SPSS操作实例-重复测量

合集下载

学会使用SPSS进行相关分析和重复测量ANOVA

学会使用SPSS进行相关分析和重复测量ANOVA

学会使用SPSS进行相关分析和重复测量ANOVA相关分析和重复测量ANOVA是统计学中常用的分析方法之一。

本文将介绍如何使用SPSS软件进行相关分析和重复测量ANOVA的步骤和注意事项。

第一章:相关分析相关分析是用来研究两个或多个变量之间的关系的统计方法。

在相关分析中,我们可以计算变量之间的相关系数,来了解它们之间的相关性强度和方向。

1.1 数据准备在进行相关分析之前,首先需要确保数据的准备工作已经完成。

通过SPSS软件,我们可以导入数据集,并对数据进行预处理,包括数据的清洗和转换。

1.2 相关分析的基本步骤进行相关分析的基本步骤如下:1)打开SPSS软件并导入数据集;2)选择“分析”菜单中的“相关”选项;3)将要分析的变量移入“变量”框中;4)选择要计算的相关系数类型;5)点击“确定”按钮,进行数据处理和分析。

1.3 相关分析的结果解读在相关分析的结果中,我们关注的主要是相关系数的值和显著性水平。

相关系数的取值范围为-1到1,其中-1表示完全负相关,1表示完全正相关,0表示无相关性。

显著性水平则表明了相关系数的显著程度,一般取0.05作为显著性水平的界限。

第二章:重复测量ANOVA重复测量ANOVA是一种用于比较两个或更多相关样本组之间差异的统计方法。

在重复测量ANOVA中,我们可以通过比较不同因素或处理之间的差异来判断它们是否对研究对象产生了显著影响。

2.1 数据准备在进行重复测量ANOVA之前,同样需要进行数据的准备工作。

将数据导入SPSS软件,并进行必要的数据清洗和转换操作。

2.2 重复测量ANOVA的基本步骤进行重复测量ANOVA的基本步骤如下:1)打开SPSS软件并导入数据集;2)选择“分析”菜单中的“一元方差分析”选项;3)将要分析的变量移入“因子”框中;4)选择要比较的处理或因素;5)点击“确定”按钮,进行数据处理和分析。

2.3 重复测量ANOVA的结果解读在重复测量ANOVA的结果中,我们关注的主要是F值和显著性水平。

双因素重复测量方差分析spss

双因素重复测量方差分析spss

双因素重复测量方差分析spss
一、双因素重复测量方差分析(two-way repeated measures ANOVA)
双因素重复测量方差分析(Two-Way repeated measures ANOVA)可以用来检测一个
变量的变化在两个或多个独立变量的作用下是否发生变化。

在双因素重复测量方差分析中,变量1是因素1,因素1有若干水平,变量2是因素2,因素2也有若干水平。

双因素重
复测量方差分析可以检验两个因素是否共同影响变量1的变化,或者检测某个因素是否单
独地影响变量1的变化。

1、打开spss统计软件,点击文件、数据,从窗口中打开需要分析数据文件;
2、点击“分析”菜单,然后从子菜单中点击“多维分析”,再单击“双因素重复测
量方差分析”;
3、在弹出的窗口中,在“变量”框中选择需要分析的变量;
4、在“因素”框中,选择双因素,比如实验组和对照组;
5、点击“定义”按钮,设定因素的水平,比如实验组的水平为A,对照组的水平为B;
6、在“多重比较”框中,勾选“重复测量”框,并且可以设定多重比较的参数;
7、选择“显著性水平”框,设定检验的显著性,通常设定为0.05;
8、单击“OK”按钮,查看分析结果,该分析结果将显示两个因素及其交互作用对变
量1的影响情况。

实验:单因素重复测量SPSS操作

实验:单因素重复测量SPSS操作

华东师范大学
言语听觉(语言)研究生课程班实验报告
姓名:学号:实验时间:
班级:成绩:指导老师:_________
[实验名称] 单因素重复测量实验设计的SPSS操作
[实验目的]
1.复习巩固单因素重复测量实验设计的应用。

2.掌握单因素重复测量实验设计的SPSS操作。

3.正确分析单因素重复测量实验设计的结果。

[实验内容]
儿童名词理解能力测验分三组进行。

分别是指人名词、指物名词和抽象名词。

17名被试的成绩见下表。

要得出不同测验的成绩平均值差异是否显著应采用何种实验设计?
具体要求:
(1)将数据处理为相应的数据结构,输入到SPSS中,并定义好变量。

数据文件以.sav格式保存,命名为“单因素重复测量实验数据”
(2)对数据进行方差分析,
a)得出其描述性统计(均值、标准差、被试数),
b)说明方差是否齐性;
c)得出方差分析的结果;
d)如果差异显著,得出多重比较结果;
e)生成均值图。

f) f.结合方差分析结果比较平均值,将三种测验的平均成绩从高到低进行
排序。

所有操作步骤填在[实验步骤]里;将结果图表复制到[实验结果]里,然后说明。

案例分析两因素重复测量方差分析及SPSS操作

案例分析两因素重复测量方差分析及SPSS操作

案例分析两因素重复测量方差分析及SPSS操作一.案例:(案例来源:中华护理杂志2016年4期)评价子午流注择时五音疗法在慢性心力衰竭(CHF)焦虑患者中的应用效果。

方法:将70例CHF焦虑患者随机分为实验组和对照组,各35例,实验组实施子午流注择时五行音乐疗法,对照组实施五行音乐疗法。

两组在干预前、干预后4周、8周和12周采用匹兹堡睡眠质量指数量表(PSQI)评价睡眠质量。

补充:PSQI量表包括主观睡眠质量、入睡时间、睡眠效率、睡眠时间、睡眠障碍、催眠药物、日间功能七个维度,得分越高,睡眠质量越差。

二.解析:该问题涉及两组研究对象,并且对每组对象进行了多次测量。

对于两组干预前的基线(T0)比较可以采用独立样本的t检验,整体组间、组内比较采用重复测量方差分析,因为共有四次测量时间,所以在进行重复测量方差时,干预前后组内需要进一步做两两比较,采用多重比较的方法进行分析。

三.SPSS操作1.操作步骤1.1先对干预前的基线进行差异性检验:将T0放入检验变量,分组放入分组变量,点击定义组,设置指定的组值。

1.2基线差异检验结果:由结果得:F=1.094,P=0.299>0.05,不能拒绝原假设,认为两组数据的方差是相等的。

所以t检验应该看第一行,t=0.306,P=0.760>0.05,因此不能拒绝原假设,认为两组数据的基线得分是不存在差异的。

1.3重复测量方差将主体内因子名改为时间,级别数框中填4;点击添加,然后点击定义。

将T0、T4、T8、T12放入主体内变量,分组放入主体间因子。

如下图所示:点击选项,出现如下对话框,显示栏中选择描述统计和齐性检验。

回到重复测量窗口,点击粘贴,出现如下语法编辑器,在“/METHOD=SSTYPE(3)”的下一行中插入简单效应语句:/EMMEANS=TABLES(时间*分组)COMPARE(时间)ADJ(SIDAK) /EMMEANS=TABLES(时间*分组)COMPARE(分组)ADJ(SIDAK) 点击红线所指处的箭头,确定。

重复测量资料的广义估计方程分析及SPSS实现

重复测量资料的广义估计方程分析及SPSS实现

重复测量资料的广义估计方程分析及SPSS实现一、本文概述在统计学中,重复测量资料是一种常见的数据类型,通常涉及到同一观察对象在不同时间点或不同条件下的多次测量。

这类数据在医学、社会科学、心理学等领域的研究中尤为常见,例如追踪病人的病情发展、评估教育干预的效果、研究消费者的购买行为等。

为了有效分析这类数据,研究者需要采用适当的统计方法,以控制潜在的干扰因素,揭示数据间的内在关联。

广义估计方程(Generalized Estimating Equations,GEE)是一种适用于分析重复测量资料的统计方法。

它通过指定一个工作相关矩阵,来纠正观察对象间的相关性,并允许研究者根据数据的特性选择适当的相关结构。

GEE的优点在于其稳健性和灵活性,即使在数据分布不符合正态分布或观测次数不等的情况下,也能提供可靠的参数估计。

本文旨在介绍广义估计方程的基本原理及其在SPSS软件中的实现方法。

我们将首先概述广义估计方程的基本概念和数学模型,然后详细阐述如何在SPSS中运用GEE分析重复测量资料。

通过实例演示,读者将能够掌握从数据准备到结果解读的完整流程,从而提高对重复测量资料的分析能力。

本文还将讨论GEE分析中的一些常见问题及注意事项,以帮助研究者在实践中避免常见错误,确保分析结果的准确性和可靠性。

二、广义估计方程(GEE)的基本原理广义估计方程(GEE)是一种用于分析重复测量数据的方法,它扩展了传统的线性回归模型,允许处理复杂的数据结构,包括时间序列、聚类数据、纵向数据等。

GEE的核心在于其灵活性,它不需要指定数据的具体分布形式,只需要指定工作相关性结构,因此在实际应用中具有广泛的适用性。

构建工作相关性结构:在GEE中,研究者需要指定一个工作相关性矩阵,用于描述观测值之间的相关性。

这个矩阵可以根据数据的实际情况进行选择和构建,例如,如果数据是时间序列,可以选择一阶自回归(AR(1))模型;如果数据是聚类数据,可以选择交换相关(Exchangeable)模型等。

高等教育:方差分析(重复测量资料spss实现)

高等教育:方差分析(重复测量资料spss实现)

方差分析(2)重复测量设计A 方法:重复测量的方差分析A 目的:推断处理、时间、处理X 时间对 试验对象的试验指标的作用对象,共ng 个,g^1A 时间因素分m 个水平(m 个时点),每个对象有m 个时点上的测量值,共gnm 个,mM2A 特例:g=1,单组重复测量资料m=2,前后重复测量资料A 处理因素分gn 个试验实验操作方法A重复测量数据的两因素多水平设计,两因素包括一个干预因素(A因素)和测量时间因素(B 因素);厂多水平指干预(A因素)有g(A2)个水平,测量时间(B因素)有m (>2)个水平(测量时间点)。

A随机化分组采用完全随机设计的分组方式,将歹个观察对象随机分配到g个处理组中o>数据收集在加个时间点上进行, 每一个观察对象在完全相同的时间点上重复进行□次测量。

表12-2数据的统计学分析问题A计算前后测量数据的差值,上述数据即可转化为完全随机设计(两组)的资料形式。

A—般情况下,针对前后测量数据差值的成组亡检验方法是可取的,但应注意其应用条件,即方差齐性的问题。

例题:P271•将手术要求基本相同的15名患者随即分3 组,分别采用A、B、C三种麻醉诱导方法。

在T°、T I、T2、T3、T4五个时像测量患者收缩压数据如下:S 12-16不同麻醉诱导时相患者的收缩压(mmHg)对象间巧1 •建立假设1 > HO:j i・HI:[• •a=0.05 •卜选择统计方法:= 订•正态性处理因素的各处理水平的样本个体之间是相互i 1独立的随机样本,其总体均数服从正态分布1 3・方差齐性相互比较的各处理水平的总体方差相等,即i I具有方差齐同;I1 3.各时间点组成的协方差阵具有球形性特征。

:I Ii I ! *计算统计量(由计算机完成)! :•结论:按照a=0.05/0.01的检验水准,拒绝/尚不能拒绝' 〕H0,……差异有/无统计学意义(统计学结论),| i I重复测量设计资料的统计分析方法A更于重复测量数据(临床上常称纵向监测数据), 去质上每个受试对象的观察结果是多次重复测量簧果的连线,统计分析的目的是比较这些连线变化趋势的特征。

SPSS学习笔记之重复测量的多因素方差分析报告

SPSS学习笔记之重复测量的多因素方差分析报告

SPSS学习笔记之重复测量的多因素方差分析报告学习笔记之重复测量的多因素方差分析报告SPSS(Statistical Package for the Social Sciences,社会科学统计软件包)是一款功能强大的数据分析工具,广泛应用于各个领域的研究。

在SPSS中,重复测量的多因素方差分析被视为一项重要的统计方法,用于研究相同参与者在不同条件下的测试结果。

本篇学习笔记以重复测量的多因素方差分析为主题,将介绍如何使用SPSS进行该项分析,并给出详细的分析报告。

1. 研究目的和问题描述2. 数据采集和处理3. 研究设计和假设4. 数据分析5. 结果解释与讨论1. 研究目的和问题描述本次研究的目的是考察不同刺激条件对参与者注意力的影响。

具体而言,我们想了解参与者在三种刺激条件下的注意力水平是否存在显著差异。

2. 数据采集和处理我们招募了40位参与者,并随机将其分为三组。

每组参与者分别接受三次测试,每次测试采用不同的刺激条件。

我们记录了每位参与者的测试结果,并进行数据整理和清洗。

3. 研究设计和假设本研究采用的是重复测量的多因素方差分析设计。

考察因素为刺激条件,对应的水平为A、B和C。

我们的研究假设如下:- H0(零假设):不同刺激条件下的注意力水平无显著差异。

- H1(备择假设):不同刺激条件下的注意力水平存在显著差异。

4. 数据分析为了进行重复测量的多因素方差分析,我们打开SPSS软件,并导入数据集。

接下来,我们按照以下步骤进行分析:步骤一:打开SPSS软件,点击“打开”按钮,导入数据集。

步骤二:选择“分析”菜单,然后选择“一般线性模型”和“重复测量”。

步骤三:将待分析的因子变量(刺激条件)拖动到“因子”框中,并设置不同刺激条件的水平。

步骤四:选择适当的因变量(注意力水平),并将其拖动到“依赖变量”框中。

步骤五:点击“选项”按钮,可以对分析进行更多设置,比如是否计算偏斜度和峰度等。

步骤六:点击“确定”按钮,SPSS将自动进行重复测量的多因素方差分析,并生成分析结果。

spss16.0重复测量数据分析步骤(原创)

spss16.0重复测量数据分析步骤(原创)

应用SPSS16.0进行重复测量数据分析原始数据:Spss变量设置:导入数据:1.通过球形检验(Mauchly’s Test of Sphericity) 的结果判断重复测量数据之间是否存在相关性:Analyze→General Lineal Model→Repeated MeasuresWithin- subject factor name 框: 改为t “定义重复测量的变量名为t”Number of levels 框: 键入4: add “重复测量的次数为4 次”DefineWithin- subject variables 框: t1-t4 “t1-t4 代表4次测量结果”Between subject factor 框: groupModel:选中Custom “自定义模型”Within- subject Model 框: t “分析4次重复测量间有无趋 势”Between subject Model 框: group “只分析主效应” ContinueOK输出结果:Mauchly's Test of Sphericity bMeasure:MEASURE_1Epsilon a WithinSubjects Effect Mauchly's WApprox.Chi-Square df Sig.Greenhouse-Geisser Huynh-Feldt Lower-boundt .386 14.977 5.011.611.761 .333如果该检验P> 0. 05, 说明重复测量数据之间实际上不存在相关性, 数据符合Huynh-Feldt条件, 可按单因素方差分析方法来处理; 如果P < 0. 05, 说明重复测量数据之间存在相关性, 不可按单因素方差分析方法处理。

实际应用中的重复测量设计资料以后者多见, 应使用重复测量的方差分析模型。

球形检验的结果P< 0. 05, 说明4次重复测量的数据间存在高度的相关性, 宜用多元方差分析进行检验.Tests of Within-Subjects EffectsMeasure:MEASURE_1SourceType III Sum ofSquares df Mean Square F Sig. Sphericity Assumed 15607.63635202.54565.910 .000 Greenhouse-Geisser 15607.636 1.8328517.62265.910 .000 Huynh-Feldt 15607.636 2.2846832.46865.910 .000tLower-bound 15607.636 1.00015607.63665.910 .000Sphericity Assumed 3408.3116568.0527.197 .000 t * zbGreenhouse-Geisser 3408.311 3.665930.0167.197 .000Huynh-Feldt 3408.311 4.569746.0197.197 .000 Lower-bound 3408.311 2.0001704.1557.197 .005 Sphericity Assumed 4025.6185178.934Greenhouse-Geisser 4025.61831.151129.230Huynh-Feldt 4025.61838.834103.663Error(t)Lower-bound 4025.61817.000236.801此处t 和t* group 的P 值均< 0. 01, 时间因素以及时间因素和分组的交互作用有统计学意义, 说明测量指标有随时间变化的趋势并且时间因素的作用随着分组的不同而不同。

重复测量设计的方差分析spss例析

重复测量设计的方差分析spss例析

重复测量的方差分析重复测量方差分析的基本概述:被试对象在接受不同处理后,对同一因变量(测试指标)在不同时点上进行多次测量所得的资料,称为重复测量资料。

这里的重复并不是单一的反复,而是在多个时点上的测量。

这种资料的特点是其定量观测指标的数值会随着时间的变化而发生动态变化,并且各时点上的数值是不满足相互独立的假设的。

因此不能用方差分析的方法直接进行处理。

如果在期初、期中、期末分别测量学生的电脑能力,则这是单变量重复测量问题。

如果分别在三个时期测量学生的电脑和数学成绩,则是多变量重复测量的问题。

重复测量资料的方差分析需满足的前提条件:1、一般方差分析的正态性和方差齐性检验。

2、协方差矩阵的球形对称性或者复合对称性;需要进行球形检验,检验对称性。

原假设:协方差满足球形对称。

当拒绝球形假设时,结果中还有其他表可以检验,见例题中的分析。

被试对象处理测量时间1 2 3 4…………m1 1 ………………………………………….2 1 ………………………………………….. ………………………………………………………………………………………………………….N1 1 …………………………………………..N1+1 2 …………………………………………. …………………………………………………………………………………………………………N2 2 …………………………………………………….例:为研究新减肥药和现有减肥药的效果是否不同,以及肥胖者在服药后不同时间体重的变化情况,将40名体重指标BMIF27的肥胖者随机分为两组,一组用新药,另一组用现有减肥药;坚持服药6个月,期间禁止使用任何影响体重的药物,而且被试对象行为、饮食、运动与服药前平衡期保持一致;分别测得0周、8周、16周、24周的体重资料;试对其进行方差分析。

Spss数据格式片段如下:1、正态性和方差齐性检验对4个不同时点上的体重变量进行检验使用科莫格洛夫—斯米诺夫检验只要16周第二种处理不显著,其他都显著不为0.可认为正态性假设基本成立。

两因素实验设计spss操作技巧

两因素实验设计spss操作技巧

两因素重复测量实验设计SPSS操作
第四步:按定义键(Define),进入主对话框,将a1b1,a1b2,a1b3,a2b1, a2b2和a2b3分别键入被试内变量(Winthin-Subjects Variables)方框中
两因素重复测量实验设计SPSS操作
第五步:点击选项Options,进行如下操作:
两因素完全随机实验设计SPSS操作
输出结果
(3)被试间效应检验方差分析表
标记类型主效应显著,F=27.871,P<0.01 句长类型主效应显著,F=8.177,P<0.01 两因素交互效应显著,F(a*b)=5.661,P<0.05。
两因素完全随机实验设计SPSS操作
输出结果
(4)多重比较结果
两因素重复测量实验设计SPSS操作
简单效应检验
GLM 无标记短句 无标记中句 无标记长句 有标记短句 有标记中句 有标记长句 /WSFACTOR=标记类型 2 Polynomial 句长类型 3 Polynomial /METHOD=SSTYPE(3) /PLOT=PROFILE(标记类型*句长类型) /EMMEANS=TABLES(标记类型*句长类型) COMPARE(标记类型) ADJ(LSD) /EMMEANS=TABLES(标记类型*句长类型) COMPARE(句长类型) ADJ(LSD) /PRINT=DESCRIPTIVE /CRITERIA=ALPHA(.05) /WSDESIGN=标记类型 句长类型 标记类型*句长类型.
输出结果
(5)均值显示图
三条直线都不平行,有交叉的趋势。因此,大致可以判断两个因素之 间存在交互效应。
两因素重复测量实验设计SPSS操作
简单效应检验

重复测量方差分析 spss课件 教学课件

重复测量方差分析 spss课件 教学课件

受试者
服 药 后 测 定 时 间 ( j)
k
1(1h)
2(2h)
3(4h)
4(6h)
5(8h)
1
9.73
54.61
55.91
46.81
47.56
2
5.50
50.87
79.90
62.37
55.03
3
7.96
23.43
64.10
56.00
45.15
4
2.37
18.65
73.10
76.05
60.80
5
2.37
对象内 组 内 (时 间 )
剂型 时间
例 10-2 的 一 个 组 间 因 素 和 一 个 组 内 因 素 的 方 差 分 析 表
离均差平方和
df
均方 F
Pr>F
调整概率 G-G 法 H-F 法
11799.36
15
2635.81
1 2635.81 4.03 0.0645
9163.55
14 654.54
6
78
72
80
72
7
87
75
106
74
8
82
68
76
59
9
90
74
82
80
按药物
(j)
284
71.00
278
69.50
302
75.50
342
85.50
285
71.25
326
81.50
测 量 值 和 Tj
平 均 值 Yj 平 方 和 S j
718.00
606.00

两因素重复测量方差分析,史上最详细SPSS教程!

两因素重复测量方差分析,史上最详细SPSS教程!

两因素重复测量方差分析,史上最详细SPSS教程!一、问题与数据研究者想知道短期(2周)高强度锻炼是否会减少C反应蛋白(C-Reactive Protein, CRP)的浓度。

研究者招募了12名研究对象,并让研究对象参与两组试验:对照试验和干预试验。

在对照试验中,研究对象照常进行日常活动;在干预试验中,研究对象每天进行45分钟的高强度锻炼,每组试验持续2周,两组试验中间间隔足够的时间。

CRP的浓度在每组试验中共测量了3次:试验开始时的CRP 浓度、试验中的CRP浓度(1周)和试验结束时的CRP浓度(2周)。

这三个时间点代表了受试者内因素“时间”的三个水平,因变量是CRP的浓度,单位是mg/L。

con_1、con_2和con_3分别代表对照试验开始时、对照试验中和对照试验结束时研究对象的CRP浓度,int_1、int_2和int_3分别代表干预试验开始时、干预试验中和结束时研究对象的CRP浓度。

部分数据如下:二、对问题的分析使用两因素重复测量方差分析(Two-way Repeated Measures Anova)进行分析时,需要考虑5个假设。

对研究设计的假设:假设1:因变量唯一,且为连续变量;假设2:有两个受试者内因素(Within-Subject Factor),每个受试者内因素有2个或以上的水平。

注:在重复测量的方差分析模型中,对同一个体相同变量的不同次观测结果被视为一组,用于区分重复测量次数的变量被称为受试者内因素,受试者内因素实际上是自变量。

对数据的假设:假设3:受试者内因素的各个水平,因变量没有极端异常值;假设4:受试者内因素的各个水平,因变量需服从近似正态分布;假设5:对于受试者内因素的各个水平组合而言,因变量的方差协方差矩阵相等,也称为球形假设。

三、思维导图(点击图片看清晰大图)四、SPSS操作两因素重复测量方差分析的操作1. 在主菜单下点击Analyze &gt; General Linear Model &gt; Repeated measures...,如下图所示:2. 出现Repeated Measures Define Factor(s)对话框,如下图所示:3. 在Within-Subject Factor Name:中将“factor1”更改为treatment,因为研究对象共进行了2组试验,在Number of Levels:中填入2;4. 点击Add,出现下图:5. 在Within-Subject Factor Name:中填入time,因为研究对象的CRP水平在每组试验中共测量了3次,在Number ofLevels:中填入3,点击Add;6. 点击Define,出现下图Repeated Measures对话框;7. 如下图所示,Within-Subjects Variables后面的括号内是受试者内因素的名字,将左侧六个变量均选入右侧框中,如下图所示:8. 点击Plots,出现Repeated Measures: Profile Plots 对话框,如下图所示:9. 将time选入Horizontal Axis:框中,将treatment选入Separate Lines:框中;10. 点击Add,出现下图,点击Continue;11. 点击Save,出现Repeated Measures: Save对话框;12. 在Residuals下方选择Studentized,如下图所示,点击Continue;13. 点击Options,出现Repeated Measures: Options对话框;14. 将treatment、time和treatment*time选入Display Means for:中,下方Compare main effects为勾选状态,在Confidence interval adjustment:下选择Bonferroni,在Display下方勾选Descriptive statistics 和Estimates of effect size,点击Continue,点击OK。

单因素重复测量方差分析-SPSS教程

单因素重复测量方差分析-SPSS教程

单因素重复测量方差分析-SPSS教程一、问题与数据研究者想知道锻炼对心率(Heart Rate,HR)的影响,招募了10名研究对象,并进行了6个月的锻炼干预。

HR共测量了3次,干预前的HR:HR_1,干预中(3个月):HR_2和干预后(6个月):HR_3。

部分数据如图1。

图1 部分数据二、对问题分析对于单因素重复测量的数据,可以使用One-way Repeated Measures Anova 进行分析,但需要考虑6个假设。

假设1:因变量唯一,且为连续变量;假设2:研究对象内因素(本例为干预的不同时间)有3个或以上的水平;假设3:研究对象内因素的各个水平中,因变量没有明显异常值;假设4:研究对象内因素的各个水平中,因变量需服从近似正态分布;假设5:对于研究对象内因素的各个水平组合而言,因变量的方差协方差矩阵相等,也称满足球形假设。

假设1、假设2与研究设计有关,本研究数据满足。

那么应该如何检验假设3、假设4和假设5,并进行单因素重复测量方差分析呢?三、SPSS操作3.1 检验假设3:研究对象内因素各个水平中,因变量没有明显异常值如果研究对象内因素某个水平中的某些因变量取值和其它值相比特别大或者特别小,则称之为异常值。

异常值会影响该水平的均数和标准差,因此会对最终的统计检验结果产生影响。

对于小样本研究,异常值的影响尤其显著,必须检查每组各个水平内是否存在明显异常值。

在主界面点击Analyze→Descriptive Statistics→Explore,把HR_1、HR_2和HR_3选入Dependent List框中。

如图2。

图2 Explore点击Plots,出现Explore: Plots对话框。

在Boxplots模块内选择Dependents together,在Descriptive模块内取消选择Stem-and-leaf,在下方勾选Normality plots with tests(执行Shapiro-Wilk's检验)。

重复测量方差分析spss

重复测量方差分析spss

重复测量方差分析spss重复测量方差分析(RepeatedMeasuresAnalysisofVariance,简称RM ANOVA)是统计分析的一种重要方法,可以用来检验变量之间的关系,以及检查变量间的交互作用、顺序或临界影响。

它首先由英国心理学家 Ronald Fisher 于1935年提出,在统计学领域受到了广泛的引用和使用。

重复测量方差分析用于比较一个变量对另一个变量的效应,或者多个变量对另一变量的交互效应。

它可以用来检验一组连续性变量或一组分类变量与一个或多个因变量之间的关系,以及因变量之间的交互作用。

在实验中,它可以用来检测多次测量的结果是否有统计学意义。

此外,它还可以用来检验一组连续性变量或一组分类变量对一个或多个因变量的效应。

与其他类型的统计分析不同,重复测量方差分析只要求一组变量具有一致性,而不要求它们之间有固定的关系。

使用SPSS可以进行重复测量方差分析,通过该分析可以验证多次测量的结果是否具有统计学意义,进而判断变量之间的关系。

使用SPSS进行重复测量方差分析的步骤如下:第一步:打开SPSS软件,选择“分析”菜单,在其中选择“混合模型”。

第二步:在“混合模型”菜单中,选择“变量”子菜单,在其中选择“变量分解”,即可打开重复测量方差分析窗口。

第三步:在“变量分解”窗口中,首先将变量分别放入“因变量”、“自变量”和“重复测量”三个区域,然后选择“分析”按钮,即可开始重复测量方差分析。

第四步:重复测量方差分析完成后,SPSS会显示分析的结果,其中有统计量的计算结果,以及F值、概率值(p值)和其他辅助分析内容等。

重复测量方差分析是用来检验一组连续性变量或一组分类变量之间的关系的一种常用的统计分析方法。

它的使用只要求变量具有一致性,而不要求它们之间有固定的关系,因此它在实验中很常用。

使用SPSS可以很方便地完成重复测量方差分析,并获得统计学意义的结果。

本文详细介绍了如何使用SPSS进行重复测量方差分析的过程,为统计分析提供了有用的参考。

重复测量设计资料的方差分析SPSS操作

重复测量设计资料的方差分析SPSS操作

重复测量设计资料的方差分析SPSS操作
1、环境准备
1.1.首先在安装SPSS统计软件,在进行数据分析时,打开SPSS统计
软件,创建新文档,完成环境准备。

2、数据载入
2.1.将重复测量数据载入SPSS,可以通过文件菜单打开。

2.2.载入数据时,需要指定变量的类型,如字符型、数值型等。

3、变量转换
3.1.在方差分析中,重复测量设计需要把成对数据转换成单个观察值,以便进行分析。

3.2.将重复测量变量用SPSS的“变量转换”功能进行变换,变换类
型可以选择“算术变换”。

3.3.在变换过程中,需要指定新变量的表达式,如取均值、差值等,
以计算新变量的值。

4、数据检验
4.1.在得到变量后,需要对数据进行检验,以检验数据的有效性、完
整性和准确性。

4.2.可以使用SPSS的“数据检验”功能,检查变量是否正确转换,
此外,也可以使用“数据缺失标记”、“偏度-峰度检验”等功能,以检
查变量的数据情况。

5、方差分析
5.1.方差分析是重复测量设计中的主要统计分析方法,可以用来检验两个或多个样本之间的差异。

5.2.在SPSS中,可以使用“多因素方差分析”功能,设置因变量和自变量,进行分析。

5.3.在运行分析时。

SPSS重复测量方差分析例题答案

SPSS重复测量方差分析例题答案

一、不同性别各阶段体重变化如图可知,不同性别各阶段的体重平均值均呈逐阶段下降趋势。

通过重复测量方差分析,可知被试内自变量[不同阶段]的球形度检验不显著,p>0.05。

根据一元分析,各阶段体重变化显著,F(4,56)=57.534,P<0.05,df=4;被试间自变量[性别]存在显著的主效应,df=1,F=49.948,Sig=.000,P<0.01 各[阶段]与[性别]的交互效应不显著df=4,F=0.193,p>0.05。

根据事后检验,仅4,5阶段体重的差异不显著,P>0.05,阶段2体重显著低于阶段1,P<0.05,其他阶段之间体重差异显著,p<0.01。

二、销售地点与销售时间对销售量的影响根据重复测量方差分析,被试内自变量[销售时间]的球形度检验显著df=2,p<0.01,根据多元分析,可知[销售时间]和[地区]的交互效应显著,F=5.590,p<0.05。

被试间自变量[地区]对销售时间的影响显著,df=2,F=58.149,Sig=。

000,P<0.01。

由于交互作用显著,现作简单效应分析:①同一销售时间,不同地区表1:同一销售时间不同地区的销售量单因素方差分析齐性检验方差分析df1 Sig df MS F Sig销售时间1 2 .790 2 300677.167 47.756 .000**销售时间2 2 .205 2 571034.389 49,741 .000**销售时间3 2 .722 2 433628.667 63.121 .000****p<0.01由表可得,在同一销售时间(1或2或3)中,不同地区的销售量均差异显著,p<0.01,即自变量[地区]对[销售量]存在显著的主效应。

在事后检验中,不同地区的销售量均差异显著,p<0。

01,呈现地区1销售量>地区2销售量>地区3销售量。

②同一地区,不同销售时间表2:同一地区内不同销售时间的销售量重复测量方差分析球形度检验一元分析/多元分析df Sig df MS F Sig地区1 2 .731 2 173537.167 400.995 .000**error1 10 432.767地区2 2 .332 2 87855.722 224.319 .000**error2 10 391.656地区3 2 .064 2 54192.056 17.625 .010*error3 10 3074.789*p<0.05;**p<0.01由此可知,同一地区不同销售时间下,销售量存在显著差异,即自变量[销售时间]对[销售量]存在显著主效应。

spss重复测量方差分析流程

spss重复测量方差分析流程

spss重复测量方差分析流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!SPSS 重复测量方差分析是一种用于分析在不同时间点或条件下对同一组对象进行多次测量的数据的统计方法。

重复测量设计资料的方差分析SPSS操作

重复测量设计资料的方差分析SPSS操作

Measure: MEASURE_1
Source FA C TO R1
FACTOR1 * GROUP
Erro r(F AC TO R 1)
Sphericity Assumed Greenhouse-Geisser Huyn h-Fe ld t Lo we r-bou nd Sphericity Assumed Greenhouse-Geisser Huyn h-Fe ld t Lo we r-bou nd Sphericity Assumed Greenhouse-Geisser Huyn h-Fe ld t Lo we r-bou nd
111
123
131
B
10
118
114
116
123
133
C
11
131
119
118
135
129
C
12
129
128
121
148
132
C
13
123
123
120
143
136
C
14
123
121
116
145
126
C
15
125
124
118
142
130
(二)分析步骤 1.建立数据文件 本例需建立6个变量: 诱导方法group:数值型,变量值定义:A=1; B=2; C=3 5个时相测量结果:诱导前收缩压T0 ;时相1收缩压T1 ;时相2收缩压T2 ; 时相3收缩压T3 ;时相4收缩压 T4 ;上述5个变量均为数值型,直接输入测量 数值。建立数据文件“例7-6.sav”如图7-23所示。
图7-23 数据文件“例7-6.sav”
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 重复测方差分析实例操作
分析过程
1.数据格式
2.软件实验步骤
3.结果解释与描述
原始数据
group t0 t1 t2 t3 group t0 t1 t2 t3
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 1 0
1.1 数据格式
1.2 软件实验步骤
些处的描述过程输出无标准差,
group=2时可用Analyze\ Explorer过程实现描述,
group=3时可用Analyze→General Lineal Model→Multivariate去实现描述。

1.3 结果解释与描述
表1 有无合并症患者LC含量(s
x )
例数
重复测量时间
麻醉前麻醉后20分钟电切手术30分钟手术结束时
无合并症42 ±±±±有合并症18 ±±±±
统计描述可以通过Analyze\ Explorer过程实现,该过程较简单不赘述。

统计分析教程.(高级篇)张文彤P37
也就是说,在分析时,我们首先要判断,重复测量的不同时间点之间的结果是否存在相关性,也就是进行球形检验,即Mauchly's Test of Sphericity 。

如果P<,不符合
Huynh-Feldt 条件,说明重复测量数据之间存在相关性,不可按单因素方差分析方法处理,需要进行多变量方差分析。

以多元检验结果为准。

统计分析教程.(高级篇)张文彤P41
如果P>
,符合Huynh-Feldt 条件,说明重复测量数据之间不存在相关性,可按单因素方差分析方法处理。

统计分析教程.(高级篇)张文彤P40
Table 2 Mauchly's Test of Sphericity
Within Subjects Effect Mauchly's W
Approx. Chi-Square
df Sig. Epsilon a
Greenhouse-G eisser Huynh-Feldt Lower-b
ound Time
5
.000
本例由Table 2 Mauchly's Test of Sphericity可知,P<,不符合Huynh-Feldt条件,说明重复测量数据之间存在相关性,不可按单因素方差分析方法处理,需要进行多变量方差分析,以多元检验结果为准。

Table 3 Multivariate Tests
Effect Value F Hypothesis df Error df Sig.
Time Pillai's Trace .271 .000 Wilks' Lambda .729 .000
Hotelling's Trace .372 .000
Roy's Largest Root .372 .000 Time * group Pillai's Trace .292 .000 Wilks' Lambda .708 .000
Hotelling's Trace .411 .000
Roy's Largest Root .411 .000 多变量方差分析结果如Table 3Multivariate Tests所示,四种检验结果Time和Time*group的P值均<,说明时间因素以及时间因素和分组的交互作用有统计学意义,即测量指标有随时间变化的趋势并且时间因素的作用随着分组的不同而不同。

Table 4 Tests of Between-Subjects Effects
Source Type III Sum of Squares df Mean Square F Sig.
Intercept 1 .000
group 1 .035
Error 58 .291
表4组间效应的检验。

F=,P=,说明不同合并症患者的LC含量有差别。

综上,也就是说患者LC含量随手术时间的变化趋势不同,且这种变化趋势随着合并症(有/无)分组情况不同而不同。

如下图所示。

相关文档
最新文档