式的基本性质时,基于的前提是0m ;②强调“同时”,分子分母都要乘以或者除以同一个“非零”的数字或者整式;③分式的基本性质是约分和通分的理论依据.最简分式:分子与分母没有公因式的分式叫做最简分式.最简公分母:几个分式中各分母的数字因数的最小公倍数与所有字母(因式)的最高次幂的积叫这几个分式的最简公分母。

确定最简公分母的方法:1.最简公分母的系数,取各分母系数的最小公倍数;2.最简公分母的字母,取各分母所有字母因式的最高次幂的积.○3.约分:把分式的分子与分母中的公因式约去,就是分式的约分。

)是整式,且0(CC CB CA B A ○4.通分:把几个异分母分别化成与原来的分式相等得同分母的分式,叫做分式的通分。

人教版八年级数学上册第十五章分式知识点总结和题型归纳(无答案)

人教版八年级数学上册第十五章分式知识点总结和题型归纳(无答案)

分式知识点总结和题型归纳第一部分分式的运算 (一)分式定义及有关题型题型一:考查分式的定义 :A一般地,如果 A ,B 表示两个整数,并且 B 中含有字母,那么式子 A 叫做分式,A 为分子,BB 为分母。

i-y ,是分式的有: x y题型二:考查分式有意义的条件 分式有意义:分母不为 0( B 0) 分式无意义:分母为 0( B 0) 【例1】当x 有何值时,下列分式有意义(1)—(2)-3^ ( 3)(4)( 5)丄x4x 22 x 21| x| 3x1x题型三:考查分式的值为 0的条件分式值为0:分子为0且分母不为0 ( A 0)B 0【例1】当x 取何值时, 下列分式的值为0.(1)Jx 3(2)|x| 2 x 242(3) x 22x 3x 5x 6【例2】当x 为何值时,下列分式的值为零:题型四:考查分式的值为正、负的条件分式值为正或大于 0:分子分母冋号(A或A 0 )B 0B 0【例1】下列代数式中:(1)5 |x 1 | x 4(2) 2^5 xx 6x 5x 1 -,2x分式值为负或小于0:分子分母异号(A °或八°)B 0 B0【例"(1)当x为何值时,分式为正;(3)当x为何值时,分式工为非负数.【例2】解下列不等式(1)1古 °(2)U题型五:考查分式的值为1,-1的条件分式值为1 :分子分母值相等(A=B)分式值为-1 :分子分母值互为相反数(A+B=°)【例1】若也L上的值为1,-1,则x的取值分别为________________________ x 2思维拓展练习题:a b1、若a>b>0, a2+ b2—6ab=0,则一a b2、一组按规律排列的分式:b2 b5 b8b11,2 , 3, 4 , L L ( ab 0),则第n个分式为a a a a(2)当x为何值时,分式5 x23 (x 1)2为负;A3、已知x23x 1 0,求X2 -2的值。

八年级数学分式知识点和配套练习题汇总

八年级数学分式知识点和配套练习题汇总

八年级数学分式知识点和配套练习题汇总知识点一:分式的定义1.代数式14x-是()A.单项式B.多项式C.分式D.整式2.(2011•江津区)下列式子是分式的是()A.B.C.D.3. 在2x ,1()3x y+,3ππ-,5a x-,24x y-中,分式的个数为()A.1B.2C.3D.4 4.在式子、、、、、中,分式的个数有()A.2个B.3个C.4个D.5个5.在代数式﹣,,x+y,,中,分式有()A.2个B.3个C.4个D.5个6.下列各式①,②,③,④(此处π为常数)中,是分式的有()A.①②B.③④C.①③D.①②③④7.在式子中,分式的个数为( ) A . 2个B . 3个C . 4个D . 5个8.代数式的家中来了四位客人①;②;③;④,其中属于分式家族成员的有( )A . ①②B . ③④C . ①③D . ①②③④9.在有理式25231,,,,()2245x y a x y a x a π+---中,分式的个数为( )A 1B 2C 3D 4 10.总价9元的甲种糖果和总价是9元的乙种糖果混合,混合后所得的糖果每千克比甲种 糖果便宜1元,比乙种糖果贵0.5元,设乙种糖果每千克x 元,因此,甲种糖果每千克 元,总价9元的甲种糖果的质量为 千克. 11.某种长途电话的收费方式如下:接通电话的第一分钟收费a 元,之后的每一分钟收费b 元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是 分钟知识点二:分式有无意义的条件的应用1.要使分式有意义,x 的取值范围满足( ) A . x =0 B . x ≠0 C . x >0 D . x <0 2.若分式有意义,则a 的取值范围是( ) A . a =0 B . a =1C . a ≠﹣1D . a ≠03.若分式有意义,则x 的取值范围是( ) A . x ≠5 B . x ≠﹣5 C . x >5D . x >﹣54.使分式无意义的x 的值是( )A . x =﹣B . x =C . x ≠﹣D . x ≠5.使式子有意义的取值为( )A . x >0B . x ≠1C . x ≠﹣1D . x ≠±1 6.若分式1xx 有意义,则x 的取值范围为( )A x ≠1B x >0且x ≠1C x ≠0D x ≥0且x ≠17.当x 为任意实数时,下列分式一定有意义的是( ) A .B .C .D .8. 当a 是任何有理数时,下列式子中一定有意义的是( ) A .1a a+ B .21a a +C .211a a ++ D .211a a +- 9.当x 为任意实数时,下列分式一定有意义的是( ) A . B .C .D .10.下列各式中,无论x 取何值,分式都有意义的是( )A .121x +B .21x x +C .231x x +D .2221x x +11.要使分式有意义,则x 应满足( )A . x ≠﹣1B . x ≠2C . x ≠±1D . x ≠﹣1且x ≠212.分式有意义的条件是( ) A . x ≠0 B . y ≠0C . x ≠0或y ≠0D . x ≠0且y ≠013.使分式有意义的a 的取值是( ) A . a ≠1B . a ≠±1C . a ≠﹣1D . a 为任意实数14. 当1x =时,分式①11x x +-,②122x x --,③211x x --,④311x +中,有意义的是( )A .①③④B .③④C .②④D .④ 15. 当1a =-时,分式211a a +-( )A .等于0B .等于1C .等于-1D .无意义 16. 当分式没有意义时,字母x 应满足( ) A . x =0B . x ≠0C . x =1D . x ≠117.如果分式没有意义,那么x 的值为( )A . ﹣1B . 0C . 1D . 218. 分式1111x++有意义的条件是( )A .0x ≠B .1x ≠-且0x ≠C .2x ≠-且0x ≠D .1x ≠-且2x ≠-19.下列分式,当x 取何值时有意义.(1)2132x x ++; (2)2323x x +-. 20.当x ______时,分式2134x x +-无意义.21.分式22121a a a -++有意义的条件为______22 .要使分式11x x-有意义,则x 的取值范围是 .知识点三:分式值为零的条件的应用 一、选择题1.如果分式2xx-的值为0,那么x 为( ). (A )-2 (B )0 (C )1 (D )2 2. 若分式211x x --的值为0,则( )A .1x =B .1x =-C .1x =±D .1x ≠ 3. 若分式2362x x x--的值为0,则x 的值为( )A.0 B.2 C.2- D.0或24. 使分式8483x x +-的值为0,则x 等于( ) A .38 B .12- C .83 D .12 5. 如果分式33x x --的值为1,则x 的值为( ) A .0x ≥ B .3x > C .0x ≥且3x ≠ D .3x ≠6. 若2||123x x x -+-的值为零,则x 的值是( )A .1±B .1C .1-D .不存在 7.若分式:的值为0,则( )A . x =1B . x =﹣1C . x =±1D . x ≠18.如果分式的值等于0,那么x 的值为( ) A . ﹣1 B . 1C . ﹣1或1D . 1或29.如果分式的值等于0,则x 的值是( ) A . 2 B . ﹣2C . ﹣2或2D . 2或310. 若分式2212x x x -+-的值为0,则x 的值是( )A .1或-1B .1C .-1D .-2 11.若分式的值为0,则b 的值是( ) A . 1 B . ﹣1C . ±1D . 212.若分式的值为0,则x 的值为( ) A . 0 B . 2C . ﹣2D . 0或213.若分式的值为0,则x 的值为( ) A . 3B . 3或﹣3C . ﹣3D . 014. 下列命题中,正确的有( )①A 、B 为两个整式,则式子AB 叫分式; ②m为任何实数时,分式13m m -+有意义; ③分式2116x-有意义的条件是4x ≠; ④整式和分式统称为有理数.A .1个 B .2个 C .3个 D .4个 二、填空题1. 对于分式122x x -+ (1)当________时,分式的值为0 (2)当________时,分式的值为1 (3)当________时,分式无意义 (4)当________时,分式有意义2. 若分式241x x -+的值为0,则x 的值为 . 3. 如果分式211m m -+的值为0,那么m=__________. 4. 若分式||11x x --的值为零,则x的值等于 .5. 当m =_______时,分式2(1)(3)32m m m m ---+的值为0. 6. 当m=__ __时,2(1)(2)32m m m m -+-+的值为07 . 当x =__________时,分式22x x -+的值为零. 8. 当x = 时,分式2233x x x ---的值为零.9.当x _______时,分式2212x x x -+-的值为零. 10.当m =________时,分式2(1)(3)32m m m m ---+的值为零. 11. 当x 时,分式11x x +-的值为正数. 12. 使分式的值为正的条件是13. 当____x =时,分式12x +的值为正数 14.当y 时,分式的值为负15. 当x 时,分式11x x +-的值为负数. 16. 若分式313x x-=--,则x 的取值范围是_____17. 当x = 时,分式132x x +-的值为1.三、解答题1. x 取什么值时,分式)3)(2(5+--x x x :(1)无意义?(2)有意义?(3)值为零?2. 在分式222x ax x x ++-中a 为常数,当x 为何值时,该分式有意义?当x 为何值时,该分式的值为0? 3.已知123x y x -=-,x 取哪些值时:(1)y 的值是正数;(2)y 的值是负数;(3)y 的值是零;(4)分式无意义.4.对于分式3x m x n+-,当x=3时,分式的值为0,当x =1时,分式无意义,求2m n m n+-的值。

《常考题》初中八年级数学上册第十五章《分式》知识点总结(含答案解析)

《常考题》初中八年级数学上册第十五章《分式》知识点总结(含答案解析)

一、选择题1.如图,在数轴上表示2224411424x x x x x x-++÷-+的值的点是( )A .点PB .点QC .点MD .点N C解析:C 【分析】先进行分式化简,再确定在数轴上表示的数即可. 【详解】解:2224411424x x x x x x-++÷-+ 2(2)14(2)(2)(2)x x x x x x -=+⨯+-+, 2422x x x -=+++, 242x x -+=+, 22x x +=+, =1, 在数轴是对应的点是M , 故选:C . 【点睛】本题考查了分式化简和数轴上表示的数,熟练运用分式计算法则进行化简是解题关键.2.若关于x 的一元一次不等式组()()1112232321x x x a x ⎧-≤-⎪⎨⎪-≥-⎩恰有3个整数解,且使关于y 的分式方程3133y ayy y++=--有正整数解,则所有满足条件的整数a 的值之和是( ) A .4 B .5C .6D .3A解析:A 【分析】不等式组整理后,根据已知解集确定出a 的范围,分式方程去分母转化为整式方程,由分式方程有正整数解,确定出a 的值,求出之和即可. 【详解】关于x 的一元一次不等式组整理得:325x a x ≤⎧⎪+⎨≥⎪⎩,∵325x a x ≤⎧⎪+⎨≥⎪⎩恰有3个整数解,∴2015a+<≤,即:23a -<≤, 关于y 的分式方程3133y ay y y ++=--,整理得:6y a=, ∵3133y ay y y ++=--有正整数解且63a≠, ∴满足条件的整数a 的值为:1,3 ∴所有满足条件的整数a 的值之和是4, 故选A . 【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握求一元一次不等式组的解以及解分式方程的步骤,是解题的关键.3.计算:2x y x yx y xy-⋅-=( ) A .x B .y xC .yD .1xA 解析:A 【分析】根据分式乘法计算法则解答. 【详解】解:2x y x yx y xy-⋅-=x , 故选:A . 【点睛】此题考查分式的乘法计算法则,熟记计算法则是解题的关键.4.2020年新冠肺炎疫情影响全球,某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.则甲、乙两厂房每天各生产的口罩箱数为( ) A .1200,600 B .600,1200C .1600,800D .800,1600A解析:A 【分析】先设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据工作时间=工作总量÷工作效率且两厂房各加工6000箱口罩时甲厂房比乙厂房少用5天,可得出关于x的分式方程,解方程即可得出结论.【详解】解:设乙厂房每天生产x箱口罩,则甲厂房每天生产2x箱口罩,依题意得:6000600052x x-=,解得:x=600,经检验,x=600是原分式方程的解,且符合题意,∴2x=1200.故答案选:A.【点睛】该题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.5.下列变形不正确的是()A.1122x xx x+-=---B.b a a bc c--+=-C.a b a bm m-+-=-D.22112323x xx x--=---A解析:A【分析】答题首先清楚分式的基本性质,然后对各选项进行判断.【详解】解:A、1122x xx x+--=---,故A不正确;B、b a a bc c--+=-,故B正确;C、a b a bm m-+-=-,故C正确;D、22112323x xx x--=---,故D正确.故答案为:A.【点睛】本题主要考查了分式的基本性质,掌握分式的基本性质是解题的关键.6.为推进垃圾分类,推动绿色发展,宜宾天原化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用460万元购买甲型机器人比用580万元购买乙型机器人的台数少一台,两种型号机器人的单价和为140万元.若设乙型机器人每台x万元,根据题意,所列方程正确的是()A.4605801x140x-=-B.4605801140x x=--C.4605801x140x=+-D .4605801140x x-=- B解析:B 【分析】设乙型机器人每台x 万元,由两种型号机器人的单价和为140万元得甲型机器人每台()140x -万元,根据用460万元购买甲型机器人比用580万元购买乙型机器人的台数少一台列得方程. 【详解】解:设乙型机器人每台x 万元,则甲型机器人每台()140x -万元,根据题意,可得4605801140x x=--.故选:B. 【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系,由此列得方程解决实际问题是解题的关键. 7.下列说法正确的是( )A .分式242x x --的值为零,则x 的值为2±B .根据分式的基本性质,m n 可以变形为22mx nxC .分式32xyx y-中的,x y 都扩大3倍,分式的值不变D .分式211x x ++是最简分式D 解析:D 【分析】直接利用分式的值为零的条件以及分式的基本性质、最简分式的定义分别分析得出答案. 【详解】A 、分式242x x --的值为零,则x 的值为−2,故此选项错误;B 、根据分式的基本性质,等式m n =22mx nx(x≠0),故此选项错误;C 、分式32xyx y-中的x ,y 都扩大3倍,分式的值扩大为3倍,故此选项错误;D 、分式211x x ++是最简分式,正确; 故选:D .【点睛】此题主要考查了分式的值为零的条件以及分式的基本性质、最简分式的定义,正确掌握相关定义和性质是解题关键. 8.若数a 使关于x 的分式方程2311a x x+=--的解为非负数,且使关于y 的不等式组213202y yy a +⎧->⎪⎪⎨-⎪≤⎪⎩的解集为2y <-,则符合条件的所有整数a 的个数为( ) A .5 B .6C .7D .8C解析:C 【分析】 根据分式方程2311ax x+=--的解为非负数求得a>5,根据不等式组的解集为2y <-,求得2a ≥-,利用分式的分母不等于0得到x ≠1,即可得到a 的取值范围25a -≤≤,且x ≠1,根据整数的意义得到a 的整数值. 【详解】 解分式方程2311a x x+=--,得53a x -=,∵分式方程2311ax x+=--的解为非负数, ∴503a-≥, 解得a ≤5,∵关于y 的不等式组213202y yy a +⎧->⎪⎪⎨-⎪≤⎪⎩,得2y y a <-⎧⎨≤⎩,∵不等式组的解集为2y <-, ∴2a ≥-, ∵x-1≠0, ∴x ≠1,∴25a -≤≤,且x ≠1,∴整数a 为:-2、-1、0、1、3、4、5,共有7个, 故选:C . 【点睛】此题考查根据分式方程的解的情况求未知数的取值范围,根据不等式组的解集情况求未知数的取值范围,确定不等式的整数解,正确理解题意并计算是解题的关键.9.22()-n b a (n为正整数)的值是( )A .222+n n b aB .42n n b aC .212+-n n b aD .42-nn b aB解析:B 【分析】根据分式的乘方计算法则解答. 【详解】2422()-=nn n b b a a . 故选:B . 【点睛】此题考查分式的乘方计算法则:等于分子、分母分别乘方,熟记法则是解题的关键. 10.下列各式中正确的是( )A .263333()22=x x y y B .222224()=++a a a b a b C .22222()--=++x y x y x y x yD .333()()()++=--m n m n m n m n D 解析:D 【分析】根据分式的乘法法则计算依次判断即可. 【详解】A 、2633327()28=x x y y ,故该项错误; B 、22224()()=++a a a b a b ,故该项错误; C 、222()()()--=++x y x y x y x y ,故该项错误; D 、333()()()++=--m n m n m n m n ,故该项正确; 故选:D . 【点睛】此题考查分式的乘方计算法则:等于分子、分母分别乘方,熟记法则是解题的关键.二、填空题11.对于两个不相等的实数a ,b ,我们规定符号{}min ,a b 表示a ,b 中的较小的值,如{}min 2,42=.(1){}min 2,3--=__________________. (2)方程{}3min 2,322x x x--=---的解为_________________. (3)方程131min ,2222x x x x -⎧⎫=-⎨⎬---⎩⎭的解为_________________.-3【分析】(1)模仿题干可直接给出答案;(2)先将原式转化为分式方程求解即可;(3)根据题中的新定义化简求出分式方程的解检验即可【详解】解:(1)根据题意;(2)原方程为:去分母得解得:经检验是该解析:-3 34x = 0x = 【分析】(1)模仿题干可直接给出答案;(2)先将原式转化为分式方程,求解即可;(3)根据题中的新定义化简,求出分式方程的解,检验即可. 【详解】解:(1)根据题意,{}min 2,33--=-;(2)原方程为:3322x x x-=---, 去分母得33(2)x x +=--,解得:34x =,经检验34x =是该方程的根, 故{}3min 2,322xx x--=---的解为:34x =;(3)当1322x x <--时,x >2,方程变形得:11222x x x -=---, 去分母得:1=x-1-2x+4, 解得:x=2,不符合题意;当1322x x >--时,即x <2,方程变形得:31222x x x -=---, 解得:x=0,经检验x=0是分式方程的解, 综上,所求方程的解为x=0.故答案为:-3,34x =,0x =. 【点睛】本题考查新定义的实数运算,解分式方程.能将题目新定义的运算化为一般运算是解题关键.12.当x _______时,分式22x x -的值为负.且【分析】分式有意义x2≠0分式的值为负数只有分子x-2<0由此求x 的取值范围【详解】解:依题意得解得x <2且x≠0故答案为:x <2且x≠0【点睛】本题考查了分式的值求分式的值必须同时满足分母不为0解析:2x <且0x ≠ 【分析】分式有意义,x 2≠0,分式的值为负数,只有分子x-2<0,由此求x 的取值范围. 【详解】解:依题意,得2200x x -<⎧⎨≠⎩解得x <2且x≠0,故答案为:x <2且x≠0. 【点睛】本题考查了分式的值.求分式的值,必须同时满足分母不为0.13.211a a a-+=+_________.【分析】先通分再分母不变分子相减即可求解【详解】故答案为:【点睛】本题考查了分式加减运算的法则熟记法则是解题的关键 解析:11a + 【分析】先通分,再分母不变,分子相减即可求解. 【详解】222222211(1)11111111(1)(1)11a a a a a a a a a a a a a a a a a a a +--+=--=-=-==+++++++-++- 故答案为:11a + 【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键. 14.化简分式:2121211a a a a +⎛⎫÷+= ⎪-+-⎝⎭_________.【分析】先计算括号内的加法再将除法化为乘法再计算乘法即可【详解】解:===故答案为:【点睛】本题考查分式的混合运算掌握运算顺序和每一步的运算法则是解题关键 解析:11a - 【分析】先计算括号内的加法,再将除法化为乘法,再计算乘法即可. 【详解】解:2121211a a a a +⎛⎫÷+ ⎪-+-⎝⎭=2112211a a a a a +-+÷-+- =211(1)1a a a a +-⋅-+ =11a -, 故答案为:11a -. 【点睛】本题考查分式的混合运算.掌握运算顺序和每一步的运算法则是解题关键. 15.若13x x +=,则231x x x ++的值是_______.【分析】把原分式分子分母除以x 然后利用整体代入的方法计算【详解】当原式=故答案为:【点睛】本题考查了分式的化简求值:解决本题的关键是利用整体代入的方法计算解析:34【分析】把原分式分子分母除以x ,然后利用整体代入的方法计算. 【详解】233111x x x x x=++++,当13x x +=,原式=33314=+. 故答案为:34. 【点睛】本题考查了分式的化简求值:解决本题的关键是利用整体代入的方法计算.16.已知215a a+=,那么2421a a a =++________.【分析】将变形为=5a 根据完全平方公式将原式的分母变形后代入=5a 即可得到答案【详解】∵∴=5a ∴故答案为:【点睛】此题考查分式的化简求值完全平方公式根据已知等式变形为=5a 将所求代数式的分母变形为解析:124【分析】将215a a+=变形为21a +=5a ,根据完全平方公式将原式的分母变形后代入21a +=5a ,即可得到答案. 【详解】 ∵215a a+=,∴21a +=5a ,∴2421a a a =++()()2222222221242451a a a a a a a a===-+- 故答案为:124. 【点睛】此题考查分式的化简求值,完全平方公式,根据已知等式变形为21a +=5a ,将所求代数式的分母变形为22(1)a a +-形式,再代入计算是解题的关键. 17.计算:()222333a b a b --⋅=_______________.【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方负整数指数幂计算即可【详解】原式=故答案为:【点睛】本题主要考查了单项式乘单项式幂的乘方与积的乘方负整数指数幂属于基础计算题 解析:3a b【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方,负整数指数幂,计算即可. 【详解】 原式=44334343113333a a ba b a b a b b----+-=== 故答案为:3a b. 【点睛】本题主要考查了单项式乘单项式,幂的乘方与积的乘方,负整数指数幂,属于基础计算题.18.九年级()1班学生周末从学校出发到某实践基地研学旅行,实践基地距学校150千米,一部分学生乘慢车先行,出发30分钟后,另一部分学生乘快车前往,结果他们同时到达实践基地,已知快车的速度是慢车速度的1.2倍,如果设慢车的速度为x 千米/时,根据题意列方程为________.【分析】设慢车的速度为x千米/小时则快车的速度为12x千米/小时根据题意可得走过150千米快车比慢车少用小时列方程即可【详解】解:设慢车的速度为则快车的速度为根据题意得:故答案为:【点睛】本题考查了解析:15011502 1.2 x x-=【分析】设慢车的速度为x千米/小时,则快车的速度为1.2x千米/小时,根据题意可得走过150千米,快车比慢车少用12小时,列方程即可.【详解】解:设慢车的速度为xkm/h,则快车的速度为1.2xkm/h,根据题意得:1501150x2 1.2x-=.故答案为:1501150x2 1.2x-=.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,找出合适的等量关系,列方程.19.已知关于x的方程321x mx-=-的解是正数,则m的取值范围为____________.m>2且m≠3【分析】先给分式方程去分母化为整式方程用m表示出方程的解再由解为正数求出m的取值范围即可【详解】解:去分母得:3x﹣m=2(x﹣1)解得:x=m﹣2∵分式方程的解是正数且x≠1∴m﹣2解析:m>2且m≠3【分析】先给分式方程去分母化为整式方程,用m表示出方程的解,再由解为正数求出m的取值范围即可.【详解】解:去分母,得:3x﹣m=2(x﹣1),解得:x=m﹣2,∵分式方程的解是正数,且x≠1,∴m﹣2>0,且m﹣2≠1,解得:m>2且m≠3,故答案为:m>2且m≠3.【点睛】本题考查了分式方程的解、解一元一次不等式,熟练掌握分式方程的解法是解答的关键,注意分式的分母不能为零.20.计算:262393x x x x -÷=+--______.1【分析】先将分母因式分解再将除法转化为乘法再根据法则计算即可【详解】故答案为:1【点睛】本题主要考查了分式的混合运算解题的关键是掌握分式的混合运算顺序和运算法则解析:1【分析】先将分母因式分解,再将除法转化为乘法,再根据法则计算即可.【详解】262393x x x x -÷+-- 633(3)(3)2x x x x x -=+⋅++- 333x x x =+++ 33x x +=+ 1=.故答案为:1.【点睛】本题主要考查了分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.三、解答题21.某商店购进 A B 、两种商品,购买1个A 商品比购买1个B 商品多花10元,并且花费300元购买A 商品和花费100元购买B 商品的数量相等(1)求购买一个A 商品和一个B 商品各需要多少元(2)商店准备购买A B 、两种商品共80个,若A 商品的数量不少于B 商品数量的4倍,并且购买A B 、商品的总费用不低于1000元且不高于1060元,那么商店有哪几种购买方案? 解析:(1)购买一个A 商品需要15元,购买一个B 商品需要5元;(2)商店有3种购买方案,方案①:购进A 商品66个,B 商品14个;方案②:购进A 商品65个,B 商品15个;方案③:购进A 商品64个,B 商品16个【分析】(1)设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,列出分式方程求解;(2)设购买B 商品m 个,则购买A 商品()80m -个,根据题意列出不等式组求出m 的范围,取整数解.【详解】解:()1设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,依题意,得:30010010x x=+, 解得:5x =, 经检验, = 5x 是原方程的解,且符合题意,1015x ∴+=,答:购买一个A 商品需要15元,购买一个B 商品需要5元;()2设购买B 商品m 个,则购买A 商品()80m -个,依题意,得:()()804158051000158051060m m m m m m ⎧-≥⎪-+≥⎨⎪-+≥⎩,解得:1416m ≤≤, m 为整数,14m ∴=或15或16,∴商店有3种购买方案,方案①:购进A 商品66个,B 商品14个,方案②:购进A 商品65个,B 商品15个,方案③:购进A 商品64个,B 商品16个.【点睛】本题考查分式方程的应用和不等式的应用,解题的关键是掌握根据题意列分式方程和不等式的方法.22.某小区购买了A 型和B 型两种垃圾桶,购买A 型垃圾桶花费了2500元,购买B 型垃圾桶花费了2000元,且购买A 型垃圾桶数量是购买B 型垃圾桶数量的2倍,已知购买一个A 型垃圾桶比购买一个B 型垃圾桶少用30元,求购买一个A 型垃圾桶、一个B 型垃圾桶各需多少元?(要求列分式方程求解)解析:购买一个A 型垃圾桶需50元,一个B 型垃圾桶需80元【分析】设购买一个A 型垃圾桶需x 元,购买一个A 型垃圾桶比购买一个B 型垃圾桶少用30元,一个B 型垃圾桶需()30x +元,根据购买A 型垃圾桶数量是购买B 型垃圾桶数量的2倍,构造分式方程25002000230x x =⨯+,解方程并检验即可. 【详解】解:设购买一个A 型垃圾桶需x 元,则一个B 型垃圾桶需()30x +元, 由题意得:25002000230x x =⨯+, 解得50x =,经检验,50x =是原方程的解,且符合题意,30503080x +=+=,答:购买一个A 型垃圾桶需50元,一个B 型垃圾桶需80元.【点睛】本题考查列分式方程解应用题,掌握列分式方程解应用题的方法,抓住购买一个A 型垃圾桶比购买一个B 型垃圾桶少用30元设未知数,购买A 型垃圾桶数量是购买B 型垃圾桶数量的2倍构造方程,注意分式方程要验根.23.先化简,再求值:21111a a a ⎛⎫-÷ ⎪+-⎝⎭,其中1a =解析:1a -【分析】先把括号里分式通分,后变除法为乘法,因式分解后进行约分即可,将a 的值代入.【详解】原式=11(1)(1)1a a a a a +-+-⎛⎫⨯⎪+⎝⎭ =(1)(1)(1)a a a a a+-⨯+ 1a =-,当1a =时,原式=【点睛】本题考查了分式的化简求值,按照运算顺序,通分,因式分解,约分是解题的关键. 24.先化简,再求值:22121124x x x x -+⎛⎫+÷ ⎪--⎝⎭,其中3x =. 解析:21x x +-;52【分析】 先计算括号内的运算,然后计算除法,把分式进行化简得到最简分式,再把3x =代入计算,即可得到答案.【详解】解:原式=()()()22212211x x x x x x x +--+⨯=---; 当3x =时,原式=522331=-+. 【点睛】 本题考查了分式的混合运算,分式的化简求值,解题的关键是掌握运算法则进行计算. 25.随着智能分拣设备在快递业务中的普及,快件分拣效率大幅提高.使用某品牌智能分拣设备,每人每小时分拣的快件量是传统分拣方式的25倍,经过测试,由5人用此设备分拣8000件快件的时间,比20人用传统方式分拣同样数量的快件节省4小时.(1)使用智能分拣设备后,每人每小时可分拣快件多少件?(2)已知某快递中转站平均每天需要分拣10万件快件,每天工作时间为8小时,如果使用此智能分拣设备,每天只需要安排多少名工人就可以完成分拣工作?解析:(1)使用智能分拣设备后每人每小时可分拣快件2100件;(2)每天只需要安排6名工人就可以完成分拣工作【分析】(1)设用传统方式每人每小时可分拣x件,则用智能分拣设备后每人每小时可分拣25x件,利用时间差为4小时列方程80008000452520x x=-⨯,再解方程,检验即可得到答案;(2)利用每天工作总量(10万件)除以工作效率(每人每天分拣82584⨯⨯件),结果取符合题意的正整数即可得到答案.【详解】(1)解:设用传统方式每人每小时可分拣x件,则用智能分拣设备后每人每小时可分拣25x件,由题意,得800080004 52520x x=-⨯.解得84x=.经检验,84x=是原方程的解,∴252100x=,∴使用智能分拣设备后每人每小时可分拣快件2100件;(2)∵100000205 8425821=⨯⨯,∵2055621<<,∴每天只需要安排6名工人就可以完成分拣工作.【点睛】本题考查的是分式方程的应用,掌握工作量等于工作时间乘以工作效率是解题的关键.26.今年双11期间开州区紫水豆干凭借过硬的质量、优质的口碑大火,豆干店的王老板用2500元购进一批紫水豆干,很快售完;王老板又用4400元购进第二批紫水豆干,所购数量是第一批的2倍,由于进货量增加,进价比第一批每千克少了3元.(1)第一批紫水豆干每千克进价多少元?(2)该老板在销售第二批紫水豆干时,售价在第二批进价的基础上增加了%a,售出80%后,为了尽快售完,决定将剩余紫水豆干在第二批进价的基础上每千克降价325a元进行促销,结果第二批紫水豆干的销售利润为1520元,求a的值.(利润=售价-进价)解析:(1)第一批紫水豆干每千克进价是25元;(2)a的值是50.【分析】(1)设第一批紫水豆干每千克进价是x元,则第二批每件进价是(x-3)元,再根据等量关系:第二批所购数量是第一批的2倍列方程求解即可;(2)根据第一阶段的利润+第二阶段的利润=1520列方程求解即可.【详解】解:(1)设第一批紫水豆干每千克进价x元,根据题意,得:2500440023x x⨯=-,解得:x=25,经检验,x=25是原方程的解且符合题意;答:第一批紫水豆干每千克进价是25元.(2)第二次进价:25-3=22(元),第二次紫水豆干的实际进货量:4400÷22=200千克,第二次进货的第一阶段出售每千克的利润为:22×a%元,第二次紫水豆干第二阶段销售利润为每千克325a-元,由题意得:322%20080%200(180%)152025aa⨯⨯⨯-⨯-=,解得:a=50,即a的值是50.【点睛】本题考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.27.观察下列等式:第1个等式:111122=-⨯;第2个等式:111 2323=-⨯;第3个等式:111 3434=-⨯;……(1)写出第5个等式:________________;(2)探究规律:猜想第n个等式,并证明;(3)问题解决:一个容器装有1升水,按照如下要求把水倒出:第1次倒出12升水,第2次倒出的水量是12升的13,第3次倒出的水量是13升的14,第4次倒出的水量是14升的1 5,……,第n次倒出的水量是1n升的11n+,如果不考虑实际操作因素,按照这种倒水的方法,这1升水能倒完吗?为什么?解析:(1)1115656=-⨯(2)()11111n n n n=-++;证明见解析(3)不能;见解析【分析】(1)观察各等式,找出分子分母中的数与序号的关系即可写出第五个等式;(2)根据题目中的式子,可以写出生意人猜想,并验证猜想是否正确;(3)根据题意求出前n 次倒水量之和,再与1进行比较即可.【详解】解:(1)第5个等式:1115656=-⨯; 故答案为:1115656=-⨯; (2)猜想:()11111n n n n =-++,证明: 等式右边()()()11111111n n n n n n n n n n +=-=-==++++等式左边, ∴猜想成立;(3)由题意可得:第n 次倒出水量:()11L n n +, ∴前n 次总共倒出水量:()11111223341n n ++++⨯⨯⨯+ 1111112231n n =-+-++-+ 111n =-+ 1n n =+, ∵11n n <+, ∴这1L 水不能倒完.【点睛】本题主要考查了数字变化规律的问题,通过观察、分析、归纳并发现其中的规律,并应用发现的规律解决问题,解题的关键是发现分子分母中的数与序号的关系.28.先化简,再求值:22131x x x x x ---+-,其中2x =. 解析:()11x x -,12【分析】此题需先根据分式的混合运算顺序和法则把22131x x x x x ---+-进行化简,然后把x 代入即可.【详解】解:原式=()13(1)(1)1x x x x x x ---++- =()(1)(1)(3)(1)(1)(1)1x x x x x x x x x x ----+-+- =22(1)(11)23x x x x x x x -+--++ ()11x x =- 当2x =时,原式12=【点睛】此题考查了分式的化简求值,分式的混合运算需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握.。

初二数学上册《分式》专题总结

初二数学上册《分式》专题总结

初二数学上册《分式》专题总结一、考点、热点回顾分式方程:含分式,并且分母中含未知数的方程——分式方程。

解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。

解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

解分式方程的步骤:(1)能化简的先化简;(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根.增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。

(验根:把整式方程的根代入最简公分母,看结果是否等于零,使最简公分母等于零的根是原方程的增根,必须舍去,但对于含有字母系数的分式方程,一般不要求检验。

)分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

列方程应用题的步骤是什么?(1)审;(2)设;(3)列;(4)解;(5)答.应用题有几种类型;基本公式是什么?基本上有四种:(1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题.(2)数字问题在数字问题中要掌握十进制数的表示法.(3)工程问题基本公式:工作量=工时×工效.(4)顺水逆水问题v顺水=v静水+v水.v逆水=v静水-v水.即时知识梳理1.分式方程:分母中含有的方程叫分式方程.2.解分式方程的一般步骤:(1)去分母,在方程的两边都乘以,约去分母,化成整式方程;(2)解这个整式方程;(3)验根,把整式方程的根代入,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.(验根的方法:将所求得的未知数的知数的值代入)3.列方程解决实际问题的步骤(1)审;找出(2)设;(3)列;(4)解;检验:是否是原方程的根;这个根在实际问题中是否有实际意义; (5)答;二、典型例题题型一:分式方程题型 【例1】解下列分式方程 (1)114112=---+x x x ; (2)x x x x -+=++4535;(3)4441=+++xx x x ; (4)61244444402222y y y y y y yy +++---++-=2例2、 解方程x x x x x x x x +++++=+++++12672356练习:(1)11115674x x x x +=+++++(2)121043323489242387161945x x x x x x x x --+--=--+--(3)【例2】(1)若关于x 的方程211333x x kx x x x ++-=-- 有增根,求增根和k 的值(2)、m 为何值时,关于x 的方程22432x m x x x -+-=+2会产生增根?【例3】1、当k 为何值时,关于x 的方程1)2)(1(23++-=++x x kx x 的解为非负数.242401111x x x x x x x x+++=-+++2、若分式方程122-=-+x ax 的解是正数,求a 的取值范围.【例4】1、已知关于x 的分式方程a x a =++112无解,试求a 的值.2、若关于的x 的分式方程111132=--+--xmxx x 无解,求m 的值【例5】列分式方程解应用题:为响应承办“绿色奥运”的号召,九年级(1)班全体师生义务植树300棵.由于参加植树的全体师生植树的积极性高涨,实际工作效率提高为原计划的1.2倍,结果提前20分钟完成任务.请求原计划每小时植树多少棵?【例6】某校办工厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合后,其平均价比原甲种原料每千克少3元,比乙种原料每千克多1元,问混合后的单价每千克是多少元?练习 A 、B 两位采购员同去一家饲料公司购买同一种饲料两次,两次饲料的价格有变化,但两位采购员的购货方式不同.其中,采购员A 每次购买1000千克,采购员B 每次用去800元,而不管购买饲料多少,问选用谁的购货方式合算?【例7】某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共8700元,乙、丙两队合做10天完成,厂家需付乙、丙两队共9500元,甲、丙两队合做5天完成全部工程的32,厂家需付甲、丙两队共5500元.⑴求甲、乙、丙各队单独完成全部工程各需多少天?⑵若工期要求不超过15天完成全部工程,问由哪个队单独完成此项工程花钱最少?请说明理由.练习:今年某大学在招生录取时,为了防止数据输入出错,2640名学生的成绩数据分别由两位教师向计算机输入一遍,然后让计算机比较两人的输入是否一致.已知教师甲的输入速度是教师乙的2倍,结果甲比乙少用2小时输完.问这两位教师每分钟各能输入多少名学生的成绩?【例8】轮船顺流、逆流各走48千米,共需5小时,如果水流速度是4千米/小时,求轮船在静水中的速度。

初二数学八上第十五章分式知识点总结复习和常考题型练习.doc

初二数学八上第十五章分式知识点总结复习和常考题型练习.doc

第十五章分式二、知识概念:A1•分式:形如一,A 、B 是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫 B做分式的分子,3叫做分式的分母. 2. 分式有意义的条件:分母不等于0.3. 分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值 不变.4. 约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5. 通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6. 最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式. 7. 分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减•用字母表示为:a .b a±b—士 —— ---C C C⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同ci c ad + cb分母分式的加减法法则进行计算•用字母表示为: -±-=b d bd ⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为n r CLC积的分母•用字母表示为:-x- = —b d bd⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字 e 士一“ a c a d ad 母表不为: 5 = —X —=b d bc be/ 、川n⑸分式的乘方法则:分子、分母分别乘方•用字母表示为:兰=二0丿b n8. 整数指数幕:列式实际问题分式类比分 数性质列方程{分氏丽目标分式基本性质|类比分数輕分式的运算去分每整式戈程H 标;-]分'式方程的解-检矍解整式方程转式方租的解Wa m xa H =a m+n 5、n是正整数)⑵(/)" = /"(加、斤是正整数)⑶(ah)n =a n h n(〃是正整数)⑷ a m a n = a tn^n(QH O, m> 刃是正整数,m> n)(5)[-| =—(〃是正整数)⑹b n(6)«-w =—(dH(), n 是正整数)a n9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).常考例题精选1. (2015 •宜昌屮考)若分式二有意义,则a的取值范围是() a+1A.a=0B. a=lC. aHTD. aHO2-(2015 •丽水中考)把分式方程丘三转化为-元-次方程时,方程两边需同乘A. xB. 2xC. x+4D. X (x+4)3.(2015 •宜宾中考)分式方程芫-令匕的解为()X2-9 x-3 x+3A. 3B. -3C.无解D. 3 或-34.(2015 •海南中考)今年我省荔枝喜获丰收,有甲、乙两块而积相同的荔枝园,分别收获荔枝8 600kg 和9 800kg,甲荔枝园比乙荔枝园平均每亩少60kg,问甲 荔枝园平均每亩收获荔枝多少kg?设甲荔枝园平均每亩收获荔枝xkg,根据题意, 可得方程()8 600 9 800 X X+60 8 600_9 800 x-60 x5-(2015 •河池中考)若分式幺有意义,则x 的取值范围是 --------------6. (2015 •白银中考)若代数式丄-1的值为零,则x 二X-1-----------------------7. (2015 •齐齐哈尔中考)若关于x 的分式方程三二壬-2有非负数解,则a 的取x-1 2x-2值范围是 ___________ .9. (2015 •连云港中考)先化简,再求值:_iv m^-Zmn+n^ 其中旷一3,旷5.m n/ mn10. (2015 -凉山州中考)某车队要把4000t 货物运到雅安地震灾区(方案定后,每天的运量不变).(1)从运输开始,每天运输的货物吨数n (单位:t )与运输时间t (单位:天)之间 有怎样的函数关系式?8 600 9 800 X X-60 8 600_9 800 x+60 x8. (2015 •呼和浩特中考)化简:(2)因地震,到灾区的道路受阻,实际每天比原计划少运20%,则推迟1天完成 任务,求原计划完成任务的天数.11. (2015 •重庆中考)先化简,再求值:(乎-岂片泊三石,其中x 是不等式 3x+7>l 的负整数解.12. (2015 •玉溪中考)某学校为鼓励学生积极参加体育锻炼,派王老师和李老师 去购买一些篮球和排球•回校后,王老师和李老师编写了一道题:同学们,请求出篮球和排球的单价各是多少元?13. (2015 •娄底屮考)为了创建全国卫生城市,某社区要清理一个卫生死角内的 垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4 800元.已知 甲、乙两车单独运完此垃圾,乙车所运趟数是甲车的2倍,>1.乙车每趟运费比甲 车少200元.(1) 求甲、乙两车单独运完此堆垃圾各需运多少趟? (2)若单独租用一台车,租用哪台车合算?李老师说:“用1000元购买的排球个数和 用1600元购买的蓝球个數相等:“篮球的单价比排球的单价多:・)元”1・(2015-黔西南州)分式七有意义,则x 的取值范围是()X 1A ・x>lB ・xHl C. x<l D ・一切实数 2 •下列各分式与?相等的是()db 2 b+2 ab a+bCQ3•下列分式的运算正确的是()a —3a -2A • a—2c B. a+2 C. ~a —3 [2_ 3 a +b —a+bB.= a+b3—a _____ 1 ^*a 2—6a+9 3 —a4 • (2015-泰安)化简(a+[二。

人教版八年级数学分式知识点及典型例题

人教版八年级数学分式知识点及典型例题

分式的知识点及经典题型1、分式的定义: 例:下列式子中,y x +15、8a 2b 、-239a 、y x b a --25、4322b a -、2-a2、m 1、65xy x 1、21、212+x 、πxy 3、y x +3、ma 1+中分式的个数为( ) (A ) 5 (B ) 6 (C ) 7 (D) 8 2、分式有,无意义,总有意义:注意:(12+x ≠0)例1:当x 时,分式51-x 有意义; 例3:当x 时,分式112-x 有意义。

例4:当x 时,分式12+x x 有意义; 例5:x ,y 满足关系 时,分式x y x y -+无意义; 3、分式的值为零:例1:当x 时,分式112+-x x 的值为0 例2:如果分式22+-a a 的值为为零,则a 的值为( ) A. 2± B.2 C. 2- D.以上全不对例3:能使分式122--x x x 的值为零的所有x 的值是 ( ) A 0=x B 1=x C 0=x 或1=x D 0=x 或1±=x例4:要使分式65922+--x x x 的值为0,则x 的值为( )A.3或-3 B.3 C.-3 D 2 例5:若01=+aa ,则a 是( ) A.正数 B.负数 C.零 D.任意有理数 4、分式的基本性质的应用:分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

例1:c b c b --=+- C B C A B A ⋅⋅=C B C A B A ÷÷=()0≠C例2:如果把分式yx xy +中的x 和y 都扩大2倍,即分式的值( ) A 、扩大2倍; B 、扩大4倍; C 、不变; D 缩小2倍例3:如果把分式yx y x +-中的x 和y 都扩大2倍,即分式的值( ) A 、扩大2倍; B 、扩大4倍; C 、不变; D 缩小2倍例4:若把分式x y x 23+的x 、y 同时缩小12倍,则分式的值( )A .扩大12倍B .缩小12倍C .不变D .缩小6倍 例5: 不改变分式的值,使分式的分子、分母中各项系数都为整数,=---05.0012.02.0x x ; 5、分式的约分及最简分式:例1:下列式子(1)y x y x y x -=--122;(2)ca b a a c a b --=--;(3)1-=--b a a b ;(4)y x y x y x y x +-=--+-中正确的是( )A 、1个 B 、2 个 C 、 3 个 D 、 4 个例2:约分: =--2)(y x y x =-+22y x ay ax ;=++-1681622x x x ;=+-6292x x 23314___________21a bc a bc -= 232()3y x = (3222⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛a b = 例3:分式3a 2a 2++,22b a b a --,)b a (12a 4-,2x 1-中,最简分式有( ) A .1个 B .2个 C .3个 D .4个6、分式的乘,除,乘方: 乘法法测:b a ·d c =bd ac . 除法法则:b a ÷d c =b a ·c d =bcad 分式的乘方:求n 个相同分式的积的运算就是分式的乘方,用式子表示就是(b a )n .分式的乘方,是把分子、分母各自乘方.用式子表示为:(ba )n =n nb a (n 为正整数) 7、分式的化简、求值12.,其中2m =-.3.然后从22x -≤≤范围内选取一个合适的整数作为x 的值代入求值.45x=26范围内选取一个合适的整数作为x 的值代入求值.7.化简,再求值:x 满足2320x x -+=.8、已经两未知量的关系求代数式的值1.已知:43=y x ,求xyx y xy y xy x y x -+÷+--2222222的值。

八年级数学 分式章节知识点总结及典型例题解析

八年级数学 分式章节知识点总结及典型例题解析

八年级数学分式章节知识点总结及典型例题解析1.分式的定义:分式是由分子、分母两个整式组成的表达式,分母不能为零。

例:下列式子中,有分式的是:$\frac{2x+1}{3xy^3a^{-b}5a^{-b}159a^{2}15xy^{11}}$、$\frac{8a^2b}{2}$、$\frac{1}{x-y}$、$\frac{4x-3y}{2x+y}$、$\frac{2}{b^2-5a^2}$、$\frac{-x-2xy^2}{x-7}$。

2.分式有意义和无意义:1)使分式有意义:令分母不等于零,解方程求解;2)使分式无意义:令分母等于零,解方程求解;注意:$(x+1)^2 \neq 0$ 有意义。

例如:分式$\frac{x-5}{2-x}$,当$x=2$时,分式无意义;当$x=5$时,分式有意义。

3.分式的值为零:使分式的值为零:令分子等于零且分母不等于零。

注意:当分子等于使分母等于零时,要舍去。

例如:分式$\frac{x^2-11}{x-2a}$,当$x=\sqrt{11}$时,分式的值为零。

4.分式的基本性质的应用:分式的分子与分母同乘或除以一个不等于零的整式,分式的值不变。

例如:$\frac{A}{B}=\frac{AC}{BC}$,$\frac{A}{B}=\frac{A/C}{B/C}$。

没有明显问题的段落,无需删除或改写。

1.如果成立,那么a的取值范围是什么?2.例2:求出33/(ab)的值。

3.例3:将分式(1-b+c)/(a(b-c))中的a和b扩大10倍后,分式的值会怎样变化?4.例4:将分式10x/(x+y)中的x和y都扩大10倍后,分式的值会怎样变化?5.例5:将分式xy/(x+y)中的x和y都扩大2倍后,分式的值会怎样变化?6.例6:将分式(x-y)/(x+y)中的x和y都扩大2倍后,分式的值会怎样变化?7.例7:将分式(x-y)/xy中的x和y都扩大2倍后,分式的值会怎样变化?8.例8:将分式2x/(x+3y)中的x和y都缩小12倍后,分式的值会怎样变化?9.例9:将分式3x^3/(2y^2)中的x和y都扩大2倍后,分式的值保持不变的是什么?10.根据分式的基本性质,分式(ABC-D)/(a-b)可变形为(a+b)(D-ABC)/(a-b)。

八年级上册分式知识点及练习题

八年级上册分式知识点及练习题

八年级上册分式知识点及练习题分式是数学中一个重要的概念,也是初中阶段比较难理解的一个知识点之一。

在八年级上册数学教学中,学生将会学习分式的相关知识和应用。

下面本文将会从分式的定义、基本运算、化简、应用以及练习题等几个方面来详细介绍和讲解。

一、分式的定义分式,又叫有理数分式,是由分子和分母组成的数学表达式,分子和分母都是有理数。

例如 1/2、3/4 等。

分式可以表示比例、速度、密度、浓度、利润率等多种实际问题,是数学学习中极其重要的一部分。

二、分式的基本运算1. 加减运算两个分式相加减,需要先通分,再相加减分子,然后再化简分式。

例如,1/4+3/5,通分得到 5/20+12/20=17/20。

化简得到 17/20。

2. 乘法运算两个分式相乘,直接将分子和分母相乘即可,并化简分式。

例如,1/4×2/3=2/12=1/6。

3. 除法运算两个分数相除,需要将除号变为乘号,再将除数倒数作为被除数的分式相乘,并化简分式。

例如, 1/4÷2/3,变形后变为 1/4×3/2=3/8。

三、分式的化简1. 分式的约分分式可以通过约分化简。

分子和分母都除以同一数值的操作称为约分。

例如, 6/12 约分为 1/2。

2. 分式的通分分式通过通分也可以实现化简。

通分就是将两个分式的分母化为相同的数,再将分子进行合并。

例如, 1/2 和 2/3,通分后变为 3/6 和 4/6,化简结果是 1/2 和2/3。

四、分式的应用分式在初中数学中的应用非常广泛,如在比例问题、百分数问题、利润等实际问题中都会涉及到分式。

1. 比例问题:分式可以表示两个量的比例关系。

例如,甲、乙两人购买书本,甲买了 1/4,乙买了 2/3,问二人共买了书的几分之几?将甲和乙的书本分数相加得到 11/12。

2. 百分数问题:百分数就是分数的一种表达方式,也是分式的特殊形式。

例如, 20%可以表示为 20/100,化简得 1/5。

初二数学八上分式和分式方程所有知识点总结和常考题型练习题

初二数学八上分式和分式方程所有知识点总结和常考题型练习题

初二数学八上分式和分式方程所有知识点总结和常考题型练习题分式知识点一、分式的定义如果A ,B 表示两个整数,并且B 中含有字母,那么式子B A 叫做分式,A 为分子,B 为分母。

二、与分式有关的条件①分式有意义:分母不为0(0B ≠) ②分式无意义:分母为0(0B =)③分式值为0:分子为0且分母不为0(⎩⎨⎧≠=00B A ) ④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<0B A ) ⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><0B A ) ⑥分式值为1:分子分母值相等(A=B )⑦分式值为-1:分子分母值互为相反数(A+B=0) 三、分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。

字母表示:C B C ••=A B A ,CB C÷÷=A B A ,其中A 、B 、C 是整式,C ≠0。

四、分式的约分定义:把分式的分子与分母的公因式约去,叫做分式的约分。

步骤:把分式分子分母因式分解,然后约去分子与分母的公因。

分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。

式子表示为: db ca d cb a ••=• 分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。

式子表示为 cc ••=•=÷b da db a dc b a ① 分式的乘方:把分子、分母分别乘方。

式子nn nb a b a =⎪⎭⎫⎝⎛② 分式的加减法则:同分母分式加减法:分母不变,把分子相加减。

式子表示为cb ac b ±=±c a异分母分式加减法:先通分,化为同分母的分式,然后再加减。

式子表示为 bdbcad d c ±=±b a 整式与分式加减法:可以把整式当作一个整数,整式前面是负号,要加括号,看作是分母为1的分式,再通分。

八年级数学上册分式重点题型及知识点

八年级数学上册分式重点题型及知识点

八年级数学上册分式重点题型及知识点单选题1、一列火车长x米,以每秒a米的速度通过一个长为b米的大桥,用代数式表示它完全通过大桥(从车头进入大桥到车尾离开大桥)所需的时间为()A.x+ba 秒B.ba秒C.xa秒D.x−ba秒答案:A解析:∵火车走过的路程为(x+b)米,火车的速度为a米/秒,∴火车过桥的时间为x+ba(秒).故选:A.2、对于实数a,b,定义一种新运算“⊗”为:a⊗b=2a−b2,这里等式右边是通常的实数运算.例如:1⊗3=2 1−32=−14,则方程x⊗(−1)=6x−1−1的解是()A.x=4B.x=5C.x=6D.x=7答案:B解析:已知方程利用题中的新定义化简,计算即可求出解.根据题中的新定义化简得:2x−1=6x−1−1,去分母得:2=6−x+1,解得:x=5,经检验x=5是分式方程的解.故选:B.小提示:此题考查了解分式方程,以及实数的运算,弄清题中的新定义是解本题的关键.3、若把分式2x x+y 中的x 和y 同时扩大为原来的3倍,则分式的值( )A .扩大到原来的3倍B .扩大到原来的6倍C .缩小为原来的13D .不变 答案:D解析:根据分式的基本性质即可求出答案.解:∵2×3x 3x+3y =2×3x3(x+y )=2xy x+y ,∴把分式2x x+y 中的x 和y 同时扩大为原来的3倍,则分式的值不变,故选:D .小提示:本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.4、已知1a −1b =12,则ab a−b 的值是( ) A .12B .−12C .2D .-2答案:D解析:先把已知的式子变形为ab =2(b −a),然后整体代入所求式子约分即得答案.解:∵1a −1b =12,∴ab =2(b −a),∴ab a−b =2(b−a)a−b =−2.故选:D.小提示:本题考查了分式的通分与约分,属于常考题目,掌握解答的方法是关键.5、(−b2a)2n(n为正整数)的值是()A.b2+2na2n B.b4na2nC.−b2n+1a2nD.−b4na2n答案:B解析:根据分式的乘方计算法则解答.(−b2a )2n=b4na2n.故选:B.小提示:此题考查分式的乘方计算法则:等于分子、分母分别乘方,熟记法则是解题的关键.6、如果a2+2a−1=0,那么代数式(a−4a )⋅a2a−2的值是()A.−3B.−1C.1D.3答案:C解析:先将等式变形可得a2+2a=1,然后根据分式各个运算法则化简,最后利用整体代入法求值即可.解:∵a2+2a−1=0∴a2+2a=1(a−4a)⋅a2a−2=a2−4a ⋅a2 a−2=(a−2)(a+2)a ⋅a2 a−2=a(a+2)=a2+2a=1故选C.小提示:此题考查的是分式的化简求值题,掌握分式的运算法则是解决此题的关键.7、我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.“其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每件椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.3(x−1)=6210x B.6210x−1=3C.3x−1=6210xD.6210x=3答案:A解析:根据“这批椽的价钱为6210文”、“每件椽的运费为3文,剩下的椽的运费恰好等于一株椽的价钱”列出方程解答.解:由题意得:3(x−1)=6210x,故选A.小提示:本题考查了分式方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,准确的找到等量关系并用方程表示出来是解题的关键.8、若数a与其倒数相等,则a2−a−6a−3÷a+3a2+a−6的值是()A.−3B.−2C.−1D.0答案:A解析:先将分子分母中能分解因式的分别分解因式,再根据分式的除法运算法则化简原式,最后根据已知条件可得a =±1,进而代入计算即可求得答案.解:原式=(a−3)(a+2)a−3⋅(a+3)(a−2)a+3=(a+2)(a−2)=a2−4,∵数a与其倒数相等,∴a=±1,∴原式=(±1)2−4=1−4=−3,故选:A.小提示:本题考查了分式的除法运算以及倒数的意义,熟练掌握分式的运算法则是解决本题的关键.填空题9、若关于x的分式方程3xx−2−1=m+3x−2有增根,则m的值为_____.答案:3 解析:把分式方程化为整式方程,进而把可能的增根代入,可得m的值.去分母得3x-(x-2)=m+3,当增根为x=2时,6=m+3∴m=3.故答案为3.小提示:考查分式方程的增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.10、方程3x−1+1=0的解为__________.答案:x=−2解析:先通分,再根据分式有意义的条件即分母不为0,分式为0即分式的分子为0解题即可.解:3x−1+1=03 x−1+x−1x−1=0x+2x−1=0{x+2=0x−1≠0∴x=−2所以答案是:x=−2.小提示:本题考查解分式方程,涉及分式有意义的条件、分式的值为0等知识,是重要考点,难度较易,掌握相关知识是解题关键.11、计算:(13)−1−(3.14)0=_____.答案:2解析: 先根据负整数指数幂及零指数幂的意义分别化简,再进行减法运算即可.原式=3-1=2,所以答案是:2.小提示:本题考查负整数指数幂和零指数幂的意义,理解定义是解题关键.12、某校学生捐款支援地震灾区,第一次捐款的总额为6600元,第二次捐款的总额为7260元,第二次捐款的总人数比第一次多30人,而且两次人均捐款额恰好相等,则第一次捐款的总人数为________人.答案:300解析:先设第一次的捐款人数是x 人,根据两次人均捐款额恰好相等列出方程,求出x 的值,再进行检验即可求出答案.解:设第一次的捐款人数是x 人,根据题意得:6600x =7260x+30,解得:x =300,经检验x =300是原方程的解,故答案为300.小提示:此题考查了分式方程的应用,解题的关键是读懂题意,找出之间的等量关系,列出方程,解分式方程时要注意检验.13、计算:(15)-1−√4=_______. 答案:3解析:先计算负整数指数幂和算术平方根,再计算加减即可求解.原式=5﹣2=3,所以答案是:3.小提示:此题考查了实数的运算,负整数指数幂,熟练掌握运算法则是解本题的关键.解答题14、先化简,再求值:(x 2−2x+1x 2−x +x 2−4x 2+2x )÷1x ,且x 为满足﹣3<x <2的整数.答案:-5解析: 根据分式的运算法则即可求出答案.原式=[(x−1)2x(x−1)+(x−2)(x+2)x(x+2)]÷1x =(x−1x +x−2x )•x=x ﹣1+x ﹣2=2x ﹣3由于x≠0且x≠1且x≠﹣2,所以x=﹣1,原式=﹣2﹣3=﹣5小提示:本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.15、(1)当x 为何整数时,分式42x+1的值为正整数?(2)已知函数y =2x−3x−2自变量取值范围为整数,求y 的最大、最小值.答案:(1)x =0;(2)y 最大为3,最小为1解析:(1)根据题意2x +1=1或2或4时,分式42x+1的值为正整数,再取x 为整数时即可;(2)把函数整理成y =2+1x−2的形式,要使函数y 的值为整数,则x −2=±1,据此即可求解.(1)要使分式42x+1的值为正整数,则2x +1=1或2或4,解得:x =0或12或32,∵x 为整数,∴x =0,即x =0时,分式42x+1的值为正整数;(2)y =2x−3x−2=2(x−2)+1x−2=2+1x−2,且自变量取值范围为x −2≠0, 要使函数y 的值为整数,则x −2=±1,∴当x =3时,函数y 的最大值为3,当x =1时,函数y 的最小值为1.小提示:本题考查了分式有意义的条件,求分式的值,函数自变量的取值范围问题等知识,解答本题的关键是明确题意,找出所求问题需要的条件.。

八年级初二数学-【分式的复习知识点、】练习和答案-全面详细易懂

八年级初二数学-【分式的复习知识点、】练习和答案-全面详细易懂

试问:在不耽误工期的情况下,你觉得哪一种施工方案最节省工程款?请说明理由。
8、一个分数的分母比分子大 数的倒数,求原分数。
7,如果把此分数的分子加
17,分母减 4,所得新分数是原分
9、今年某市遇到百年一遇的大旱,全市人民齐心协力积极抗旱。某校师生也行动起来捐款 打井抗旱, 已知第一天捐款 4800 元,第二天捐款 6000 元, 第二天捐款人数比第一天捐款人 数多 50 人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?
400 千
克按定价的七折售完,那么超市在这两次苹果销售中共盈利多少元?
11.( 2009 年孝感)关于 x 的方程
的解是正数,则 a 的取值范围是
A .a>- 1 C. a<- 1
B. a>- 1 且 a≠ 0 D. a<- 1 且 a≠- 2
(2)
(3)
随堂练习
( 4) -8xy
计算 (1) (3)
(5)
(6)
16. 2.1 分式的乘除 ( 二 )
(2) (4)
16. 2.1 分式的乘除 ( 三 )
1.判断下列各式是否成立,并改正 .
(1)
=
(2)
=
(3) 2.计算
(1)
= (2)
(4)
=
(3)
( 4) (6)
5) 16. 2. 2 分式的加减(一)
1 个,结果比李刚少用半小时
7、某一项工程在招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队款
1.5
万元,乙工程队款 1.1 万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方
案:
方案一:甲队单独完成这项工程刚好如期完成;
方案二:乙队单独完成这项工程要比规定日期多用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式知识点一、分式的定义如果A ,B 表示两个整数,并且B 中含有字母,那么式子B A 叫做分式,A 为分子,B 为分母。

二、与分式有关的条件①分式有意义:分母不为0(0B ≠)②分式无意义:分母为0(0B =)③分式值为0:分子为0且分母不为0(⎩⎨⎧≠=00B A )④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A ) ⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A )⑥分式值为1:分子分母值相等(A=B )⑦分式值为-1:分子分母值互为相反数(A+B=0)三、分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。

字母表示:C B C ••=A B A ,CB C ÷÷=A B A ,其中A 、B 、C 是整式,C ≠0。

四、分式的约分定义:把分式的分子与分母的公因式约去,叫做分式的约分。

步骤:把分式分子分母因式分解,然后约去分子与分母的公因。

注意:①分式的分子与分母为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。

②分子分母若为多项式,约分时先对分子分母进行因式分解,再约分。

最简分式:一个分式的分子与分母没有公因式时,叫做最简分式。

五、分式的通分定义:把几个异分母的分式化成同分母分式,叫做分式的通分。

步骤:分式的通分最主要的步骤是最简公分母的确定。

最简公分母的定义:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。

确定最简公分母的一般步骤:Ⅰ 取各分母系数的最小公倍数;Ⅱ 单独出现的字母(或含有字母的式子)的幂的因式连同它的指数作为一个因式;Ⅲ 相同字母(或含有字母的式子)的幂的因式取指数最大的。

Ⅳ 保证凡出现的字母(或含有字母的式子)为底的幂的因式都要取。

注意:分式的分母为多项式时,一般应先因式分解。

六、分式的四则运算与乘方① 分式的乘除法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。

式子表示为:db c a d c b a ••=• 分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。

式子表示为cc ••=•=÷bd a d b a d c b a ② 分式的乘方:把分子、分母分别乘方。

式子n n nb a b a =⎪⎭⎫ ⎝⎛ ③ 分式的加减法则:同分母分式加减法:分母不变,把分子相加减。

式子表示为 cb ac b ±=±c a 异分母分式加减法:先通分,化为同分母的分式,然后再加减。

式子表示为bdbc ad d c ±=±b a 整式与分式加减法:可以把整式当作一个整数,整式前面是负号,要加括号,看作是分母为1的分式,再通分。

④ 分式的加、减、乘、除、乘方的混合运算的运算顺序先乘方、再乘除、后加减,同级运算中,谁在前先算谁,有括号的先算括号里面的,也要注意灵活,提高解题质量。

注意:加减后得出的结果一定要化成最简分式(或整式)。

七、整数指数幂(1)同底数的幂的乘法:m n m n a a a +•=;(2)幂的乘方:()m n mn a a =;(3)积的乘方:()n n n ab a b =;(4)同底数的幂的除法:m n m n a a a -÷=( a ≠0);(5)分式(商)的乘方:()nn n a a b b=;(b ≠0) (6)n a1=-n a ;0≠a ) (7)10=a ;(0≠a ) (任何不等于零的数的零次幂都等于1)八、科学记数法把一个数表示成n a 10⨯的形式(其中101<≤a ,n 是整数)的记数方法叫做科学记数法。

用科学记数法表示绝对值大于10的n 位整数时,其中10的指数是1-n 。

用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点前面的一个0)。

九、分式方程含分式,并且分母中含未知数的方程——分式方程。

解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。

解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

解分式方程的步骤 :(分式方程必须检验)⑴去分母,把方程两边同乘以各分母的最简公分母。

(产生增根的过程)⑵解整式方程,得到整式方程的解。

⑶检验,把所得的整式方程的解代入最简公分母中:如果最简公分母为0,则原方程无解,这个未知数的值是原方程的增根;如果最简公分母不为0,则是原方程的解。

产生增根的条件是:①是得到的整式方程的解;②代入最简公分母后值为0。

分式练习一、选择题1. 若关于x 的方程+=2的解为正数,则m 的取值范围是( ) A . m <6 B . m >6 C . m <6且m≠0D . m >6且m≠8 2. 若> > ,则的值为( )A.正数B.负数C.零D.无法确定3.方程xx x -=++-1315112的根是( ) A.x =1 B.x =-1 C.x =83 D.x =2 4.,04412=+-x x 那么x 2的值是( ) A.2 B.1 C.-2 D.-15.下列分式方程去分母后所得结果正确的是( ) A.11211-++=-x x x 去分母得,1)2)(1(1-+-=+x x x ; B.125552=-+-xx x ,去分母得,525-=+x x ; C.242222-=-+-+-x x x x x x ,去分母得,)2(2)2(2+=+--x x x x ; D.,1132-=+x x 去分母得,23)1(+=-x x ; 6. 赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半书时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中,正确的是( ) A.21140140-+x x =14 B.21280280++x x =14 C.21140140++x x =14 D.211010++x x =1 7.若关于x 的方程0111=----x x x m ,有增根,则m 的值是( ) A.3 B.2 C.1 D.-18.若方程,)4)(3(1243+-+=++-x x x x B x A 那么A 、B 的值为( ) A.2,1 B.1,2 C.1,1 D.-1,-19.如果,0,1≠≠=b ba x 那么=+-b a b a ( ) A.1-x 1 B.11+-x x C.x x 1- D.11+-x x10.使分式442-x 与6526322+++-+x x x x 的值相等的x 等于( ) A.-4 B.-3 C.1 D.10二、填空题11. 满足方程:2211-=-x x 的x 的值是________. 12. 当x =________时,分式x x ++51的值等于21. 13.分式方程0222=--x x x 的增根是 . 14. 一汽车从甲地开往乙地,每小时行驶v 1千米,t 小时可到达,如果每小时多行驶v 2千米,那么可提前到达________小时.15. 农机厂职工到距工厂15千米的某地检修农机,一部分人骑自行车先走40分钟后,其余人乘汽车出发,结果他们同时到达,已知汽车速度为自行车速度的3倍,若设自行车的速度为x 千米/时,则所列方程为 .16.已知,54=y x 则=-+2222yx y x . 17.=a 时,关于x 的方程53221+-=-+a a x x 的解为零. 18.飞机从A 到B 的速度是,1v ,返回的速度是2v ,往返一次的平均速度是 .19.当=m 时,关于x 的方程313292-=++-x x x m 有增根. 20. 某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路x m ,则根据题意可得方程 .21、一种病菌的直径为0.0000036m ,用科学记数法表示为三、解答题22. .解下列方程 (1)x x x --=+-34231 (2) 2123442+-=-++-x x x x x (3)21124x x x -=--.23.先化简,再求值:)11(22222a b b a b ab a -÷-+-,其中15+=a ,15-=b .24. 先化简,再求值:2112()111x x x x +-÷-+-,其中x 满足260x -= 25. 有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?26.小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室内发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元钱,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多53倍,问她第一次在供销大厦买了几瓶酸奶?27、某市今年1月1日起调整居民用水价格,每立方米水费上涨25%,小明家去年12月份的水费是18元,而今年1月份的水费是36元,已知小明家今年1月份的用水量比去年12月份的用水量多6m 3.求该市今年居民用水的价格.28. 宁波火车站北广场将于2015年底投入使用,计划在广场内种植A 、B 两种花木共6600棵,若A 花木数量是B 花木数量的2倍少600棵.(1)A 、B 两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A 花木60棵或B 花木40棵,应分别安排多少人种植A 花木和B 花木,才能确保同时完成各自的任务?。

相关文档
最新文档